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Abstract: In this study, the effects of adding TiB2 particles to eutectic Al + Mg2Si phases in aluminum
alloys were analyzed. The eutectic Al + Mg2Si phases were modified effectively when a large amount
of TiB2 was added, and changes in the shape, size, and distribution of the eutectic Al + Mg2Si
phases were confirmed using a polarizing microscope and FE-SEM. The crystal structure of the TiB2

particles and Mg2Si phases were analyzed using HR-TEM, and the analysis confirmed that the TiB2

particles can act as heterogeneous nucleation sites. This paper intends to clarify the principle of phase
modification of the eutectic Al + Mg2Si phases by TiB2 particles and proposes a new mechanism to
improve Mg2Si phase modification when TiB2 particles are added.

Keywords: aluminum alloy; phase modification; intermetallic compound; eutectic Al + Mg2Si phases

1. Introduction

Mg2Si is an intermetallic compound (intermetallics) with excellent hardness
(4.5 × 109 N/m2), modulus of elasticity (120 GPa), and low density (1.99 g/cm3) [1,2]. The
shape, size, and distribution of Mg2Si phases have a significant effect on its mechanical
properties. In Al–Si–Mg alloy systems, Mg2Si phases are crystallized according to the ratio
of Si and Mg composition. In as-cast conditions, Mg2Si phases grow in a coarse dendritic
shape [3–6]. Coarse dendritic Mg2Si phases lead to nonhomogeneous stress concentration
and reduce the mechanical properties of Al alloys. Therefore, improving the morphologies
of the Mg2Si phases is a decisive test for Al–Mg2Si alloys. In previous studies, it has
been reported that Mg2Si phases in Al-based alloys are improved by the application of
microstructure treatment processes such as hot extrusion [7] and modification heat treat-
ment [8]. In addition, Mg2Si phase improvement can be achieved with the addition of
P [5,9], Na [10], TiB2 [9,11,12], and Ca/Sb [13,14]. However, most of these studies have
focused on the improvement of the primary Mg2Si phase. There are only a few studies that
have been conducted on eutectic Al + Mg2Si phases. The shape of the eutectic Al + Mg2Si
phases has a great influence on the mechanical properties as well as on the primary Mg2Si
phase. In general, only a few hundred ppm additions of alloying elements or agents are
expected to yield enough effects for the modification or phase improvement of aluminum
alloys [15–17]. However, in the case of Mg2Si some studies have reported that a relatively
large amount of TiB2 particles (approximately 5 wt.% [12] and 5 vol.% [18]) were required
to effectively improve the eutectic Al + Mg2Si phases of Al–Mg2Si alloys. In our previous
work, TiB2 particles (approximately 1 wt.% Ti) effectively improved the eutectic Al + Mg2Si
phases of Al-based alloys [11].

There are various types of eutectic (Al + Mg2Si) colonies. Variations in these colonies
depend on the contents of Si and Mg such as lamellar, flake-likes, rod-likes, and irregular
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lamella [19]. In studies of the improvement of eutectic Al + Mg2Si phases, the modified
eutectic Al + Mg2Si phases were still eutectic colony types [10,20,21]. Interestingly, the
eutectic (Al + Mg2Si) colony was changed to a divorced eutectic colony by the addition
of Al–5Ti–1B master alloys. However, there is still insufficient evidence to provide an
explanation of the relationship between the relatively large amount of TiB2 particles and
the eutectic (Al + Mg2Si) colony improvements. The purpose of this study is to investigate
the relationship between TiB2 and eutectic Al + Mg2Si phases in an Al–Zn–Si–Mg–Cu cast
alloy. In addition, the modified mechanism of the eutectic Al + Mg2Si phases with TiB2
particles was also confirmed.

2. Materials and Methods

The Al–8Zn–6Si–4Mg–2Cu–xTi (x = 0, 0.1, 0.5, and 1) casting alloy was manufactured
using gravity casting. A high-frequency induction melting furnace was used for melting at
680 ◦C ± 5 ◦C. The alloy composition (all compositions quoted in this work are given in
wt.%) was aligned using commercial Al (99.97%), Zn (99.9%), Mg (99.8%), and Cu (99.9%)
ingots; pure crystalline Si (99.9%); and the Al–5Ti–1B master alloy rod. Figure 1 shows the
Al–5Ti–1B master alloy as observed through a field emission scanning electron microscope
(FE-SEM). As evidenced in Figure 1, the microscope shows the presence of both TiB2 and
Al3Ti particles in the Al–5Ti–1B master alloy. The Al–5Ti–1B master alloy was added after
all other elements were dissolved entirely. The manufactured alloys were analyzed by
optical emission spectrometer (SPECTRO MAXx, SPECTRO, Kleve, Germany), and the
composition details of this analysis are shown in Table 1. The specimen for metallographic
observation was obtained from the same location as the sample manufactured from the
molten metal cylinder mold (32 Ø × 70 mm, FC25 cast iron) preheated to 250 ◦C. The
microstructure was observed using the FE-SEM (S-4800, HITACHI, Tokyo, Japan) polarizing
microscope and 200 kV FE-transmission electron microscopy (Talos F200X G2 TEM, Thermo
Fisher Scientific, Waltham, MA, USA). A fluoboric acid–distilled water solution was used as
an etchant for electrolytic polishing (Lectropol-5, Struers, Copenhagen, Denmark). Average
grain size measurements were conducted according to ASTM E1382 standards.
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Al–8Zn–6Si–4Mg–2Cu (Base) 7.96 5.94 4.02 1.97 <0.003 bal. 

Base + 0.1% of Ti 7.98 5.98 4.01 1.96 0.13 bal. 

Base + 0.5% of Ti 8.01 5.94 3.97 1.95 0.49 bal. 

Base + 1% of Ti 7.99 6.01 4.05 2.01 1.02 bal. 

Figure 1. SEM image of the Al–5Ti–1B master alloy rod: (a) low magnification and (b) high magnifi-
cation.

Table 1. Chemical composition of different Al–5Ti–1B master alloy additions to the Al–8Zn–6Si–4Mg–
2Cu–xTi alloys. All values are expressed in weight percent.

Alloy Components Zn Si Mg Cu Ti Al

Al–8Zn–6Si–4Mg–2Cu (Base) 7.96 5.94 4.02 1.97 <0.003 bal.
Base + 0.1% of Ti 7.98 5.98 4.01 1.96 0.13 bal.
Base + 0.5% of Ti 8.01 5.94 3.97 1.95 0.49 bal.
Base + 1% of Ti 7.99 6.01 4.05 2.01 1.02 bal.
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3. Results
3.1. Eutectic Al + Mg2Si Phase Modification and Microstructure Change by Al–5Ti–1B Master
Alloy Addition

Figure 2 shows the change of the eutectic Al + Mg2Si phases with different Ti amounts
in the Al–8Zn–6Si–4Mg–2Cu alloys. The Chinese script-type eutectic Al + Mg2Si phases
can be seen in the microstructure of the base alloy. When 0.1% of Ti was added, the shape of
the eutectic Al + Mg2Si phases remained a Chinese script type. When 0.5% of Ti was added,
both the Chinese script type and polygonal structure of the eutectic Al + Mg2Si phases
were observed (Figure 2e). When 1% of Ti was added, the eutectic Al + Mg2Si phases’
morphology changed into a fine polygonal structure (Figure 2b,d). In the same figure, TiB2
particles (indicated by white arrows) can be observed in both the inner and outer parts of
the eutectic Al + Mg2Si phases (Figure 2h). Figures 3 and 4 show the polarizing microscope
image of the Al–8Zn–6Si–4Mg–2Cu alloy with different amounts of Ti addition. Here, the
different colors represent different grains. The average grain size was measured according
to ASTM E1382 standards using IMT I-solution DT software (ver. 11.2, IMT i–Solution,
Rochester, NY, United States). When 0.1% of Ti was added to the base alloy, the average
grain size decreased from 322 to 120 µm. However, no further grain refining was observed
when the Ti addition was increased to 1%. While the unmodified eutectic Al + Mg2Si
phases were observed at the edges of the Al grains (shown in Figure 4a,b), the modified
eutectic Al + Mg2Si phases were observed at the grain boundaries (Figure 4b,c).
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Figure 2. SEM images of the eutectic Al + Mg2Si phases of the Al–8Zn–6Si–4Mg–2Cu alloy with
different Ti amounts: (a,b) without Ti; (c,d) at 0.1% of Ti; (e,f) at 0.5% of Ti; and (g,h) at 1% of Ti. Here,
the white arrows indicate the TiB2 particles.
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Figure 4. Polarized microscope images (high magnification) of the Al–8Zn–6Si–4Mg–2Cu alloys
with different amounts of Ti: (a) without Ti; (b) at 0.1% of Ti; (c) at 0.5% of Ti; and (d) at 1% of Ti.
Here, the white dotted line represents the grain boundaries. The white and yellow arrows represent
unmodified and modified eutectic Al + Mg2Si phases, respectively.

3.2. TEM/EDS and HR-TEM Results of Modified Eutectic Al + Mg2Si Phases

Figure 5 shows a cross section of the modified eutectic Al + Mg2Si phases analyses
by TEM/EDS (Transmission Electron Microscope/Energy Dispersive X-ray Spectroscopy).
The Al, Mg, Si, Ti, and B elements were detected. The TiB2 particles (the area where Ti and
B signals overlap) are observed inside the modified eutectic Al + Mg2Si phases. Figure 6
shows the TEM micrographs of the modified eutectic Al + Mg2Si phases in the Al–8Zn–
6Si–4Mg–2Cu–1Ti alloys. Figure 6a shows the bright field TEM image of the modified
eutectic Al + Mg2Si phases. Figure 6b is a high-resolution TEM image of the yellow box in
Figure 6a, which shows the interface between Mg2Si and TiB2.
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4. Discussion
4.1. Nucleation Sites of the Eutectic Al + Mg2Si Phases on the TiB2 Particles

Figure 4 shows that, as the Ti amount increased from 0% to 1%, more of the eutectic
Al + Mg2Si phases was modified. The Al–5Ti–1B master alloy usually contains a 1.94 vol-
ume fraction of TiB2 particles. Although this volume fraction is low, the Al–5Ti–1B master
alloy contains a large amount of TiB2 particles (Figure 1) because TiB2 particles can be as
small as 1–4 µm (in Figure 1b). The Al–8Zn–6Si–4Mg–2Cu–1Ti alloy contains a 0.39 volume
fraction of TiB2 particles. TiB2 particles were also observed around the modified eutec-
tic Al + Mg2Si phases (Figure 2h). These results indicate that the TiB2 particles acted as
nucleation sites for the eutectic Al + Mg2Si phases. However, the eutectic Al + Mg2Si
phases were unmodified by the addition of 0.1% (0.04 vol.% of TiB2 particles) and 0.5% of
Ti (0.19 vol.% of TiB2 particles). In these Al–8Zn–6Si–4Mg–xTi (x = 0.1 and 0.5) alloys, the
amount of TiB2 particles was insufficient to change the shape of the eutectic Al + Mg2Si
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phases. When 1% of Ti was added, there was a sufficient number of TiB2 particles to act as
nucleation sites for the eutectic Al + Mg2Si phases. For this reason, most of the eutectic
Al + Mg2Si phases were modified.

Figure 5 shows the TEM/EDS data for the modified eutectic Al + Mg2Si phases
and the TiB2 particles. The TiB2 particles were observed inside the improved eutectic
Al + Mg2Si phases and were also contained in the Al–5Ti–1B master alloy used for the
Al–8Zn–6Si–4Mg–2Cu–xTi alloys (in Figure 1). Since the melting temperature of TiB2
particles is 3225 ◦C [22], they did not melt easily at the temperature required to melt the Al
alloy. The TiB2 particles could therefore act as heterogeneous nucleation sites for eutectic
Al + Mg2Si phases during the solidification process.

Figure 6a shows the TEM images of the modified eutectic Al + Mg2Si phases. TiB2
particles were observed in the modified eutectic Al + Mg2Si phases. Figure 6b is a high-
resolution TEM image of the yellow box in Figure 6a. The crystallographic structure of the
TiB2 particle and the eutectic Al + Mg2Si phases are clearly observed. The upper section
shows the eutectic Al + Mg2Si phases, and the lower section shows the TiB2 particle. The
crystal orientations of both phases were measured by HR-TEM. The lattice plane spacing of
the lower section crystal (α) is 0.32 nm, which is in agreement with the (0001) plane of the
TiB2 crystal structure [3]. The lattice plane spacing of the upper section crystal is 0.323 nm,
which is in agreement with the (200) plane of the Mg2Si crystal structure [9]. The stacking
order of the (200)Mg2Si plane and the (0001)TiB2 plane is illustrated in Figure 6c. The stacking
order of the (200)Mg2Si plane is ABC . . . , where the stacking pattern of Si atoms (ACA . . . )
is observed in Figure 6b. The stacking order of (0001)TiB2 plane is ABA . . . , where the
stacking pattern of Ti atoms (AA . . . ) is observed. The atomic patterns of Mg and B are not
observed due to differences in zone axis. The dotted line in Figure 6b shows an interface of
Mg2Si and TiB2 that is clearly well bonded. The crystal plane of (200)Mg2Si and (0001)TiB2

possesses a low misfit (approximately 4.64%), as calculated by the Turnbull–Vonnegut
equation [9]. Therefore, the TiB2 particle clearly acted as the heterogeneous nucleation site
for the eutectic Al + Mg2Si phases.

4.2. Eutectic Al + Mg2Si Phase Modification and Microstructure Change by TiB2 Particle
Additions

As shown in Figure 2a,b, the morphology of the eutectic Al + Mg2Si phases is in the
form of the Chinese script shape. Observations under a polarizing microscope showed the
unmodified eutectic Al + Mg2Si phases at the inner edges of the Al grains (in Figure 4a,b).
Since the eutectic Al + Mg2Si phases are located inside of the Al grains, it can be concluded
that there was eutectic (Al + Mg2Si) growth from the primary Al grains during the solidifi-
cation process. Figure 7a–d illustrates the microstructural evolution during solidification
of the unmodified eutectic Al + Mg2Si phases. Figure 7a demonstrates the formation of the
nucleated α-Al by the Al solidification reaction inside the molten metal. Figure 7b shows
the growth of the secondary dendrite arm (SDA) due to the growth and coarsening of the
α-Al phase. The solute element (Mg and Si) diffusion is a result of the Al phase growth.
The solute element rich zone surrounds the growing solid Al phase. The formation of the
Mg2Si nuclei emerged as a result of constitutional super-cooling from the SDA of α-Al
phase. While the eutectic Al + Mg2Si phases grew near the SDA, the α-Al phase also grew.
This indicates that there was contact between both phases during solidification. Separation
of the Al elements occurred around the growing eutectic Al + Mg2Si phases. The edges of
eutectics Mg2Si have a low potential for liquid/α-Al interface. Therefore, the α-Al phase
easily engulfed the eutectic Al + Mg2Si phases. Consequently, the eutectic Al + Mg2Si
phases solidified at the edges of the Al grains, as shown in Figure 4a,b and Figure 7d.
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Figure 7. Schematic presentation of the solidification processes of eutectic Al + Mg2Si phases in
aluminum alloys: (a)→(b)→(c)→(d) without TiB2 particles; (a)→(e)→(f)→(g) with TiB2 particles.

In the hypoeutectic composition of Al–Mg2Si alloys, the eutectic Al + Mg2Si phases
solidify after the α-Al phase growth. When the eutectic reaction begins, the eutectic
Al + Mg2Si phases are crystallized in the remaining liquid phase. Therefore, effective
improvement of the eutectic Al + Mg2Si phases occurs only when the TiB2 particles remain
in the liquid phase. However, since the TiB2 particles have an excellent crystallographic
match with the Al phase, most of the TiB2 particles acted as heterogeneous sites for the α-Al
phase [23]. Therefore, a small amount of the TiB2 particles was easily encased in the Al
grains. This is why the eutectic Al + Mg2Si phases were not effectively improved when 0.1%
and 0.5% of Ti were added to the Al–8Zn–6Si–4Mg–2Cu alloys. However, once the TiB2
particles were sufficiently aggregated in the molten metal, the agglutinated TiB2 particles
had a high potential for the growing liquid (molten metal)/solid (α-Al) interface. Therefore,
during the α-Al phase growth, the agglutinated TiB2 particles were easily pushed out by
the Al grains [24–26]. When the eutectic reaction began, a large amount of the TiB2 particles
existed around the SDA of the Al phase.

Figure 7a,e–g demonstrates the solidification mechanism of the eutectic Al + Mg2Si
phases when sufficient TiB2 particles were added. Figure 7a,e shows the nucleation and
growth of α-Al. Here, the TiB2 particles aggregated in the liquid phase. These particles
were pushed out by the Al grains and now exist around the SDA. When the eutectic
reaction began, the TiB2 particles acted as heterogeneous nucleation sites for the eutectic
Al + Mg2Si phases (in Figure 7f). The eutectics Mg2Si were simultaneously crystallized
in the TiB2 particles’ agglomeration region. The growing eutectic Al + Mg2Si phases
interfered with each other and prevented coarse growth. The TiB2 particles were located
around the grown eutectics Mg2Si. The α-Al phase also grew during the nucleation of
the eutectic Al + Mg2Si phases. Unlike the unmodified eutectic Al + Mg2Si phases, the
modified eutectic Al + Mg2Si phases and aggregated TiB2 particles had a high potential for
a liquid/solid interface. They were easily pushed out to the grain boundaries (in Figure 7g).
Therefore, in the final microstructure, the modified eutectic Al + Mg2Si phases and the TiB2
particles are located at the Al grain boundaries (in Figure 4d).

Another important point of discussion is the effect of grain refinement by the addition
of TiB2 on the shape of the eutectic Al + Mg2Si phases. The Al–5Ti–1B master alloy is a
well-known Al grain refiner [27,28]. The average grain size was greatly reduced from 322 to
122 µm when 0.1% Ti was added to the Al–8Zn–6Si–4Mg–2Cu alloy. However, when either
0.5 or 1 wt.% Ti was added, the grains were not further refined. As seen in Figure 4a,b, the
shape and location of eutectic Al + Mg2Si phases did not change due to grain refinement.
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Therefore, grain refinement does not affect the modification of the eutectic Al + Mg2Si
phases.

4.3. Effect of the Addition of TiB2 Particles to Al–8Zn–6Si–4Mg–2Cu Alloys

The effect of the addition of TiB2 particles on the mechanical properties of the Al–8Zn–
6Si–4Mg–2Cu alloys is given in Figure 8 [11]. A tensile test of the Al–8Zn–6Si–4Mg–2Cu–xTi
(x = 0, 0.1, 0.5, and 1) alloy was conducted according to ASTM E8 standards. Elongations of
individual alloys used strain values at the time of tensile failure. The value of yield strength
was confirmed by the “0.2 off-set” method. The morphology of eutectic Al + Mg2Si phases
significantly affected its mechanical properties. Yield strength, ultimate tensile strength,
and elongation were increased by the addition of TiB2 particles (Figure 8b). While the Ti
content increased to 0.5%, the tensile behavior of the Al–8Zn–6.4Si–4Mg–2Cu–xTi (x = 0, 0.1,
and 0.5) alloys did not change significantly (Figure 8a). However, when 1% Ti was added,
the mechanical properties increased significantly. In the Al–8Zn–6.4Si–4Mg–2Cu–xTi (x = 0,
0.1, and 0.5) alloys, eutectic Al + Mg2Si phases were coarse, irregular, and located at the
end of the aluminum grains. The tips of the unmodified Mg2Si were close to the aluminum
grains and led to nonhomogeneous stress concentrations. Therefore, the unmodified Mg2Si
phase caused micro-cracks and intergranular fracture. This provides an explanation for
why the mechanical properties did not increase significantly. However, modified eutectic
Al + Mg2Si phases caused homogeneous stress concentration. Since modified eutectic
Al + Mg2Si phases were located at the boundary of the aluminum grains, it prevented
the propagation of intergranular fracture. Therefore, the mechanical properties of the
Al–8Zn–6Si–4Mg–2Cu–1Ti alloy increased significantly.
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5. Conclusions

The eutectic Al + Mg2Si phases of the Al–8Zn–6Si–4Mg–2Cu alloy was effectively
modified when 1% of Ti was added. The morphologies of the eutectic structures changed
from a coarse Chinese script to a fine polygonal shape. TiB2 particles were observed in the
modified eutectics Mg2Si. The crystal structures of both phases were analyzed by HR-TEM
to confirm that the TiB2 particles were excellent heterogeneous nucleation particles for
Mg2Si.

The modified Mg2Si phase moved from the inside of the grain to the grain boundary,
and TiB2 particle clustering around the improved phase was observed. The TiB2 particles
agglomerated in the molten Al alloy were easily pushed by the growing primary Al. These
particles could remain in the residual molten metal until the eutectic Al + Mg2Si phases’
solidification temperature was reached. However, individual TiB2 particles were easily
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surrounded by the growing primary aluminum matrix and did not have a significant effect
on the improvement of the eutectic Al + Mg2Si phases.
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