Fast Solution Synthesis of NiO-Gd0.1Ce0.9O1.95 Nanocomposite via Different Approach: Influence of Processing Parameters and Characterizations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Nanocomposite Powders Processing and Their Characterization
2.2. Sintering and Characterization
3. Results
3.1. Characterization of the Nanocomposite Powders
3.2. Characterization of the Sintered Discs
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, X.; Chan, S.H.; Li, G.; Ho, H.K.; Li, J.; Feng, Z. A Review of Integration Strategies for Solid Oxide Fuel Cells. J. Power Sources 2010, 195, 685–702. [Google Scholar] [CrossRef]
- Reisert, M.; Aphale, A.; Singh, P. Solid Oxide Electrochemical Systems: Material Degradation Processes and Novel Mitigation Approaches. Materials 2018, 11, 2169. [Google Scholar] [CrossRef] [Green Version]
- Lucia, U. Overview on Fuel Cells. Renew. Sustain. Energy Rev. 2014, 30, 164–169. [Google Scholar] [CrossRef]
- Adams, T.A.; Nease, J.; Tucker, D.; Barton, P.I. Energy Conversion with Solid Oxide Fuel Cell Systems: A Review of Concepts and Outlooks for the Short- and Long-Term. Ind. Eng. Chem. Res. 2013, 52, 3089–3111. [Google Scholar] [CrossRef]
- Kirubakaran, A.; Jain, S.; Nema, R.K. A Review on Fuel Cell Technologies and Power Electronic Interface. Renew. Sustain. Energy Rev. 2009, 13, 2430–2440. [Google Scholar] [CrossRef]
- McPhail, S.J.; Kiviaho, J.; Conti, B. The Yellow Pages of SOFC Technology—International Status of SOFC Deployment 2017; ENEA: Rome, Italy, 2017. [Google Scholar]
- Vanitha, M.; Saranya, S. Bloom Energy From Legacy Fuel Cell. Int. J. Sci. Eng. Res. 2013, 4, 323–328. [Google Scholar]
- Sun, C.; Stimming, U. Recent Anode Advances in Solid Oxide Fuel Cells. J. Power Sources 2007, 171, 247–260. [Google Scholar] [CrossRef]
- Sciazko, A.; Miyahara, K.; Komatsu, Y.; Shimura, T.; Jiao, Z.; Shikazono, N. Influence of Initial Powder Morphology on Polarization Characteristics of Nickel/Gadolinium-Doped-Ceria Solid Oxide Fuel Cells Electrode. J. Electrochem. Soc. 2019, 166, F44–F52. [Google Scholar] [CrossRef]
- Eichler, A. Tetragonal Y-Doped Zirconia: Structure and Ion Conductivity. Phys. Rev. B—Condens. Matter Mater. Phys. 2001, 64, 174103. [Google Scholar] [CrossRef]
- Zhu, W.Z.; Deevi, S.C. A Review on the Status of Anode Materials for Solid Oxide Fuel Cells. Mater. Sci. Eng. A 2003, 362, 228–239. [Google Scholar] [CrossRef]
- Perrichon, V.; Laachir, A.; Bergeret, G.; Frety, R.; Tournayan, L. Reduction of Cerias with Different Textures by Hydrogen and Their Reoxidation by Oxygen. J. Chem. Soc. Faraday Trans. 1994, 90, 773–781. [Google Scholar] [CrossRef]
- Zizelman, J.; Shaffer, S.; Mukerjee, S. Solid Oxide Fuel Cell Auxiliary Power Unit—A Development Update. SAE Tech. Pap. 2002, 2002, 2002-11-0411. [Google Scholar]
- Steele, B.C.H. Appraisal of Ce1-YGdyO2-y/2 Electrolytes for IT-SOFC Operation at 500 °C. Solid State Ion. 2000, 129, 95–110. [Google Scholar] [CrossRef]
- Ralph, J.M.; Schoeler, A.C.; Krumpelt, M. Materials for Lower Temperature Solid Oxide Fuel Cells. J. Mater. Sci. 2001, 36, 1161–1172. [Google Scholar] [CrossRef]
- Nakamura, T.; Kobayashi, T.; Yashiro, K.; Kaimai, A.; Otake, T.; Sato, K.; Mizusaki, J.; Kawada, T. Electrochemical Behaviors of Mixed Conducting Oxide Anodes for Solid Oxide Fuel Cell. J. Electrochem. Soc. 2008, 155, B563–B569. [Google Scholar] [CrossRef]
- Nakamura, T.; Yashiro, K.; Kaimai, A.; Otake, T.; Sato, K.; Kawada, T.; Mizusaki, J. Determination of the Reaction Zone in Gadolinia-Doped Ceria Anode for Solid Oxide Fuel Cell. J. Electrochem. Soc. 2008, 155, B1244–B1250. [Google Scholar] [CrossRef]
- Joos, J.; Ender, M.; Rotscholl, I.; Menzler, N.H.; Ivers-Tiffée, E. Quantification of Double-Layer Ni/YSZ Fuel Cell Anodes from Focused Ion Beam Tomography Data. J. Power Sources 2014, 246, 819–830. [Google Scholar] [CrossRef]
- Cronin, J.S.; Chen-Wiegart, Y.C.K.; Wang, J.; Barnett, S.A. Three-Dimensional Reconstruction and Analysis of an Entire Solid Oxide Fuel Cell by Full-Field Transmission X-ray Microscopy. J. Power Sources 2013, 233, 174–179. [Google Scholar] [CrossRef]
- Lee, K.T.; Vito, N.J.; Wachsman, E.D. Comprehensive Quantification of Ni-Gd0.1Ce0.9O 1.95 Anode Functional Layer Microstructures by Three-Dimensional Reconstruction Using a FIB/SEM Dual Beam System. J. Power Sources 2013, 228, 220–228. [Google Scholar] [CrossRef]
- Pihlatie, M.; Ramos, T.; Kaiser, A. Testing and Improving the Redox Stability of Ni-Based Solid Oxide Fuel Cells. J. Power Sources 2009, 193, 322–330. [Google Scholar] [CrossRef]
- Timurkutluk, B.; Timurkutluk, C.; Mat, M.D.; Kaplan, Y. A Review on Cell/Stack Designs for High Performance Solid Oxide Fuel Cells. Renew. Sustain. Energy Rev. 2016, 56, 1101–1121. [Google Scholar] [CrossRef]
- Zuo, C.; Liu, M.; Liu, M. Solid Oxide Fuel Cells. In Sol-Gel Processing for Conventional and Alternative Energy; Aparicio, M., Jitianu, A., Klein, L.C., Eds.; Springer Science: New York, NY, USA, 2012; pp. 1–397. [Google Scholar]
- Jang, J.H.; Ryu, J.H.; Oh, S.M. Microstructure of Ni/YSZ Cermets According to Particle Size of Precursor Powders and Their Anodic Performances in SOFC. Ionics 2000, 6, 86–91. [Google Scholar] [CrossRef]
- Kawashima, T.; Matsuzaki, Y. Effect of Particle-Diameter Ratio of YSZ to Ni on Polarization of Ni/YSZ Cermet Anode. J. Ceram. Soc. Jpn. 1996, 104, 317–321. [Google Scholar] [CrossRef] [Green Version]
- Jiao, Z.; Shikazono, N. Quantitative Study on the Correlation between Solid Oxide Fuel Cell Ni-YSZ Composite Anode Performance and Reduction Temperature Based on Three-Dimensional Reconstruction. J. Electrochem. Soc. 2015, 162, F571–F578. [Google Scholar] [CrossRef]
- Kishimoto, M.; Miyawaki, K.; Iwai, H.; Saito, M.; Yoshida, H. Effect of Composition Ratio of Ni-YSZ Anode on Distribution of Effective Three-Phase Boundary and Power Generation Performance. Fuel Cells 2013, 13, 476–486. [Google Scholar] [CrossRef]
- Cho, H.J.; Choi, G.M. Effect of Milling Methods on Performance of Ni-Y2O3-Stabilized ZrO2 Anode for Solid Oxide Fuel Cell. J. Power Sources 2008, 176, 96–101. [Google Scholar] [CrossRef]
- Xiao, G.; Chen, F. Redox Stable Anodes for Solid Oxide Fuel Cells. Front. Energy Res. 2014, 2, 18. [Google Scholar] [CrossRef] [Green Version]
- Stauffer, D.; Ammon, A. Introduction to Percolation Theory, 2nd ed.; Taylor & Francis: Oxfordshire, UK, 1994. [Google Scholar]
- Aruna, S.T.; Muthuraman, M.; Patil, K.C. Synthesis and Properties of Ni-YSZ Cermet: Anode Material for Solid Oxide Fuel Cells. Solid State Ion. 1998, 111, 45–51. [Google Scholar] [CrossRef]
- Chang-Hyun, L.; Cheong-Hee, L.; Hee-Young, L.; Seung, M.O. Microstructure and Anodic Properties of Ni/YSZ Cermets in Solid Oxide Fuel Cells. Solid State Ion. 1997, 98, 39–48. [Google Scholar]
- Cheng, Z.; Wang, J.; Choi, Y.; Yang, L.; Lin, M.; Liu, M. From Ni-YSZ to sulfur-tolerant anode materials for SOFCs: Electrochemical behavior, in situ characterization, modeling, and future perspectives. Energy Environ. Sci. 2011, 4, 4380–4409. [Google Scholar] [CrossRef]
- Grilo, J.P.F.; Macedo, D.A.; Nascimento, R.M.; Marques, F.M.B. Assessment of NiO-CGO Composites as Cermet Precursors. Solid State Ion. Vol. 2018, 321, 115–121. [Google Scholar] [CrossRef]
- Araujo, A.J.M.; Sousa, A.R.O.; Grilo, J.P.F.; Campos, L.F.A.; Loureiro, F.J.A.; Fagg, D.P.; Dutra, R.P.S.; Macedo, D.A. Preparation of One-Step NiO/Ni-CGO Composites Using Factorial Design. Ceram. Int. 2016, 42, 18166–18172. [Google Scholar] [CrossRef]
- Macedo, D.A.; Figueiredo, F.M.L.; Patrício, S.G.; Nascimento, R.M.; Martinelli, A.E.; Paskocimas, C.A.; Marques, F.M. Electrical Conductivity and Microstructure of Nio-Cgo Composites Prepared by One-Step Synthesis. ECS Trans. 2013, 50, 21–31. [Google Scholar] [CrossRef]
- Cela, B.; Macedo, D.A.; Souza, G.L.; Martinelli, A.E.; Do Nascimento, R.M.; Paskocimas, C.A. NiO-CGO in Situ Nanocomposite Attainment: One Step Synthesis. J. Power Sources 2011, 196, 2539–2544. [Google Scholar] [CrossRef] [Green Version]
- Macedo, D.A.; Souzab, G.L.; Cela, B.; Paskocimas, C.A.; Martinelli, A.E.; Figueiredo, F.M.L.; Marques, F.M.B.; Nascimento, R.M. A Versatile Route for the Preparation of Ni–CGO Cermets from Nanocomposite Powders. Nascimento Ceram. Int. 2013, 39, 4321–4328. [Google Scholar] [CrossRef]
- Tan, J.; Lee, D.; Ahn, J.; Kim, B.; Kim, J.; Moon, J. Thermally Driven in Situ Exsolution of Ni Nanoparticles from (Ni, Gd)CeO2 for High-Performance Solid Oxide Fuel Cells. J. Mater. Chem. A 2018, 6, 18133–18142. [Google Scholar] [CrossRef]
- Aruna, S.T.; Mukasyan, A.S. Combustion Synthesis and Nanomaterials. Curr. Opin. Solid State Mater. Sci. 2008, 12, 44–50. [Google Scholar] [CrossRef]
- Mangalaraja, R.V.; Mouzon, J.; Hedström, P.; Camurri, C.P.; Ananthakumar, S.; Odén, M. Microwave Assisted Combustion Synthesis of Nanocrystalline Yttria and Its Powder Characteristics. Powder Technol. 2009, 191, 309–314. [Google Scholar] [CrossRef]
- Mangalaraja, R.V.; Ananthakumar, S.; Uma, K.; Jiménez, R.M.; López, M.; Camurri, C.P. Microhardness and Fracture Toughness of Ce0.9Gd0.1O1.95 for Manufacturing Solid Oxide Electrolytes. Mater. Sci. Eng. A 2009, 517, 91–96. [Google Scholar] [CrossRef]
- Mangalaraja, R.V.; Ananthakumar, S.; Paulraj, M.; Pesenti, H.; López, M.; Camurri, C.P.; Barcos, L.A.; Avila, R.E. Electrical and Thermal Characterization of Sm3+ Doped Ceria Electrolytes Synthesized by Combustion Technique. J. Alloy. Compd. 2012, 510, 134–140. [Google Scholar] [CrossRef]
- Lutterotti LMatthies SWenk, H.R. MAUD: A Friendly Java Program for Material Analysis Using Diffraction. Newsl. CPD 1999, 21, 14–15. [Google Scholar]
- Lutterotti, L.; Scardi, P. Simultaneous Structure and Size-Strain Refinement by the Rietveld Method. J. Appl. Crystallogr. 1990, 23, 246–252. [Google Scholar] [CrossRef]
- Lutterotti, L.; Scardi, P.; Maistrelli, P. LSI—a Computer Program for Simultaneous Refinement of Material Structure and Microstructure. J. Appl. Crystallogr. 1992, 25, 459–462. [Google Scholar] [CrossRef]
- Mc Cusker, L.B.; Von Dreele, R.B.; Cox, D.E.; Louer, D.; Scardi, P. Rietveld Refinement Guidelines. J. Appl. Cryst. 1999, 32, 36–50. [Google Scholar] [CrossRef] [Green Version]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- German, R.M. German, Sintering Theory and Practice, 1st ed.; John Wiley & Sons Inc.: New York, NY, USA, 1996. [Google Scholar]
- Prasad, D.H.; Lee, J.H.; Lee, H.W.; Kim, B.K.; Park, J.S. Correlation between the Powder Properties and Sintering Behaviors of Nano-Crys-Talline Gadolinium-Doped Ceria. J. Ceram. Process. Res. 2010, 11, 523–526. [Google Scholar]
- Yokokawa, H.; Tu, H.; Iwanschitz, B.; Mai, A. Fundamental Mechanisms Limiting Solid Oxide Fuel Cell Durability. J. Power Sources 2008, 182, 400–412. [Google Scholar] [CrossRef]
- Sarantaridis, D.; Chater, R.J.; Atkinson, A. Changes in Physical and Mechanical Properties of SOFC Ni-YSZ Composite Caused by Redox Cycling. J. Electrochem. Soc. 2008, 155, B467–B472. [Google Scholar] [CrossRef] [Green Version]
- Patakangas, J.; Ma, Y.; Jing, Y.; Lund, P. Review and Analysis of Characterization Methods and Ionic Conductivities for Low-Temperature Solid Oxide Fuel Cells (LT-SOFC). J. Power Sources 2014, 263, 315–331. [Google Scholar] [CrossRef]
Samples | Phases | Elements | mol. % | wt. % | ||
---|---|---|---|---|---|---|
Stoichiometric | Calculated | Stoichiometric | Calculated | |||
NiO | NiO | 100 | 99.9 | |||
GDC | GDC | Ce | 0.9 | 0.906 | 100 | 99.7 |
Gd | 0.1 | 0.094 | ||||
NiO-GDC (CM-p) | NiO | 65 | 64.6 | |||
GDC | Ce | 0.9 | 0.905 | 35 | 35.3 | |
Gd | 0.1 | 0.095 | ||||
NiO-GDC (BM-p) | NiO | 65 | 65.6 | |||
GDC | Ce | 0.9 | 0.910 | 35 | 34.4 | |
Gd | 0.1 | 0.090 |
Samples | Rietveld Refinement Results | |||||
---|---|---|---|---|---|---|
Rwp | GOF | Phase | wt. % | D (nm) | ˂ε2˃1/2 | |
HM-p | 2.0 | 1.6 | NiO | 63.2 | 141 | 6.4 × 10−4 |
GDC | 36.8 | 38 | 1.0 × 10−3 | |||
BM-p | 2.0 | 1.6 | NiO | 64.4 | 141 | 7.6 × 10−4 |
GDC | 35.6 | 36 | 1.0 × 10−3 | |||
CM-p | 2.0 | 1.6 | NiO | 63.6 | 47 | 5.0 × 10−4 |
GDC | 36.4 | 19 | 1.7 × 10−3 |
Samples | Rietveld Refinement Results | |||||
---|---|---|---|---|---|---|
Rwp | GOF | Phase | wt. % | D (nm) | ˂ε2˃1/2 | |
HM | 8.7 | 1.9 | NiO | 63.9 | 1750 | 3.8 × 10−4 |
GDC | 36.1 | 2137 | 4.4 × 10−4 | |||
BM | 5.3 | 1.9 | NiO | 65.3 | 1377 | 4.4 × 10−4 |
GDC | 34.7 | 1414 | 5.9 × 10−4 | |||
CM | 7.5 | 1.9 | NiO | 59.7 | 1242 | 3.5 × 10−4 |
GDC | 40.3 | 1697 | 5.2 × 10−4 |
Features | CM | BM | HM |
---|---|---|---|
Hardness (GPa) | 6.04 ± 0.17 | 5.96 ± 0.34 | 5.41 ± 0.21 |
Theoretical density (g·cm−3) | 6.86 | 6.83 | 6.84 |
Measured density (g·cm−3) | 6.09 ± 0.01 | 6.10 ± 0.03 | 6.18 ± 0.04 |
Relative density (%) | 88.9 ± 0.3 | 89.1 ± 0.1 | 90.4 ± 0.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Durango-Petro, J.; Salvo, C.; Usuba, J.; Abarzua, G.; Sanhueza, F.; Mangalaraja, R.V. Fast Solution Synthesis of NiO-Gd0.1Ce0.9O1.95 Nanocomposite via Different Approach: Influence of Processing Parameters and Characterizations. Materials 2021, 14, 3437. https://doi.org/10.3390/ma14123437
Durango-Petro J, Salvo C, Usuba J, Abarzua G, Sanhueza F, Mangalaraja RV. Fast Solution Synthesis of NiO-Gd0.1Ce0.9O1.95 Nanocomposite via Different Approach: Influence of Processing Parameters and Characterizations. Materials. 2021; 14(12):3437. https://doi.org/10.3390/ma14123437
Chicago/Turabian StyleDurango-Petro, Jorge, Christopher Salvo, Jonathan Usuba, Gonzalo Abarzua, Felipe Sanhueza, and Ramalinga Viswanathan Mangalaraja. 2021. "Fast Solution Synthesis of NiO-Gd0.1Ce0.9O1.95 Nanocomposite via Different Approach: Influence of Processing Parameters and Characterizations" Materials 14, no. 12: 3437. https://doi.org/10.3390/ma14123437
APA StyleDurango-Petro, J., Salvo, C., Usuba, J., Abarzua, G., Sanhueza, F., & Mangalaraja, R. V. (2021). Fast Solution Synthesis of NiO-Gd0.1Ce0.9O1.95 Nanocomposite via Different Approach: Influence of Processing Parameters and Characterizations. Materials, 14(12), 3437. https://doi.org/10.3390/ma14123437