Selenite Substituted Calcium Phosphates: Preparation, Characterization, and Cytotoxic Activity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Selenium Substituted Calcium Phosphates
2.2. Characterization of Selenium Substituted Calcium Phosphates
2.3. Rietveld Refinement Studies
2.4. Ion Release Study
2.5. Anticancer Studies
2.5.1. Preparation of Extracts of CaP Powders and Cell Culture Conditions
2.5.2. Cell Viability Evaluation by MTT Assay
2.6. Statistical Analysis
3. Results and Discussion
3.1. The Chemical Composition of as-Prepared Powders
3.2. XRD Patterns of as-Prepared Powders and Rietveld Refinements
3.3. XRD Patterns of Heat Treated Powders and Rietveld Refinements
3.4. FTIR Analysis
3.5. SEM Analysis
3.6. Ion Release and In Vitro Bioactivity
3.7. Selective Anticancer Activity of Selenium Substituted Calcium Phosphates
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pajor, K.; Pajchel, L.; Kolodziejska, B.; Kolmas, J. Selenium-Doped Hydroxyapatite Nanocrystals–Synthesis, Physicochemical Properties and Biological Significance. Crystals 2018, 8, 188. [Google Scholar] [CrossRef] [Green Version]
- Habraken, W.; Habibovic, P.; Epple, M.; Bohner, M. Calcium phosphates in biomedical applications: Materials for the future? Mater. Today 2016, 19, 69–87. [Google Scholar] [CrossRef]
- Safarzadeh, M.; Ramesh, S.; Tan, C.Y.; Chandran, H.; Mohd Noor, A.F.; Krishnasamy, S.; Johnson Alengaram, U.; Ramesh, S. Effect of multi-ions doping on the properties of carbonated hydroxyapatite bioceramics. Ceram. Int. 2018, 45, 3473–3477. [Google Scholar] [CrossRef]
- Boanini, E.; Gazzano, M.; Bigi, A. Ionic substitutions in calcium phosphates synthesized at low temperature. Acta Biomater. 2010, 6, 1882–1894. [Google Scholar] [CrossRef]
- Pang, K.L.; Chin, K.Y. Emerging Anticancer Potentials of Selenium on Osteosarcoma. Int. J. Mol. Sci. 2019, 20, 5318. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; He, W.; Hao, H.; Wu, J.; Qin, N. Eggshell derived Se-doped HA nanorods for enhanced antitumor effect and curcumin delivery. J. Sol-Gel Sci. Technol. 2018, 87, 600–607. [Google Scholar] [CrossRef]
- Wei, L.; Yang, H.; Hong, J.; He, Z.; Deng, C. Synthesis and structure properties of Se and Sr co-doped hydroxyapatite and their biocompatibility. J. Mater. Sci. 2019, 54, 2514–2525. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, J.; Hao, H.; Cai, M.; Wang, S.; Ma, J.; Li, Y.; Mao, C.; Zhang, S. In vitro and in vivo mechanism of bone tumor inhibition by selenium-doped bone mineral nanoparticles. ACS Nano 2016, 10, 9927–9937. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uskoković, V.; Adiraj Iyer, M.; Wu, V.M. One ion to rule them all: The combined antibacterial, osteoinductive and anticancer properties of selenite-incorporated hydroxyapatite. J. Mater. Chem. B 2017, 5, 1430–1445. [Google Scholar] [CrossRef]
- Wei, L.; Pang, D.; He, L.; Deng, C. Crystal structure analysis of selenium-doped hydroxyapatite samples and their thermal stability. Ceram. Int. 2017, 43, 16141–16148. [Google Scholar] [CrossRef]
- Ressler, A.; Cvetnić, M.; Antunović, M.; Marijanović, I.; Ivanković, M.; Ivanković, H. Strontium substituted biomimetic calcium phosphate system derived from cuttlefish bone. J. Biomed. Mater. Res. B 2020, 108, 1697–1709. [Google Scholar] [CrossRef]
- Veselinović, L.; Karanović, L.; Stojanović, Z.; Bračko, I.; Marković, S.; Ignjatović, N.; Uskoković, D. Crystal structure of cobalt-substituted calcium hydroxyapatite nanopowders prepared by hydrothermal processing. J. Appl. Cryst. 2010, 43, 320–327. [Google Scholar] [CrossRef]
- Espanol, M.; Portillo, J.; Manero, J.M.; Ginebra, M.P. Investigation of the hydroxyapatite obtained as hydrolysis product of a-tricalcium phosphate by transmission electron microscopy. Cryst. Eng. Commun. 2010, 12, 3318–3326. [Google Scholar] [CrossRef]
- Yashima, M.; Sakai, A.; Kamiyama, T.; Hoshikawa, A. Crystal structure analysis of β-tricalcium phosphate Ca3(PO4)2 by neutron powder diffraction. J. Solid State Chem. 2003, 175, 272–277. [Google Scholar] [CrossRef]
- Mathew, M.; Brown, W.E.; Schroeder, L.W.; Dickens, B. The crystal structure of alpha-Ca3(PO4)2. Acta Crystallogr. B 1977, 33, 1325–1333. [Google Scholar] [CrossRef]
- Bohner, M.; Lemaitre, J. Can bioactivity be tested in vitro with SBF solution? Biomaterials 2009, 30, 2175–2179. [Google Scholar] [CrossRef] [Green Version]
- Bose, S.; Fielding, G.; Tarafder, S. Bandyopadhyay, Understanding of Dopant-Induced Osteogenesis and Angiogenesis in Calcium Phosphate Ceramics. Trends Biotechnol. 2013, 10, 594–605. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Ma, J.; Zhang, S. Synthesis and thermal stability of selenium-doped hydroxyapatite with different substitutions. Front. Mater. Sci. 2015, 9, 392–396. [Google Scholar] [CrossRef]
- Dorozhkin, S.V. Amorphous calcium (ortho)phosphates. Acta Biomater. 2010, 6, 4457–4475. [Google Scholar] [CrossRef] [PubMed]
- Barbanente, A.; Palazzo, B.; Degli Esposti, L.; Adamiano, A.; Iafisco, M.; Ditaranto, N.; Migoni, D.; Gervaso, F.; Nadar, R.; Ivanchenko, P.; et al. Selenium-doped hydroxyapatite nanoparticles for potential application in bone tumor therapy. J. Inorg. Biochem. 2021, 215, 111334. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Zheng, X.; Li, H.; Fan, D.; Song, Z.; Ma, H.; Hua, X.; Hui, J. Monodisperse selenium-substituted hydroxyapatite: Controllable synthesis and biocompatibility. Mater. Sci. Eng. C 2017, 73, 596–602. [Google Scholar] [CrossRef]
- Kolmas, J.; Oledzka, E.; Sobczak, M.; Nałęcz-Jawecki, G. Nanocrystalline hydroxyapatite doped with selenium oxyanions: A new material for potential biomedical applications. Mater. Sci. Eng. C 2014, 39, 134–142. [Google Scholar] [CrossRef]
- Ma, L.; Wang, Y.; Zhou, L.; Zhang, S. Preparation and characterization of selenite substituted hydroxyapatite. Mater. Sci. Eng. C 2013, 33, 440–445. [Google Scholar] [CrossRef]
- Moreira, M.P.; de Almeida Soares, G.D.; Dentzer, J.; Anselme, K.; de Sena, L.A.; Kuznetsov, A.; dos Santos, E.A. Synthesis of magnesium- and manganese-doped hydroxyapatite structures assisted by the simultaneous incorporation of strontium. Mater. Sci. Eng. C 2016, 62, 736–743. [Google Scholar] [CrossRef]
- Gao, J.; Wang, M.; Shi, C.; Wang, L.; Zhu, Y.; Wang, D. A facile green synthesis of trace Si, Sr and F multi-doped hydroxyapatite with enhanced biocompatibility and osteoconduction. Mater. Lett. 2017, 196, 406–409. [Google Scholar] [CrossRef]
- Ravi, N.D.; Balu, R.; Kumar, T.S.S. Strontium-substituted calcium deficient hydroxyapatite nanoparticles: Synthesis, characterization, and antibacterial properties. J. Am. Ceram. Soc. 2012, 95, 2700–2708. [Google Scholar] [CrossRef]
- Rogina, A.; Rico, P.; Gallego Ferrer, G.; Ivanković, M.; Ivanković, H. Effect of in situ formed hydroxyapatite on microstructure of freeze-gelled chitosan-based biocomposite scaffolds. Eur. Polym. J. 2015, 68, 278–287. [Google Scholar] [CrossRef]
- Shi, H.; He, F.; Ye, J. Synthesis and structure of iron- and strontium-substituted octacalcium phosphate: Effects of ionic charge and radius. J. Mater. Chem. B 2016, 4, 1712–1719. [Google Scholar] [CrossRef] [PubMed]
- Terra, J.; Dourado, E.R.; Eon, J.G.; Ellis, D.E. The structure of strontium-doped hydroxyapatite: An experimental and theoretical study. Phys. Chem. Chem. Phys 2009, 11, 568–577. [Google Scholar] [CrossRef]
- Gibson, I.R.; Bonfield, W. Novel synthesis and characterization of an AB-type carbonate-substituted hydroxyapatite. J. Biomed. Mater. Res. 2002, 59, 697–708. [Google Scholar] [CrossRef] [PubMed]
- Lafon, J.P.; Champion, E.; Bernache-Assollant, D. Processing of AB-type carbonated hydroxyapatite Ca10−x(PO4)6−x(CO3)x(OH)2−x−2y(CO3)y ceramics with controlled composition. J. Eur. Ceram. Soc. 2008, 28, 139–147. [Google Scholar] [CrossRef]
- Astala, R.; Stott, M.J. First Principles Investigation of Mineral Component of Bone: CO3 Substitutions in Hydroxyapatite. Chem. Mater. 2005, 17, 4125–4133. [Google Scholar] [CrossRef]
- Carrodeguas, R.G.; De Aza, S. α-Tricalcium phosphate: Synthesis, properties and biomedical applications. Acta Biomater. 2011, 7, 3536–3546. [Google Scholar] [CrossRef] [PubMed]
CaCO3 (mmol) | UPH (mmol) | Na2SeO3·5H2O (mmol) | Nominal Se/(P + Se) | |
---|---|---|---|---|
CaP_Se0 | 4.977 | 2.985 | 0.000 | 0.00 |
CaP_Se1 | 4.977 | 2.955 | 0.030 | 0.01 |
CaP_Se5 | 4.977 | 2.834 | 0.149 | 0.05 |
CaP_Se10 | 4.977 | 2.687 | 0.299 | 0.10 |
Sample | Minor Substituents (mol%) | Se/(P + Se) Molar Ratio | Ca/(P + Se) Molar Ratio | ||
---|---|---|---|---|---|
Sr | Na | Mg | |||
CaP_Se0 | 0.46 | 1.45 | 0.44 | 0.000 | 1.67 |
CaP_Se1 | 0.43 | 1.97 | 0.44 | 0.007 | 1.80 |
CaP_Se5 | 0.48 | 3.23 | 0.46 | 0.029 | 1.68 |
CaP_Se10 | 0.50 | 3.49 | 0.44 | 0.058 | 1.68 |
wt% | pH | |||
---|---|---|---|---|
Sample | HAp | OCP | ACP | |
CaP_Se0 | 27.8 | 43.9 | 28.3 | 7.60 |
CaP_Se1 | 61.2 | 8.7 | 30.1 | 7.33 |
CaP_Se5 | 76.7 | - | 23.3 | 8.00 |
CaP_Se10 | 77.9 | - | 22.1 | 8.63 |
Sample Codes | Structural Parameters | ||||||
---|---|---|---|---|---|---|---|
V (Å3) | a (Å) | b (Å) | c (Å) | φ (g/cm3) | L (nm) | ||
HAp | CaP_Se0 | 529.69(1) | 9.41369 | 9.41369 | 6.90197 | 4.233 | 5.15 |
CaP_Se1 | 531.69(6) | 9.41371 | 9.41371 | 6.87351 | 3.131 | 7.33 | |
CaP_Se5 | 532.56(5) | 9.45098 | 9.45098 | 6.87991 | 3.126 | 6.65 | |
CaP_Se10 | 533.55(9) | 9.45430 | 9.45430 | 6.88637 | 3.120 | 5.79 | |
OCP | CaP_Se0 | 1220.96(1) | 19.69511 | 9.53534 | 6.85167 | 2.780 | 33.85 |
CaP_Se1 | 1226.91(8) | 19.71504 | 9.50590 | 6.89569 | 2.660 | 18.19 |
Sample | wt% | ||||
---|---|---|---|---|---|
HAp | β-TCP | α-TCP | ACP | CaO | |
CaP_Se0 | - | 88.6 | - | 11.4 | - |
CaP_Se1 | 10.6 | 50.4 | 32.5 | 6.5 | - |
CaP_Se5 | 45.8 | 36.6 | 9.8 | 7.8 | - |
CaP_Se10 | 88.2 | 3.1 | 4.1 | 4.4 | 0.2 |
As-Prepared Powders | After Soaking in SBF | |||||
---|---|---|---|---|---|---|
Sample | HAp | OCP | ACP | HAp | OCP | ACP |
CaP_Se0 | 27.8 | 43.9 | 28.3 | 45.0 | 27.9 | 27.1 |
CaP_Se5 | 76.7 | - | 23.3 | 86.3 | - | 13.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ressler, A.; Antunović, M.; Cvetnić, M.; Ivanković, M.; Ivanković, H. Selenite Substituted Calcium Phosphates: Preparation, Characterization, and Cytotoxic Activity. Materials 2021, 14, 3436. https://doi.org/10.3390/ma14123436
Ressler A, Antunović M, Cvetnić M, Ivanković M, Ivanković H. Selenite Substituted Calcium Phosphates: Preparation, Characterization, and Cytotoxic Activity. Materials. 2021; 14(12):3436. https://doi.org/10.3390/ma14123436
Chicago/Turabian StyleRessler, Antonia, Maja Antunović, Matija Cvetnić, Marica Ivanković, and Hrvoje Ivanković. 2021. "Selenite Substituted Calcium Phosphates: Preparation, Characterization, and Cytotoxic Activity" Materials 14, no. 12: 3436. https://doi.org/10.3390/ma14123436
APA StyleRessler, A., Antunović, M., Cvetnić, M., Ivanković, M., & Ivanković, H. (2021). Selenite Substituted Calcium Phosphates: Preparation, Characterization, and Cytotoxic Activity. Materials, 14(12), 3436. https://doi.org/10.3390/ma14123436