NBT-Pluronic F-127 Hydrogels Printed on Flat Textiles as UV Radiation Sensors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Samples
2.2. Irradiation of Samples
2.3. Screen Printing
2.4. Absorbance Measurements
2.5. Reflectance Measurements
2.6. Evaluation of Printed Textile Surface Unevenness
2.7. Scanning Electron Microscopy Measurements
3. Results and Discussion
3.1. Dose-Response of Hydrogels
3.2. Dose–Response of Printed Textiles
3.3. The Unevenness Analysis of Fabrics Surface
3.4. Morphology of Textiles
3.5. Proposition of Application
- a comparison of the pattern’s colour on the protective clothing with the prepared standard sample irradiated with a dose of UV radiation, which poses a threat to human health;
- a comparison of the pattern’s colour on the protective clothing with the prepared standard samples irradiated with different doses of UV radiation from the linear dose range of the proposed system;
- the reflectance of light measurements of the pattern on the protective clothing after a defined period of time and a readout of the absorbed dose from the calibration relation of the proposed system.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Urbach, F. Potential effects of altered solar ultraviolet radiation on human skin cancer. Photochem. Photobiol. 1989, 50, 507–513. [Google Scholar] [CrossRef]
- Taylor, H.R. The biological effects of UV-B on the eye. Photochem. Photobiol. 1989, 50, 489–492. [Google Scholar] [CrossRef] [PubMed]
- Smith, G.J. Ultraviolet radiation actinometer. U.S. Patent 4763011, 9 August 1988. [Google Scholar]
- Chanishvili, A.; Chilaya, G.; Petriashvili, G.; Barberi, R.; Bartolino, R.; De Santo, M.P. Cholesteric liquid crystal mixtures sensitive to different ranges of solar UV irradiation. Mol. Cryst. Liq. Cryst. 2005, 434, 353–366. [Google Scholar] [CrossRef]
- Petriashvili, G.; Chanishvili, A.; Chilaya, G.; Matranga, M.A.; De Santo, M.P.; Barberi, R. Novel UV sensor based on a liquid crystalline mixture containing a photoluminescent dye. Mol. Cryst. Liq. Cryst. 2009, 500, 82–90. [Google Scholar] [CrossRef]
- Popov, A.I.; Plavina, I. Photostimulated emission of KBr—In previously exposed to UV- or X-radiation. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 1995, 101, 252–254. [Google Scholar] [CrossRef]
- de Cárcer, I.A.; Dántoni, H.L.; Barboza-Flores, M.; Correcher, V.; Jaque, F. KCl: Eu2+ as a solar UV-C radiation dosimeter. Optically stimulated luminescence and thermoluminescence analyses. J. Rare Earths 2009, 27, 579–583. [Google Scholar] [CrossRef]
- Rivera, T.; Azorín, J.; Furetta, C.; Falcony, C.; García, M.; Martínez, E. Green stimulated luminescence of ZrO2 + PTFE to UV radiation dosimetry. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2004, 213, 325–328. [Google Scholar] [CrossRef]
- Smetana, F.; Hajek, M.; Bergmann, R.; Brusl, H.; Fugger, M.; Gratzl, W.; Kitz, E.; Vana, N. A portable multi-purpose OSL reader for UV dosimetry at workplaces. Radiat. Meas. 2008, 43, 516–519. [Google Scholar] [CrossRef]
- Schuyt, J.J.; Williams, G.V.M. Optical properties of Mn2+ doped CsCdF3: A potential real-time and retrospective UV and X-ray dosimeter material. J. Appl. Phys. 2019, 125, 233102. [Google Scholar] [CrossRef]
- Munakata, N. Genotoxic action of sunlight upon Bacillus subtilis spores: Monitoring studies at Tokyo, Japan. J. Radiat. Res. 1989, 30, 338–351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karentz, D.; Lutze, L.H. Evaluation of biologically harmful ultraviolet radiation in Antarctica with a biological dosimeter designed for aquatic environments. Limnol. Oceanogr. 1990, 35, 549–561. [Google Scholar] [CrossRef]
- Hegedüs, M.; Modos, K.; Ronto, G.; Fekete, A. Validation of phage T7 biological dosimeter by quantitative polymerase chain reaction using short and long segments of phage T7 DNA. Photochem. Photobiol. 2003, 78, 213–219. [Google Scholar] [CrossRef]
- Quintern, L.E.; Furusawa, Y.; Fukutsu, K.; Holtschmidt, H. Characterization and application of UV detector spore films: Thesensitivity curve of a new detector system provides good similarity to the action spectrum for UV-induced erythema in human skin. J. Photochem. Photobiol. B 1997, 37, 158–166. [Google Scholar] [CrossRef]
- Mills, A.; Grosshans, P.; McFarlane, M. UV dosimeters based on neotetrazolium chloride. J. Photochem. Photobiol. A Chem. 2009, 201, 136–141. [Google Scholar] [CrossRef]
- Kozicki, M.; Sąsiadek, E.; Kadłubowski, S.; Dudek, M.; Maras, P.; Nosal, A.; Gazicki-Lipman, M. Flat foils as UV and ionising radiation dosimeters. J. Photochem. Photobiol. A Chem. 2018, 351, 179–196. [Google Scholar] [CrossRef]
- Chen, C.C.; Lu, C.S.; Chung, Y.C.; Lan, J.L. UV light induced photodegradation of malachite green on TiO2 nanoparticles. J. Hazard. Mater. 2007, 141, 520–528. [Google Scholar] [CrossRef] [PubMed]
- Kozicki, M.; Sąsiadek, E. Textile UV detector with 2,3,5-triphenyltetrazolium chloride as an active compound. Radiat. Meas. 2011, 46, 510–526. [Google Scholar] [CrossRef]
- Kozicki, M.; Sąsiadek, E. UV dosimeter based on polyamide woven fabric and nitro blue tetrazolium chloride as an active compound. Radiat. Meas. 2011, 46, 1123–1137. [Google Scholar] [CrossRef]
- Kozicki, M.; Sąsiadek, E. Scanning of flat textile-based radiation dosimeters: Influence of parameters on the quality of results. Radiat. Meas. 2013, 58, 87–93. [Google Scholar] [CrossRef]
- Sąsiadek, E. Textile Dosimetry for High-Energy Radiation. Ph.D. Thesis, Technical University of Lodz, Lodz, Poland, 2012. (In Polish). [Google Scholar]
- Kozicki, M.; Sąsiadek, E. UV-assisted screen-printing of flat textiles. Color. Technol. 2012, 128, 251–260. [Google Scholar] [CrossRef]
- Kozicki, M.; Sąsiadek, E.; Karbownik, I.; Maniukiewicz, W. Doped polyacrylonitrile fibres as UV radiation sensors. Sens. Actuators B Chem. 2015, 213, 234–243. [Google Scholar] [CrossRef]
- Kozicki, M.; Sąsiadek, E.; Kadłubowski, S.; Dudek, M.; Karbownik, I. Radiation sensitive polyacrylonitrile microfibres doped with PDA nanoparticles. Radiat. Phys. Chem. 2020, 169, 107751. [Google Scholar] [CrossRef]
- Kozicki, M.; Kwiatos, K.; Kadłubowski, S.; Dudek, M. TTC-Pluronic 3D radiochromic gel dosimetry of ionizing radiation. Phys. Med. Biol. 2017, 62, 5668–5690. [Google Scholar] [CrossRef] [PubMed]
- Kozicki, M.; Kwiatos, K.; Dudek, M.; Stempien, Z. Radiochromic gels for UV radiation measurements in 3D. J. Photochem. Photobiol. A 2018, 351, 197–207. [Google Scholar] [CrossRef]
- Jaszczak, M.; Wach, R.; Maras, P.; Dudek, M.; Kozicki, M. Substituting gelatine with Pluronic F-127 matrix in 3D polymer gel dosimeters can improve nuclear magnetic resonance, thermal and optical properties. Phys. Med. Biol. 2018, 63, 175010. [Google Scholar] [CrossRef] [PubMed]
- Alexandridis, P.; Hatton, T.A. Poly(ethylene oxide)-poly(propylene oxide)-poly (ethylene oxide) block copolymer surfactants in aqueous solutions and at interfaces: Thermodynamics, structure, dynamics, and modelling. Colloids Surf. A 1995, 96, 1–46. [Google Scholar] [CrossRef]
- Kwiatos, K.; Maras, P.; Kadlubowski, S.; Stempień, Z.; Dudek, M.; Kozicki, M. Tetrazolium salts-Pluronic F-127 gels for 3D radiotherapy dosimetry. Phys. Med. Biol. 2018, 63, 095012. [Google Scholar] [CrossRef] [PubMed]
- Kouvati, K.; Jaszczak, M.; Papagiannis, P.; Kadłubowski, S.; Wach, R.; Maras, P.; Dudek, M. Leuco crystal violet-Pluronic F-127 3D radiochromic gel dosimeter. Phys. Med. Biol. 2019, 64, 175017. [Google Scholar] [CrossRef] [PubMed]
- Kozicki, M.; Bartosiak, M.; Dudek, M.; Kadłubowski, S. LCV-Pluronic F-127 dosimeter for UV light dose distribution measurements. J. Photochem. Photobiol. A Chem. 2021, 405, 112930. [Google Scholar] [CrossRef]
- Kovacs, A.; Baranyai, M.; Wojnarovits, L.; Moussa, A.; Othman, I.; McLaughlin, W.L. Aqueous ethanol nitro blue tetrazolium solutions for high dose dosimetry. Radiat. Phys. Chem. 1999, 55, 799–803. [Google Scholar] [CrossRef]
- Luxbacher, T.; Pusic, T.; Buksek, H.; Petrinic, I. The zeta potential of textile fabrics: A review. Tekstil 2016, 65, 346–351. [Google Scholar]
- Grancaric, A.; Tarbuk, A.; Pusic, T. Electrokinetic properties of textile fabrics. Color. Technol. 2005, 121, 221–227. [Google Scholar] [CrossRef]
- Urbańczyk, G.W. Chapter 14: Syntetic poliamide fibres. In The Science of a Fibre; Nauka o włóknie: Warsaw, Poland, 1985; Volume 268. (In Polish) [Google Scholar]
- Saravanan, D. UV Protection Textile Materials. Autex Res. J. 2007, 7, 53–62. [Google Scholar]
The Range of UV Radiation | Concentration of NBT [g/dm3] | Dose Sensitivity [cm2/J] | Intercept [−] | Linear Dose Range [J/cm2] | Dynamic Dose Range [J/cm2] | Threshold Dose [J/cm2] | R2 |
---|---|---|---|---|---|---|---|
UVA | 1 | 0.0554 ± 0.0008 | 0.0291 ± 0.0009 | 0–3 | 0.01–3 | 0.01 | 0.998 |
UVB | 0.0691 ± 0.0014 | 0.0311 ± 0.0016 | 0–3 | 0.01–3 | 0.01 | 0.995 | |
UVC | 0.0068 ± 0.0005 | 0.0280 ± 0.0005 | 0.2–2 | 0.01–3 | 0.01 | 0.978 | |
UVA | 2 | 0.0592 ± 0.0008 | 0.0545 ± 0.0009 | 0–3 | 0.01–3 | 0.01 | 0.998 |
UVB | 0.0719 ± 0.0016 | 0.0566 ± 0.0018 | 0–3 | 0.01–3 | 0.01 | 0.994 | |
UVC | 0.0059 ± 0.0001 | 0.0541 ± 0.0001 | 0.01–1.5 | 0.01–3 | 0.01 | 0.995 | |
UVA | 5 | 0.0730 ± 0.0010 | 0.1213 ± 0.0012 | 0–3 | 0.01–3 | 0.01 | 0.998 |
UVB | 0.0930 ± 0.0027 | 0.1259 ± 0.0031 | 0–3 | 0.01–3 | 0.01 | 0.990 | |
UVC | 0.0077 ± 0.0003 | 0.1219 ± 0.0002 | 0.1–1.5 | 0.01–3 | 0.01 | 0.984 |
Printing Paste: NBT-Pluronic F-127 Hydrogel Containing 1 g/dm3 NBT Irradiation: Various Types of UV Radiation | |||||
Absorbed dose | 0 J/cm2 | 0.05 J/cm2 | 0.2 J/cm2 | 2 J/cm2 | |
UV radiation | |||||
UVA | |||||
UVB | |||||
UVC | |||||
Printing Paste: NBT-Pluronic F-127 Hydrogels Containing Various Concentrations of NBT Irradiation: UVB Radiation | |||||
Absorbed dose | 0 J/cm2 | 0.05 J/cm2 | 0.2 J/cm2 | 2 J/cm2 | |
NBT concentration | |||||
1 g/dm3 | |||||
2 g/dm3 | |||||
5 g/dm3 |
Woven Fabric | Dose Sensitivity [% × cm2/J] | Intercept [%] | Linear Dose Range [J/cm2] | Dynamic Dose Range [J/cm2] | Threshold Dose [J/cm2] | R2 |
---|---|---|---|---|---|---|
Polyamide-NBT-Pluronic F-127 | −113.88 ± 13.24 | 59.42 ± 1.42 | 0.02–0.2 | 0.02–1.5 | 0.02 | 0.966 |
Cotton-NBT-Pluronic F-127 | −269.81 ± 36.24 | 62.51 ± 1.61 | 0.01–0.07 | 0.01–1.5 | 0.01 | 0.948 |
Absorbed Dose [J/cm2] | Polyamide Woven Fabric | Cotton Woven Fabric | ||||||
---|---|---|---|---|---|---|---|---|
Photographs | L | a | b | Photographs | L | a | b | |
non-printed | 90.82 | 0.14 | 2.01 | 91.38 | 0.48 | 2.12 | ||
0 | 86.30 | 0.08 | 5.64 | 89.12 | 0.20 | 6.68 | ||
0.01 | 82.56 | 2.70 | 3.04 | 84.08 | 3.85 | 4.33 | ||
0.02 | 80.78 | 3.68 | 2.31 | 81.51 | 5.45 | 3.41 | ||
0.05 | 78.08 | 4.26 | 2.02 | 77.17 | 7.41 | 2.44 | ||
0.1 | 74.77 | 4.93 | 1.59 | 73.73 | 8.40 | 1.95 | ||
0.2 | 68.18 | 5.96 | 0.78 | 70.61 | 8.76 | 2.34 | ||
0.5 | 65.41 | 5.69 | 0.64 | 65.91 | 8.73 | 3.92 | ||
1 | 62.09 | 5.60 | 1.84 | 61.21 | 8.83 | 4.61 | ||
1.5 | 58.56 | 5.51 | 2.56 | 57.47 | 8.31 | 4.71 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sąsiadek, E.; Jaszczak, M.; Skwarek, J.; Kozicki, M. NBT-Pluronic F-127 Hydrogels Printed on Flat Textiles as UV Radiation Sensors. Materials 2021, 14, 3435. https://doi.org/10.3390/ma14123435
Sąsiadek E, Jaszczak M, Skwarek J, Kozicki M. NBT-Pluronic F-127 Hydrogels Printed on Flat Textiles as UV Radiation Sensors. Materials. 2021; 14(12):3435. https://doi.org/10.3390/ma14123435
Chicago/Turabian StyleSąsiadek, Elżbieta, Malwina Jaszczak, Joanna Skwarek, and Marek Kozicki. 2021. "NBT-Pluronic F-127 Hydrogels Printed on Flat Textiles as UV Radiation Sensors" Materials 14, no. 12: 3435. https://doi.org/10.3390/ma14123435
APA StyleSąsiadek, E., Jaszczak, M., Skwarek, J., & Kozicki, M. (2021). NBT-Pluronic F-127 Hydrogels Printed on Flat Textiles as UV Radiation Sensors. Materials, 14(12), 3435. https://doi.org/10.3390/ma14123435