Investigation on Microstructure, Mechanical and Wear Properties of HVOF Sprayed Composite Coatings (WC–Co + CR) On Ductile Cast Iron
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Coating Charcterisation
2.3. Mechanical and Tribological Testing
3. Results and Discussion
3.1. Microstructure
3.2. Mechanical Properties
3.3. Wear Resistance of Coating
4. Conclusions
- The composite coating (WC–Co + Cr), deposited with the HVOF method onto the ductile cast iron, is characterised by low porosity (about 4%), compact structure, good adherence to a substrate, and high hardness (maximum hardness is obtained as 2523 HV0.1). In the coating’s microstructure, there are finely fragmented WC particles embedded in a cobalt-chromium alloy matrix, reaching nanocrystalline sizes. TEM tests confirm properties of the band structure of the composite coating, consisting of nanocrystalline tungsten carbide grains embedded in an amorphous cobalt-chromium matrix.
- Composite structure of the WC–Co + Cr coating provides good fracture toughness. Destruction is visible along the interface of the coating/substrate type system. Cracks are initiated in the area of interface, between coating and substrate, and do not develop into a crack in the substrate material. The system with the composite coating is characterised by high scratch bond strength in the load range of 10–25 N. Over 25 N, the coating is subject to substrate delamination, and the destruction mechanism is adhesive.
- Residual stresses, generated at the coating/substrate interface, are of compressive character and are improving adhesions of the coating to the substrate.
- WC–Co + Cr composite coatings, generated with the HVOF method on the ductile cast iron substrate, have good resistance to erosive wear. The composite coating (WC–Co + Cr) has better (by almost 22%) resistance to abrasion, in an abrasive suspension, than the ductile cast iron. The surface morphology, after the wear resistance testing in an abrasive suspension, indicates that the wear mechanism is associated with the formation of craters, lips, micro-cuts in the cobalt-chromium matrix, and the cracks in the area of the pores and in the area of the boundary of the carbide-matrix junction. The adhesive and abrasive wear are determined on worn surface.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Davis, E.J. Introduction to Applications for Thermal Spray Processing. In Handbook of Thermal Spray Technology; Davis, J.R., Ed.; ASM International: Geauga County, OH, USA, 2004; p. 172. [Google Scholar]
- Sarjas, H.; Kulu, P.; Juhani, K.; Vuoristo, P. Vuoristo, Novel WC-Co Spray Powders and HVOF Sprayed Coatings on Their Basis. In Proceedings of the 28th International Conference on Surface Modification Technologies, Tampere, Finland, 16–18 June 2014. [Google Scholar]
- Pulsford, J.; Venturi, F.; Pala, Z.; Kamnis, S.; Hussain, T. Application of HVOF WC-Co-Cr coatings on the internal surface of small cylinders: Effect of internal diameter on the wear resistance. Wear 2019, 432–433, 202965. [Google Scholar] [CrossRef]
- Sahraoui, T.; Guessasma, S.; Jeridane, A.; Mahomed, H. HVOF sprayed WC–Co coatings: Microstructure, mechanical properties and friction moment prediction. Mater. Des. 2010, 31, 1431–1437. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, W.; Ma, Y.; Meng, S.; Liu, C.; Long, L.; Tang, S. A comparative study on wear and corrosion behavior of HVOF-and HVAF-sprayed WC–10Co–4Cr coatings. Surf. Eng. 2017, 33, 63–71. [Google Scholar] [CrossRef]
- Zha, B.L.; Qiao, S.L.; Huang, D.Y.; He, W.; Zha, Z.H.; Li, X.B. Study of properties of nanostructured and conventional WC-12Co coatings deposited by HVO/AF. Advanc. Mater. Res. 2013, 709, 166–171. [Google Scholar] [CrossRef]
- Antonov, M.; Veinthal, R.; Yung, D.-L.; Katušin, D.; Hussainova, I. Mapping of impact-abrasive wear performance of WC-Co cemented carbides. Wear 2015, 332, 971–978. [Google Scholar] [CrossRef]
- Zhao, L.; Maurer, M.; Fischer, F.; Dicks, R.; Lugscheider, E. Influence of spray parameters on the particle in-flight properties and the properties of HVOF coating of WC-CoCr. Wear 2004, 257, 41–46. [Google Scholar] [CrossRef]
- Kear, B.; Skandan, G.; Sadangi, R. Factors controlling decarburization in HVOF sprayed nano-WC/Co hardcoatings. Scr. Mater. 2001, 44, 1703–1707. [Google Scholar] [CrossRef]
- Yuan, J.; Zhan, Q.; Huang, J.; Ding, S.; Li, H. Decarburization mechanisms of WCeCo during thermal spraying: Insights from controlled carbon loss and microstructure characterization. Mater. Chem. Phys. 2013, 142, 165–171. [Google Scholar] [CrossRef]
- Hulka, I.; Serban, V.A.; Niemi, K.; Vuoristo, P.; Wolf, J. Comparison of structure and wear properties of fine-structured WC-CoCr coatings deposited by HVOF and HVAF spraying processes. Solid State Phenom. 2012, 188, 422–427. [Google Scholar] [CrossRef]
- He, J.; Schoenung, J.M. A review on nanostructured WC-Co coatings. Surf. Coat. Technol. 2002, 157, 72–79. [Google Scholar] [CrossRef]
- Guilemany, J.M.; Dost, S.; Nin, J.; Miguel, J.R. Study of the properties of WC-Co nanostryctured coatings sprayed by high –velocity oxyfuel. J. Therm. Spray Technol. 2005, 14, 405–413. [Google Scholar]
- Usmani, S.; Sampath, S.; Houck, D.L.; Lee, D. Effect of carbide grain size on the sliding and abrasive wear behavior of thermally sprayed WC-Co coatings. Tribol. Trans. 1997, 40, 470–478. [Google Scholar] [CrossRef]
- Yuan, J.; Ma, C.; Yang, S.; Yu, Z.; Li, H. Improving the wear resistance of HVOF sprayed WC-Co coatings by adding submicron-sized WC particles at the splats’ interfaces. Surf. Coat. Technol. 2016, 285, 17–23. [Google Scholar] [CrossRef]
- Thakur, L.; Arora, N.; Jayaganthan, R.; Sood, R. An investigation on erosion behawior of HVOF sprayed WC-CoCr coatings. Appl. Surf. Sci. 2011, 258, 1225–1234. [Google Scholar] [CrossRef]
- Ozbek, Y.Y.; Canikoğlu, N.; İpek, M. The Surface Properties of WC–Co–Cr Based Coatings Deposited by High Velocity Oxygen Fuel Spraying. Acta Phys. Pol. A 2017, 131, 186–189. [Google Scholar] [CrossRef]
- Varis, T.; Suhonen, T.; Ghabchi, A.; Valarezo, S.; Sampath, T.; Liu, X.; Hannula, S.-P. Formation Mechanisms, Structure, and Properties of HVOF-Sprayed WC-CoCr Coatings: An Approach Toward Process Maps. J. Therm. Spray Technol. 2014, 23, 1009–1018. [Google Scholar] [CrossRef]
- Pulsford, J.; Kamnis, S.; Murray, J.; Bai, M.; Hussain, T. Effect of particle and carbide grain sizes on a HVOAF WC-Co-Cr coating for the future application on internal surfaces: Microstructure and wear. J. Ther. Spray Technol. 2018, 27, 207–219. [Google Scholar] [CrossRef] [Green Version]
- Gong, T.; Yao, P.; Zuo, X.; Zhang, Z.; Xiao, Y.; Zhao, L. Influence of WC carbide particle size on the microstructure and abrasive wear behavior of WC–10Co–4Cr coatings for aircraft landing gear. Wear 2016, 362–363, 135–145. [Google Scholar] [CrossRef]
- Bosak, A.K.; Celis, J.P.; Vardavoulias, M.; Matteazzi, P. Effect of nanostructuring and Al alloying on friction and wear behaviour of thermal sprayed WC-Co coatings. Surf. Coat. Technol. 2002, 206, 3508–3516. [Google Scholar] [CrossRef]
- Strecker, A.; Salzberger, U.; Mayer, J. Specimen preparation for transmission electron microscopy: Reliable method for cross-sections and brittle materials. Prakt. Metallogr. 1993, 30, 482–495. [Google Scholar] [CrossRef]
- ASTM C633–13. Standard Test Method for Adhesion or Cohesion Strength of Thermal Spray Coatings; ASTM International: West Conshohocken, PA, USA, 2017. [Google Scholar]
- ISO 27307(:2015). Thermal Spraying—Evaluation of Adhesion/Cohesion of Thermal Sprayed Ceramic Coatings by Transverse Scratch Testing; ISO International Standards: Geneva, Switzerland, 2015. [Google Scholar]
- Picas, J.A.; Punset, M.; Baile, M.T.; Martin, E.; Forn, A. Properties of WC-CoCr based coatings deposited by different HVOF thermal spray processes. Plasma Process. Polymer. 2009, 6, 594–5953. [Google Scholar] [CrossRef]
- Santana, Y.Y.; Renoult, P.O.; Sebastiani, M. Characterisation and residual stresses of WC-Co thermally sprayed coatings. Surf. Coat. Technol. 2008, 202, 4560–4565. [Google Scholar] [CrossRef]
- Ndlovu, S.; Durst, K.; Goken, M. Investigation of the sliding contact properties of WC-Co hard metals using nanoscratch testing. Wear 2007, 263, 1602–1609. [Google Scholar] [CrossRef]
- Vashishtha, N.; Khatirkar, R.K.; Sapate, S.G. Tribological behavior of HVOF sprayed WC-12Co, WC-10Co-4Cr and Cr3C2-25NiCr coating. Tribol. Int. 2017, 105, 55–68. [Google Scholar] [CrossRef]
- Bolelli, G.; Berger, L.-M.; Bonetti, M.; Lusvarghi, L. Comparative study of the dry sliding wear behavior of HVOF-sprayed WC-(W,Cr)2C-Ni and WC-CoCr hardmetal coatings. Wear 2014, 309, 96–111. [Google Scholar] [CrossRef]
- Lima, M.M.; Godoy, C.; Modenesi, P.J.; Avelar-Batista, J.C.; Davison, A.; Matthews, A. Coating fracture toughness determined by Vickers indentation: An important parameter in cavitation erosion resistance of WC-Co thermally sprayed coatings. Surf. Coat. Technol. 2004, 177–178, 489–496. [Google Scholar] [CrossRef]
Tensile Strength (MPa) | Conventional Yield Point (MPa) | Elongation (%) | Hardness (HV) | Elastic Modulus (GPa) |
---|---|---|---|---|
500 | 340 | 7 | 230 | 169 |
Gun Movement Speed (mm/s) | Oxygen (L/min) | Kerosene (L/h) | Powder Feed Rate (g/min) | Powder Feed Gas (L/min) | Spray Distance (mm) |
---|---|---|---|---|---|
583 | 944 | 25.5 | 92 | Nitrogen, 9.5 | 370 |
Temperature (°C) | 100 | 200 | 300 | 400 | 500 | 600 | 700 |
---|---|---|---|---|---|---|---|
Substrate | Ductile Cast Iron | ||||||
Temperature conductivity, mm2/s | 8.13 | 7.96 | 7.58 | 7.06 | 6.42 | 5.61 | 4.32 |
Thermal conductivity, W/mK | 28.88 | 28.45 | 25.59 | 21.96 | 18.66 | 18.22 | 18.08 |
Coating | WC–Co+Cr | ||||||
Temperature conductivity, mm2/s | 8.82 | 8.82 | 8.36 | 7.93 | 7.32 | 6.57 | 5.24 |
Thermal conductivity, W/mK | 31.33 | 28.25 | 28.20 | 24.66 | 21.28 | 21.35 | 21.94 |
Description | WC–Co + Cr |
---|---|
Internal stress σ1 (MPa) | −130 ± 60 |
Internal stress σ2 (MPa) | −340 ± 80 |
Orientation of the main stress σ1 (clockwise from the direction marked on the sample) | 40° ± 30° |
Coating /Load | 10 N | 20 N | 25 N | ||||||
---|---|---|---|---|---|---|---|---|---|
– | Lx (µm) | Ly (µm) | Acn × 10−3 (mm2) | Lx (µm) | Ly (µm) | Acn ×10−3 (mm2) | Lx (µm) | Ly (µm) | Acn × 10−3 (mm2) |
WC–Co + Cr | 57.92 | 76.19 | 4.41 | 20.48 | 185.16 | 22.31 | 75.85 | 90.12 | 51.02 |
Cone shape fracture |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ksiazek, M.; Nejman, I.; Boron, L. Investigation on Microstructure, Mechanical and Wear Properties of HVOF Sprayed Composite Coatings (WC–Co + CR) On Ductile Cast Iron. Materials 2021, 14, 3282. https://doi.org/10.3390/ma14123282
Ksiazek M, Nejman I, Boron L. Investigation on Microstructure, Mechanical and Wear Properties of HVOF Sprayed Composite Coatings (WC–Co + CR) On Ductile Cast Iron. Materials. 2021; 14(12):3282. https://doi.org/10.3390/ma14123282
Chicago/Turabian StyleKsiazek, Marzanna, Ilona Nejman, and Lukasz Boron. 2021. "Investigation on Microstructure, Mechanical and Wear Properties of HVOF Sprayed Composite Coatings (WC–Co + CR) On Ductile Cast Iron" Materials 14, no. 12: 3282. https://doi.org/10.3390/ma14123282
APA StyleKsiazek, M., Nejman, I., & Boron, L. (2021). Investigation on Microstructure, Mechanical and Wear Properties of HVOF Sprayed Composite Coatings (WC–Co + CR) On Ductile Cast Iron. Materials, 14(12), 3282. https://doi.org/10.3390/ma14123282