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Abstract

:

The article presents a comprehensive extension of the proprietary basic method for shaping innovative systems of corrugated shell roof structures by means of a specific complex material that comprises regular transformable shell units limited by spatial quadrangles. The units are made up of nominally plane folded sheets transformed into shell shapes. The similar shell units are regularly and effectively arranged in the three-dimensional space in an orderly manner with a universal regular reference surface, polyhedral network, and polygonal network. The extended method leads to the increase in the variety of the designed complex shell roof forms and plane-walled elevation forms of buildings. For this purpose, the rules governing the creation of the continuous roof shell structures of many shells arranged in different unconventional visually attractive patterns and their discontinuous regular modifications are sought. To obtain several novel groups of similar unconventional parametric roof forms, single division coefficients and double division coefficients are used. The easy and intuitive modifications of the positions of the vertices belonging to the polygonal network on the side edges of the polyhedral network accomplished by means of a parametric algorithm allow one to adjust the geometry of the complete shell units to the geometric and material constraints related to the orthotropic properties of the transformed sheeting by means of these coefficients. The innovative approach to the shaping of the diverse unconventional roof structures requires the solving of many interdisciplinary problems in the field of mathematics, civil engineering, construction, morphology, architecture, mechanics, computer visualization, and programming.
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1. Introduction


Small transverse compressive or tensile forces acting on a thin-walled nominally flat folded sheet can substantially alter the width of each fold of a sheet. The thin-walled, folded structure of the sheet allows each fold to change the width at its length in a diversified way. This property enables a strip of shell folds to take several forms of various ruled surfaces with a contraction appearing along the length of the shell fold [1] (Figure 1).



Symmetric elastic shape transformations of the thin-walled folded sheets ought to minimize their effort and allow one to obtain the highest possible degree of the shape changes generating the expected relatively big curvature of the transformed sheet while maintaining the ability to carry the characteristic roof load [2]. The rational forms of the transformed folded roof shells can be provided at the initial step of the process of modeling the buildings roofed with the transformed shells. For this purpose, various sectors of warped surfaces are created so that their contracting line runs halfway along the length of each of the transformed folds. It is not difficult to create shallow doubly-curved rectangular sectors of warped shells with negative Gaussian curvature due to the specific orthotropic geometric and material properties related to the shape transformations. These are mainly central sectors of hyperbolic paraboloids or quarters of these sectors.



In order to obtain a double-curved shell roof structure of medium or high positive Gaussian curvature, for example, an ellipsoid, it is necessary to form an unconventional shell roof structure composed of many similar shell units arranged on an auxiliary regular surface in the three-dimensional Euclidean space [1]. The so-called reference surface represents the general shell shape of a ribbed roof structure. The single shells of such a structure must be properly joined to each other along their edge lines (Figure 2).



In order to develop the rules governing the formation of several novel complex forms of the shell roofs that are impossible to obtain with the help of the single ruled shells due to the transformation constraints, methods based on spatial plane-walled reference networks are used [3,4]. One of such methods was developed and, next, expanded to utilize in elaborating the special rules defining different types of the complex shell roofs [5]. The considered roofs are derivatives of the basic roof shell structures described in the abovementioned articles.



For scientific research and engineering developments, several experimental tests and computer simulations (Figure 3) are carried out to analyze geometric and mechanical properties of thin-walled folded sheeting transformed into shell shapes [6,7].




2. Critical Analysis of the Present Knowledge


The research into the shape transformations of the nominally flat thin-walled corrugated steel sheets was initiated by Nilson in the 1970s. In the initial phase, the studies concerned the geometric and mechanical properties of complete shells transformed into the forms of central hyperbolic paraboloid sectors [8]. In order to increase the stiffness and critical loads of the transformed folded shells, two layers of folded sheets arranged in two orthogonal directions were used by the Winter team [9]. There were only created shallow double-layer shells characterized by a small transformation degree.



The degree can easily be increased by using single-layer sheeting at the expense of reducing the transverse stiffness of the transformed coating. Gioncu and Petcu developed a computer program for the calculation of the critical loads of the transformed shells [10]. The results of these tests point at the fact that the transformed single corrugated shells can be regarded as working in a membrane state.



The diversity, ridge, stiffness, and critical load of the transformed folds can significantly be increased by assembling several single shell units into one continuous ribbed shell roof structure (Figure 4a). The team led by Winter conducted comprehensive studies and published consistent results on the static-strength work of several single shells and shell structures composed of four quarters of the hyperbolic paraboloid central sectors arranged in different configurations (Figure 4b). Parker published the supplementary research results concerning the static-strength work of the complete coatings and [11].



The team led by Gergely presented a uniform description of the static-strength work of the single and complex transformed shells based on a relatively wide range of tests [12]. Simultaneously with the Gergely’s team, similar tests and analysis were conducted by Fisher et al. [13] in the field of static work and critical loads of the complete and complex hyperbolic paraboloid shells. The results of the tests and analysis of the work of the folded coatings were collected by Davis and Bryan to indicate the effective methods for shaping the shells [14].



The abovementioned researchers indicated the great theoretical possibilities of shaping various ruled forms made up of the transformed folded sheets with an open profile. Ultimately, on the basis of the tests and analysis carried out, they found that the encountered significant material and technological limitations drastically reduce the possibility of shaping the diversified shell forms of transformed sheeting to one basic type of the shallow hyperbolic paraboloids called hypars [12].



Therefore, it is reasonable to shape the ribbed structures composed of many single transformed shells by means of complex systems of complete ruled shells separated by sets of planes containing common or mutual displaced sections of the edge lines of these shells. Biswas and Iffland proposed a concept of such a system composed of many congruent transformed single shell units distributed over a sphere by means of a bundle of planes [15]. The transformed folded shells made up of aluminum or PVC “Selchim” corrugated plastic sheets were analyzed by Samyn [16]. The complete shells are shaped as revolved hyperboloids or right hyperbolic paraboloids limited by spatial quadrangles. Pottman proposed a comprehensive method of shaping the systems of planes separating subsequent smooth shell sectors in an arbitrary surface [17].



Reichhart developed a novel method for shaping the complete transformed thin-walled corrugated shells to increase their diversity, ridge, and transformation degree [18]. In accordance with Reichhart’s algorithm, the nominally flat single-layer sheeting is transformed into the position of the rigidly fixed directrices so that a freedom of the transverse width and height changes of all shell folds is assured. The previously mentioned methods did not provide such a freedom. Therefore, the effort of the transformed sheeting designed by means of these methods is significantly higher, and its critical load and ridge are significantly smaller compared to the shells formed by means of Reichhart’s method. Reichhart’s analysis carried out on the basis of the results of the tests allowed him to develop a method for calculating the shape, length, and mutual position of each shell directrix. The designed sheets do not have to be loaded with additional transverse forces to adjust their longitudinal edges or neutral axes to the positions of the selected rulings of an arbitrary ruled surface modeling the transformed roof shell.



On the basis of the results of the performed tests, Abramczyk noticed a significant role played by the contraction of each transformed shell sheeting in creating the effectively transformed thin-walled folded shells [1]. Abramczyk extended the Reichhart method and included the condition related to the central location of the contraction in the effectively transformed folded shells.



Reichhart also developed a simple method of composing of a large number of identical complete transformed shells into a ribbed structure arranged on an oblique plane (Figure 2 and Figure 5) [19]. Abramczyk developed a much more complex method for regular arrangement of many complete shell units in the three-dimensional Euclidean space (Figure 6) based on the so-called reference surface [3]. The method results from the experimental studies and computer simulations of the transformed complete thin-walled folded shells [20]. It is possible to combine different shell units into one regular structure whose general form is similar to the arbitrary regular surface with almost free curvature using in constructions [21,22].



The properties of several thin-walled structures were detailed by Wei-Wen [23]. They can be used in shaping of the elastically transformed roof shells. Marin et al. [24] extended the classical theory of elasticity developed by Green and Lindsay in terms of the theory of thermo-elasticity for dipolar bodies. A novel method for a solution to a dynamical mixed problem was presented using a reciprocal theorem and not very restrictive conditions [25].



It is significant to investigate the space around the designed free-form building, its physical form and cultural patterns appearing in a whole spatial system. The relation between the formation of the urban space and the social experience of the human self was considered by Sharma [26]. The design syntax of urban greenways should also be taken into account. The mathematics-based graph studies of patterns and shapes, thermal based photography, and morphology to perform imagery-derived deductions on the design syntax were carried out by Hasgül [27].



Morphological shaping of buildings using many features specific to architectural, industrial, and structural design must be accomplished. Morphology is the study of the forms taking into account the relationships occurring between the function, structure, internal and external texture, static-strength work, and comfort conditions. Systematic morphology was defined by Eekhout as “the study of the system, rules and principles of form [that] has led to the interpretation of the study of the geometry of regular three-dimensional bodies or forms, usually known as polyhedra” and it plays a significant role in the design process [28]. The analogous universal systems of planes called polyhedral reference networks are utilized in this article.




3. The Aim


The main aim is to present the algorithm of an innovative extended method for shaping diversified unconventional systems of complex roof shell forms. The diversification is targeted at searching for unconventional basic and derivative configurations of the transformed shell roof structures. The research is related to the exploration of the essential dependencies dividing the shell structures into different groups of similar geometric properties and, next, the implementation of the obtained significant relations in the method’s algorithm. The complete transformed shell units characterized by the special orthotropic geometric and mechanical properties are used as a material for creating the shell roof structures. The units are made of flat thin-walled folded steel sheets transformed into similar shapes of ruled shells.



The utilization of the method relies on creating two specific reference networks Γ and Bv and adopting the set of division coefficients of the respective pairs of the vertices belonging to the first reference polyhedral network Γ by the vertices of the second reference polygonal network Bv to determine several general forms of free-form buildings. The network Bv defines the degree of the folding and discontinuity of the roof structure Ω (Figure 7a,b).



The formulas governing the mutual positions of the vertices of the subsequent meshes Bvij (sectors Ωij) in the required networks Bv (structures Ω) must be invented. The expected types of the geometric patterns formed by Bvij (Ωij) on the network Bv (structure Ω) have to result from the predicted relationships between the mutual positions of the vertices of the subsequent meshes Bvij (sectors Ωij). The proposed formulas must relate to the respective mutual displacements of the adjacent meshes Bvij (sectors Ωij) and their vertices along the side edges of the created polyhedral structure Γ, which allows one to achieve the appropriate type and form of the final derivative discontinuous roof structures Ω.




4. The Method’s Concept


The following concept of the research was adopted. The previously developed method was significantly extended and includes activities and objects that allow one to search for special rules relating to diversification of the visual patterns combined with many complete shells to achieve unconventional regular roof structures. The formulas governing the patterns result from the method of defining and arranging the single shell units in the three-dimensional space in an orderly and regular manner. For example, a reference surface and a set of division coefficients defining the location of the characteristic vertices of the designed structure can be utilized. The search for the relationships begins with the observation and description of the properties of the continuous ribbed shell roof structures.



For this purpose, a z-symmetric roof structure Ω consisting of two symmetrical and two antisymmetric parts is sought. The search starts with the determination of one symmetrical quarter of Γ. At the beginning, a single central shell Ω11 is created by means of a central tetrahedral mesh Γ11 and a central quadrilateral mesh Bv11 (Figure 8). The subsequent meshes Γij, Bvij and Ωij of the nets Γ, Bv and Γ are symmetrically arranged with respect to the z-axis-symmetric Ω11 in the orthogonal and diagonal directions.



The characteristic feature of the reference network Γ is that each single mesh Γij is a specific tetrahedron with four vertices WABij, WCDij, WADij and WBCij, two axes uij and vij, four side edges aij, bij, cij and dij, four triangular side walls (WABijWCDijWBCij), (WABijWCDijWADCij), (WBCijWADijWABij) and (WBCijWADijWCDij) contained in four planes defined by the above vertices. For the first mesh i = j = 1 (Figure 8).



In order to obtain the tetrahedron Γ11, the coordinates of its four vertices WAB11, WCD11, WAD11 and WBC11 must be defined based on a global coordinate system [x,y,z] [3,21]. The positions of the points SA11, SB11, SC11 and SD11 are defined with the following division coefficients dSA11 = (WAB11, WAD11)\SA11, dSB11 = (WAB11, WBC11)\SB11, dSC11 = (WCD11, WBC11)\SC11 and dSD11 = (WCD11, WAD11)\SD11 of the pairs (WAB11, WAD11), (WAB11, WBC11), (WCD11, WBC11) and (WCD11, WAD11), where


   (  W  A B 11   ,  W  A D 11   ) \  S  A 11     = m  (     W  A B 11    S  A 11    →   )  / m  (     W  A B 11    W  A D 11    →   )     (  W  A B 11   ,  W  B C 11   ) \  S  B 11     = m  (     W  A B 11    S  B 11    →   )  / m  (     W  A B 11    W  B C 11    →   )     (  W  C D 11   ,  W  B C 11   ) \  S  C 11     = m  (     W  C D 11    S  C 11    →   )  / m  (     W  C D 11    W  B C 11    →   )     (  W  C D 11   ,  W  A D 11   ) \  S  D 11     = m  (     W  C D 11    S  D 11    →   )  / m  (     W  C D 11    W  A D 11    →   )    



(1)




and      W  A B 11    W  A D 11    →    is the vector starting with WAB11 and ending at WAD11, m(     W  A B 11    W  A D 11    →   ) is the measure of      W  A B 11    W  A D 11    →   ,      W  A B 11    S  A 11    →    is a vector with the starting point at WAB11 and the ending point at SA11, etc. The points SA11, SB11, SC11 and SD11 together with the analogous points assigned to the other meshes of Γ define the respective reference surface ω.



The locations of the vertices A11, B11, C11 and D11 of Bv11 (Figure 8) are defined by means of the vertices of Γ11 and the following proportions:


    d  A 11     =   (  W  A B 11   ,  W  A D 11   ) \  S  A 11     = m  (     W  A B 11    S  A 11    →   )  / m  (     W  A B 11    W  A D 11    →   )      d  B 11     =   (  W  A B 11   ,  W  B C 11   ) \  S  B 11     = m  (     W  A B 11    S  B 11    →   )  / m  (     W  A B 11    W  B C 11    →   )      d  C 11     =   (  W  C D 11   ,  W  B C 11   ) \  S  C 11     = m  (     W  C D 11    S  C 11    →   )  / m  (     W  C D 11    W  B C 11    →   )      d  D 11     =   (  W  C D 11   ,  W  A D 11   ) \  S  D 11     = m  (     W  C D 11    S  D 11    →   )  / m  (     W  C D 11    W  A D 11    →   )    



(2)




where      W  A B 11    A  11    →    is the vector with the starting point at WAB11 and the ending point at A11, etc. The points A11, B11, C11 and D11 determine the spatial quadrangle Bv11 constituting the eaves of a single smooth shell segment Ω11 modeling a single shell of a complex roof structure.



The process of shaping of the reference network Γ consists in creating subsequent tetrahedrons characterized by common planes intersecting each other in axes and side edges. To define the networks Γ and Bv, a set of the respective independent variables must be adopted and specific values have to be assigned to these variables. For all dependent variables, appropriate functions must be defined to determine the vertices of Γ and Bv.



In order to obtain the tetrahedron Γ12 its four vertices WAB12, WCD12, WAD12 and WBC12 must be defined [3,29]. The vertex WAB12 = WCD12. Two next vertices can be calculated by means of two division coefficients as follows


   (  W  C D 11   ,  W  B C 11   ) \  W  B C 12     =   m  (     W  C D 11    W  B C 12    →   )  / m  (     W  C D 11    W  B C 11    →   )     (  W  C D 11   ,  W  A D 11   ) \  W  A D 12     =   m  (     W  C D 11    W  A D 12    →   )  / m  (     W  C D 11    W  A D 11    →   )    



(3)




where m(     W  C D 11    W  B C 12    →   ) is the measure of the vector      W  C D 11    W  B C 12    →    with the starting point at WCD11 and the ending point at WBC12, and m(     W  C D 11    W  B C 11    →   ) is the measure of the vector      W  C D 11    W  B C 11    →   , etc.



The vertices of the other meshes Bvij of Bv should be defined in the same way as Bv11 using formulas analogous to Equations (1)–(3). Each pair of two adjacent meshes Γij and Γij+1 or Γij and Γi+1j have one common side edge contained in a plane of Γ, for example, Γ11 and Γ21 has two common side edges b11 = a21 and c11 = d21, and three common vertices WBC11 = WAD21, WCD11 = WCD21 and WAB11 = WAB22 (Figure 9). Four adjacent meshes Γij, Γij+1, Γi+1j and Γi+1j+1 have one common side edge ai+1j+1 = bi+1j = cij = dij+1 of Γ, for example, a22 = b12 = c11 = d21 for i = j = 1.



The subsequent quadrilateral meshes Bvij of the targeted networks Bv modeling the eaves of the examined shell roof structures are constructed based on the side edges of the auxiliary network Γ. Following to the method’s algorithm, the subsequent adjacent quadrilateral meshes of Bv must have common vertices Aij, Bij, Cij or Dij determined on the edges aij, bij, cij and dij (Figure 9). The specific sum of all individual shells Ωij, determined by means of Aij, Bij, Cij and Dij, constitutes a continuous ribbed roof structure Ω (Figure 10). Finally, a free-form Σ of many Σij is the simplified model of an entire complex building.



The complete tetrahedrons Γij can be regarded as an universal material for creating the spatial polyhedral networks modeling free-form building systems. Similarly, the single spatial quadrilateral meshes Bvij can be accepted as a material for shaping the eaves systems Bv of complex free-form roofs. In addition, the complete shell sectors Ωij are used as a universal material for creating the free-form shell roof structures Ω. After all, the abovementioned systems create three subsequent layers producing one complex material used for shaping unconventional building free forms roofed with complex shell structures.



The article primarily presents the results of the research on the geometric properties of the eaves layer Bv determining the form of the shell layer Ω. The observed properties are described with the help of the developed mathematical rules governing the systems of different patterns of the complete meshes Bvij and sectors Ωij arranged on ω. The results of these studies can be used in the design of several diversified unconventional free forms of buildings roofed with attractive and rational systems of many regular roof shells made up of transformed corrugated sheets.



In order to carry out the research, the following algorithm was developed. It forbids two adjacent meshes of Bv or segments of Ω to have common vertices and sides. Thus, a discontinuous net Bv and a discontinuous structure Ω can be created as a result of a rotation of each pair of the respective eaves segments belonging to two adjacent shell units Ωij and Ωi+1j or Ωij+1 (Figure 11). Four straight segments of each spatial quadrangle Bvij are displaced in the respective planes of the network Γ. Thus, the basic continuous configuration CB and the modified discontinuous configuration CP1 of the structure Ω use the same network Γ.



However, such a separation of the positions of the vertices belonging to the selected pairs of two adjacent meshes of Bv (Ω) requires appropriate changes in the values of the division coefficients assigned to the respective vertices of Γ of each Bvij. The goal of the research is therefore to develop a method of modifying the values of the coefficients so that different groups of discontinuous shell roof structures can be achieved. This activity requires defining some uniform conditions and adopting mathematical formulas describing the modified net Bv and structure Ω.



The designed discontinuous nets Bv and structures Ω can also be created as a result of translations of two respective eaves segments belonging to two adjacent shell units Ωij and Ωi+1j or Ωij+1 (Figure 12). Four straight segments of each quadrangle Bvij can be displaced in the respective planes of Γ.



Finally, the following algorithm based on four general steps should be adopted. The main characteristic of the algorithm is the usage of the division coefficients of the vertices of the reference polyhedral network Γ by the vertices of a reference polygonal network Bv (Figure 7) and the selected points of a reference surface ω. At the first step of the algorithm, the division coefficients are used to obtain the reference polyhedral network Γ and the repeatability of its tetrahedral meshes Γij, especially in the orthogonal directions. At the second step of the algorithm, the division coefficients are used to determine several points defining the reference surface ω. The expected curvature and general form of the shell roof structure are designated in an easy and intuitive way by means of the relations defined by means of the arbitrary division coefficients.



The division coefficients are also used at the third step of the method’s algorithm to determine the vertices of the reference polygonal network Bv. The vertices are located on the side edges of the polyhedral reference network Γ and defined with respect to the reference surface ω. The obtained vertices define the polygonal network Bv composed of quadrilateral spatial meshes Bvij. Four segments of Bvij determine one complete shell unit Ωij and constitute its eaves line. At this step, a basic configuration CB of the sought-after shell roof structure Ω is created. The configuration is composed of many individual shells Ωij so that the roof structure Ω is continuous (Figure 4b, Figure 5a,b and Figure 10). Each pair of two adjacent complete shells of the structure shares one edge.



The network Γ and the network Bv determine the curvature and folding of the roof structure Ω. The curvature of Ω can be determined using the properties of ω. The folding of Ω results from the ribs existing between the adjacent complete smooth shell units Ωij.



The fourth step of the method’s algorithm allows one to create several derivative configurations of the examined continuous roof structure. The derivative configurations are most often characterized by a mutual translation or rotation of the edge lines of the adjacent shells (Figure 6a,b, Figure 11 and Figure 12) in the planes of Γ. The discussion of the activities and their effects provided for in this step of the algorithm is the essential part of the research presented in this article.



The accuracy of the algorithm is comparable with the accuracy of the adopted data, and it is equal to 1 mm. This results from the 0.5 mm accuracy of the performed experimental tests and the 1 mm accuracy of the calculations of the ruling’s position of each complete shell Ωij of Ω.




5. Results


The search for the rules governing the systems of the diversified patterns of the complete transformed shells on the roof structures is presented in three examples of networks Bv using the investigated algorithm. At the first step of the algorithm, the axes uij and vij, side edges aij, bij, cij and dij, and the entire Γ are determined on the basis of the adopted vertices WABij, WCDij, WADij and WBCij [3,21]. This step is divided into two sub-steps requiring the designer to create: (1) the mesh Γ11, meshes Γi1 and Γ1j (for i > 1 and j > 1) located orthogonally in relation to Γ11, (2) meshes Γij located diagonally relative to Γ11, Γi1 or Γ1j. The sub-steps differ from each other in terms of the initial data and the actions necessary to build the subsequent single meshes Γij. The values of the coordinates of the vertices belonging to the Γ1s (Figure 13a) are presented in Table A1 in Appendix A.



At the second step of the algorithm, all points defining a reference surface ω are determined. In this way, the size of Γ and the curvature of ω are defined. For this purpose, the values of the selected division coefficients are adopted and the coordinates of the points SAij, SBij, SCij and SDij defining the reference surface ω are calculated using Equation (1) and the initial data are published in Table A2 in Appendix A. The coordinates of these points are published in Table A3 in Appendix A.



At the third step, vertices of all quadrilateral meshes of the designed Bv for the basic configuration CB are defined on the side edges of Γ relative to ω (Figure 13b). At this step, the complete shell segments Ωij of an entire roof structure Ω constituting the basic configuration CB are defined on the basis of Bvij. The adopted values of the division coefficients dAij, dBij, dCij and dDij used for achieving the Bv vertices are presented in Table A4 in Appendix A. The coordinates of the Bv and Ω vertices calculated with the help of Equation (2) are presented in Table A5 in Appendix A.



The values of four division coefficients dSijAij = (WABij,WADij)\(SAij,Aij), dSijBij = (WABij,WBCij)\(SBij,Bij), dSijCij = (WCDij,WBCij)\(SCij,Cij) and dSijDij = (WCDij,WADij)\(SDij,Dij) are calculated to estimate the folding of Ω (Bv) related to the diversification of the locations of the vertices of Bv relative to ω. The coefficients are used with the positive or negative sign depending on whether the points Aij, Bij, Cij and Dij lie above or below ω defined by means of the respective quadrangle SAijSBijSCijSDij. The calculated coordinates of the vertices Aij, Bij, Cij and Dij are presented in Table A6 in Appendix A.



The ratios dS11A11 = (WAB11,WAD11)\(SA11,A11), dS11B11 = (WAB11,WBC11)\(SB11,B11), dS11C11 = (WCD11,WBC11)\(SC11,C11) and dS11D11 = (WCD11, WAD11)\(SD11,D11) are defined for Bv11 as follows:


    d  S 11 A 11     =   m  (     S  A 11    A  11    →   )  / m  (     W  A B 11    W  A D 11    →   )  =  d  A 11   −  d  S A 11       d  S 11 B 11     =   m  (     S  B 11    B  11    →   )  / m  (     W  A B 11    W  B C 11    →   )  =  d  B 11   −  d  S B 11       d  S 11 C 11     =   m  (     S  C 11    C  11    →   )  / m  (     W  C D 11    W  B C 11    →   )  =  d  C 11   −  d  S C 11       d  S 11 D 11     =   m  (     S  D 11    D  11    →   )  / m  (     W  C D 11    W  A D 11    →   )  =  d  D 11   −  d  S D 11   .   



(4)







The above division coefficients allow one to observe the absolute differences in the mutual positions of the points A11, B11, C11 and D11 (Figure 13c). The obtained values can easily be converted into the distances of these points from ω. The coordinates of the Bv vertices calculated with the help of the equations analogous to Equation (4) are presented in Table A5 in Appendix A.



The coefficients dSijAij, dSijBij, dSijCij and dSijDij do not give the precise information about the folding of the network Bv (structure Ω) because they express the proportions in relation to the distance of two adjacent vertices of Γ. Therefore, the proportions signifying the position of the points Aij, Bij, Cij and Dij in relation to the position of the points SAij, SBij, SCij, SDij and the position of the vertices of Γ must be preferred to present the folding more precisely.



Thus, the following double division coefficients play an important role in describing the geometrical properties of the roof structures:


dASij = (WABij,WADij)\(Aij/SAij) = dAij/dSAij

dBSij = (WABij,WBCij)\(Bij/SBij) = dBij/dSBij

dCSij = (WCDij,WBCij)\(Cij/SCij) = dCij/dSCij

dDSij = (WCDij,WADij)\(Dij/SDij) = dDij/dSDij.



(5)







If the values calculated by means of Equation (5) are greater than one, then the respective points lie above the surface ω. If the values are less than one, then the points lie below ω.



The following double division coefficients are a much more convenient and intuitive variable describing the folding of a shell roof structure:


dA\Sij = (dAij − dSAij)/dSAij

dB\Sij = (dBij − dSBij)/dSBij

dC\Sij = (dCij − dSCij)/dSCij

dD\Sij = (dDij − dSDij)/dSDij.



(6)







The new division coefficients show the relative proportions of the folding of Bv (Ω) in relation to the positions of ω and the respective vertices of Γ. The values of these coefficients were calculated by means of Equation (6) for the selected meshes of Bv. They are presented in Table A7 in Appendix A.



The polyhedral reference networks Γ, reference surfaces ω, polygonal networks Bv and shell roof structures Ω are the main geometric objects created by means of the investigated method in the process for shaping building free forms roofed with complex transformed corrugated shell structures. The network Bv is the most important because the edge lines of all its complete meshes Bvij determine all individual shell segments Ωij of the resultant roof structure Ω. The Bv sides are the eaves of Ωij. To create a network Bv characterized by the expected properties, the method introduces the auxiliary reference polyhedral network Γ assisting and facilitating the determination of the positions of the vertices Aij, Bij, Cij and Dij of Bv.



The main property of each reference network Γ is that each pair of its adjacent side edges must intersect. The intersecting points of the respective pairs of two adjacent side edges denoted as aij, bij, cij or dij (Figure 8 and Figure 9) are called vertices WABij, WCDij, WBCij and WADij of Γ. The edges define all planes of Γ. It is very important that two adjacent meshes of Bv have one common segment of their edge lines (for continuous structures Ω) or two different segments (for discontinuous structures Ω) contained in the same plane of Γ, so the segments are coplanar. This property significantly simplifies the processes for shaping of the regular basic continuous configurations of Ω and their derivative configurations.



The research on searching for the rules governing the locations of the Bv vertices and the patterns of the complete Ωij shells starts with the analysis of the properties of the basic configuration CB of the shell structures shown in Figure 10 and Figure 13. The configuration CB allows one to create a so-called continuous roof structure Ω. This configuration is characterized by the fact that each four adjacent quadrangles Bvij, Bvi+1j, Bvij +1 and Bvi+1j+1 have one common vertex Cij = Bij+1 = Di+1j = Ai+1j+1. The process of the creation of the new polygonal networks Bv derivative of the basic configuration CB is relatively simple because the sides of Bvij are displaced in the abovementioned planes of Γ. Similarly, the Bv vertices belong to the side edges of Γ during these displacements.



The goal of this article is to focus on the next step of the method’s algorithm related to some modifications of the basic nets Bv. In particular, the activities forcing a diversification of the positions of the vertices of four adjacent Bv meshes corresponding to each other are analyzed. The change of the positions of the Bv vertices consists in varying their positions on the side edges of Γ in relation to ω. These modifications lead to diversified and original patterns of Bvij and Ωij on Bv and Ω (Figure 14 and Figure 15).



The first derivative configuration CP1 defines a discontinuous shell structure Ω and a discontinuous polygonal network Bv characterized by flat areas of discontinuity between the subsequent shell sectors Ωij of Ω (Figure 11 and Figure 14a,b). The discontinuous areas occurring between each pair of two adjacent meshes Bvij and Bvi+1j (Ωij and Ωi+1j) or Bvij and Bvij +1 (Ωij and Ωij+1) are the combinations of various triangles contained in the Γ planes. For this configuration, all points Aij and Cij are located below ω and all points Bij and Dij are located above ω at the distances resulting from the respective values of the division coefficients dAij, dBij, dCij and dDij. The configuration CP1 is characterized by tetrads of the adjacent meshes Bvij, Bvi+1j, Bvij+1 and Bvi+1j+1 with two pairs of common vertices: Cij = Ai+1j+1 and Bij+1 = Di+1j located independently on the same side edge cij = bij+1 = di+1j = ai+1j+1 of Γ.



The first spatial quadrangle Bv11 is defined so that the points A11 and C11 lie on the side edges a11 and c11 below ω and the points B11 and D11 above ω at the distances used for the basic configuration CB and resulting from the adopted values of the following division coefficients: dS11A11 = dS11C11 = −0.1 and dS11B11 = dS11D11 = 0.1. The positions of two next meshes Bv12 and Bv21 are obtained by moving the points A12, B12, C12, D12, A21, B21, C21 and D21 of the configuration CB along the respective side edges of the Γ network to their new positions A12, B12, C12, D12, A21, B21, C21 and D21 of the new configuration CP1 at the distances resulting from the values of the respective division coefficients adopted for Bv and Γ. The values of the coordinates of the vertices belonging to the quarter Γ1 of the z-axis-symmetric network Γ calculated for CP1 are presented in Table A8 in Appendix A.



The second configuration CP2 derivative of CB is characterized by many flat quadrilateral areas of discontinuity between adjacent meshes Bvij, Bvi+1j, Bvij+1 and Bvi+1j+1 (Figure 12 and Figure 15). The locations of its vertices Aij, Bij, Cij and Dij defining the quadrangular areas of the Ω discontinuity can be found as follows.



The first quadrangle Bv11 is the same as for the basic configuration CB and derivative configuration CP1. The positions of two following quadrangles Bv12 and Bv21 are obtained by moving the points A12, B12, C12, D12, A21, B21, C21 and D21 of the configuration CB along the respective side edges of the Γ network into their new positions A12, B12, C12, D12, A21, B21, C21 and D21 of the new configuration CP2 at the distances resulting from the values of the division coefficients dS12A12, dS12B12, dS12C12 and dS12D12, etc. The values of the coordinates of the vertices belonging to the quarter Γ1 are presented in Table A9 in Appendix A.



The positions of the other vertices belonging to the subsequent new quadrangles Bv13, Bv22 Bv23, Bv32 and Bv31 of CP2 are obtained as a result of moving the points A13, B13, C13, D13, A22, B22, C22, D22, A23, B23, C23, D23, A31, B31, C31, D31, A32, B32, C32 and D32 of CB along the respective side edges of Γ into their new positions of CP2 resulting from the respective values of the division coefficients dSijAij, dSijBij, dSijCij and dSijDij for i = 1 and j = 3 or i = 3 and j = 1. In particular, the coefficients can be equal to twice or three times the value of the respective coefficient dS11A11 or dS11B11 or dS11C11 or dS11D11.




6. Discussion


All vertices Aij, Bij, Cij and Dij of the basic configuration CB are divided into two groups. The first group includes the vertices lying on one side of a reference surface ω, for example, above ω. The second group is composed of the other Bv vertices lying on the opposite side of ω, that is, under ω.



The positions of the sought-after vertices Aij, Bij, Cij and Dij lying on the side edges aij, bij, cij and dij of Γ result from the adopted or calculated values of the division coefficients dSAij, dSBij, dSCij and dSDij. If we know the values of the above coefficients, the values the division coefficients dAij, dBij, dCij and dDij, required to calculate the positions of Aij, Bij, Cij and Dij, can be calculated as follows:


dAij = dSAij + dSijAij

dBij = dSBij + dSijBij

dCij = dSCij + dSijCij

dDij = dSDij + dSijDij.



(7)







The values of the division coefficients dAij, dBij, dCij and dDij corresponding to the vertices of CB can be calculated with Equation (7) and the values are published in Table A1 and Table A5 in Appendix A.



In the case of the investigated basic configuration CB (Figure 10 and Figure 13), the first subset is composed of the points Aij and Cij located under ω, whereas the second subset is composed of the other points Aij and Cij positioned above ω. Similarly, some of the points Bij and Dij are located above ω and others lie under ω.



To divide the points Aij and Cij into two complementary subsets, the following formulas were developed. The points Aij and Cij are located under ω if the subscripts i and j meet the following conditions:


i = j + 2 ∙ kC for i > j



(8)




or


j = i + 2 ∙ kC for i < j



(9)




or


i = j



(10)




where kC is the integer constant corresponding to the examined mesh Bvij. If Equations (8)–(10) related to the values of i and j of the respective mesh Ωij are fulfilled, the points Bij and Dij are located above ω. For example, if kC = 0 and j = 1, then i = 3 and the points A31 and C31 lie below ω and the points B31 and D31 lie above ω. The same result is achieved when adopting kc = 0 and i = 1. For this case, j = 3 and the points A13 and C13 lie below the surface ω and the points B13 and D13 lie above ω. If we use Equation (10) and i = j = 3, then we obtain the points A33 and C33 lying below ω.



The points Aij and Cij take the positions above ω and the points Bij and Dij lie under ω if the following conditions are met:


i = 1 + j + 2 ∙ kC for i > j



(11)




or


j = 1 + i + 2 ∙ kC for i < j.



(12)







For example, if kC = 0 and j = 1, then it follows from Equation (13) that i = 2 and the points A21 and C21 lie above ω, and the points B21 and D21 lie below ω. The same result is achieved when using Equation (12) and adopting kC = 0 and i = 1. In this case, j = 2 and the points A12 and C12 lie above ω, and the points B12 and D12 lie below ω.



The coefficients express the proportions between the diversity of the positions of the Bv vertices in relation to ω, and the diversity of the locations of the same vertices in relation to the Γ vertices. They allow one to describe and parameterize the form of not only the roof structure, but also the form of the entire building, including the attractiveness and proportions between its basic dimensions. In this case, the double division coefficients must relate to the base level of the designed building. The above issues go beyond the scope of the article.



Thus, each of four vertices of Bvij of each basic configuration CB is shared with three adjacent meshes. In the search for several discontinuous configurations derivative of the base configuration CB, it is advisable to analyze the number of the adjacent Bv meshes possessing a common vertex. Four, three, two or only one vertex may be shared by the mesh with four adjacent meshes. The order of the common vertices of the adjacent meshes also affects the diversification of the derivative configurations.



The first derivative configuration CP1 (Figure 14) examined in the previous section is characterized by the fact that two Bvij and Bvi+1j+1 subsequent meshes of Bv arranged in the diagonal directions have one common vertex. The meshes arranged in the orthogonal directions do not have such a common vertex, and the respective sides of two adjacent meshes are mutually rotated in the planes of Γ.



The conditions determining the positions of the vertices belonging to each tetrad of the adjacent Bv meshes of the configuration CP2 are adopted so that a complete separation of the common vertices of the basic configuration CB is achieved. Thus, no pair of the adjacent meshes of CP2 has common vertices, and one side of each pair of two adjacent Bv meshes is displaced in the respective plane of Γ. As a result, a discontinuous roof structure consisting of many single transformed shells Ωij limited by the mutually rotated eaves Bvij is built (Figure 12 and Figure 15). The displacement is accomplished by simultaneously moving two ends of the above side along the respective side edges of Γ either in the directions of the respective Γ vertices or in the opposite directions. This action causes the additional increments of the division coefficients dSijAij, dSijBij, dSijCij and dSijDij resulting from the movement to be of the same sign.



For the special case when the values of these increments are identical, it is necessary to consider the number of the modifications accomplished for the subsequent pairs of two adjacent Bv meshes when transmitting from Bv11 to the examined Bvij. The transition from Bv11 to Bv23 requires three skips between Bv11 and Bv12, Bv12 and Bv13, and Bv13 and Bv23. Thus, in order to build a mesh Bvij, the number i + j − 2 of the skips is required. If the values of the increments assigned to the division coefficients dSAij, dSBij, dSCij and dSDij of CP2 are equal to the same constant ddij, then the increments ddAij, ddBij, ddCij and ddDij used for the vertices Aij, Bij, Cij and Dij (in relation to the base configuration CB) can be calculated from the formula


ddAij = ddBij = ddCij = ddDij = (i + j − 2) ∙ ddij



(13)




where ddij is the arbitrary constant related to the abovementioned skips.



It should be noted that two selected vertices of each pair of the adjacent meshes of Bv arranged in the diagonal directions (Figure 15), for example, Bv21 and Bv12, have one common vertex. If we change the values of the coefficients dSijAij, dSijBij, dSijCij and dSijDij of all Bvij to create the configuration CP2 (in relation to the basic configuration CB) using Equation (13), then we should obtain the identical location of the vertices of the adjacent diagonal meshes Bvij and Bvi-1j+1 only for the very specific mutual position of all vertices WABij, WCDij, WBCij and WADij of Γ. In fact, it will not be possible to achieve the abovementioned property of CP2 if we change the positions of these vertices of Γ. This issue goes beyond the scope of the article.




7. Conclusions


The method for creating discontinuous configurations derivative of the specific continuous basic configurations of the transformed shell roof structures defined by means of the systems of planes is proposed due to the necessity to assemble many complete transformed shells into one roof structure Ω resulting from the material limitations of the transformed corrugated sheeting. The method uses two specific reference networks Γ and Bv and the proposed set of the division coefficients of the respective pairs of the vertices belonging to the first reference polyhedral network Γ by the vertices of the second reference polygonal network Bv. The network Γ determines the general form of a building. The network Bv defines the degree of the folding and discontinuity of a roof structure Ω. Both networks Γ and Bv define the particular form and the general curvature of Ω.



The obtained results of the conducted research on the development of the rules governing the formation of the examined continuous roof shell structures and their modifications to the forms of discontinuous regular structures of many complete shells arranged in unconventional visually attractive patterns were implemented into the method’s algorithm. In particular, the relationships governing the position of each mesh Bvij (Ωij) in the network Bv (structure Ω) and the values of the partition coefficients assigned to the vertices of each mesh were determined for the basic configuration CB and two derivative configurations CP1 and CP2. The position of each mesh Bvij in Bv defined by the appropriate formula related to the independent variables i and j was discussed. The complete tetrahedra Γij, closed spatial quadrangles Bvij and ruled shell sectors Ωij constituted the complex material used for creating the structures.



The invented formulas govern the mutual position of the vertices Aij, Bij, Cij and Dij of the subsequent meshes Bvij (sectors Ωij) in the network Bv (structure Ω). The position results from: (a) the proportions assumed as functions of the positions of these vertices in relation to the respective points of the reference surface and the vertices of the Γ polyhedral network used, (b) the adopted formulas and integer values of the variables i and j related to the sequence of Bvij in Bv. The expected types of the geometric patterns formed by Bvij (Ωij) on the network Bv (structure Ω) result from the relationships between the mutual positions of the vertices of the adjacent meshes Bvij. The developed formulas lead to the respective mutual displacements of the adjacent meshes and their vertices along the side edges of the polyhedral structure Γ, which allows one to achieve the appropriate type and form of the final discontinuous roof structure.
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Nomenclature




	[x,y,z]
	global coordinate system



	Γ
	reference polyhedral network



	Γij
	single mesh of Γ



	WABij, WCDij, WADij and WBCij
	vertices of Γ



	uij and vij
	axes of Γ



	aij, bij, cij and dij
	side edges of Γ



	Bv
	reference polygonal network



	Bvij
	single mesh of Bv



	Aij, Bij, Cij and Dij
	vertices of Bvij



	ω
	reference regular surface



	SAij, SBij, SCij and SDij
	points of ω



	SAijSBijSCijSDij
	quadrangle with vertices at Aij, Bij, Cij and Dij



	dSAij, dSBij, dSCij and dSDij
	division coefficients of WABij, WCDij, WADij, WBCij by SAij, SBij, SCij, SDij and Aij, Bij, Cij, Dij



	dAij, dBij, dCij and dDij
	division coefficients of WABij, WCDij, WADij, WBCij by Aij, Bij, Cij and Dij



	dS\Aij, dS\Bij, dS\Cij and dS\Dij
	double division coefficients of WABij, WCDij, WADij, WBCij by SAij, SBij, SCij, SDij and Aij, Bij, Cij, Dij



	Ω
	complex shell roof structure



	Ωij
	complete shell unit of Ω



	CB
	basic continuous configuration of Ω



	CPi
	derivative discontinuous configuration of Ω derivative of CB



	i and j
	integer values expressing the position of Bvij (Ω ij) in Bv (Ω)



	kC
	integer constant



	ddAij, ddBij, ddCij and ddDij
	increments of the division coefficients dAij, dBij, dCij and dDij
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Table A1. The coordinates of the vertices WABij, WCDij, WADij, WBCij (for i, j = 1, 2, 3) of the polyhedral reference network Γ1.






Table A1. The coordinates of the vertices WABij, WCDij, WADij, WBCij (for i, j = 1, 2, 3) of the polyhedral reference network Γ1.





	Point
	x-Coordinate [mm]
	y-Coordinate [mm]
	z-Coordinate [mm]





	WAB13
	3254.3
	0.0
	468.2



	WCD13
	5572.7
	0.0
	1487.4



	WAD13
	−435.4
	−1054.6
	12,007.1



	WBC13
	−435.4
	1054.6
	12,007.1



	WAB21
	−1100.0
	−87.2
	−996.2



	WCD21
	1100.0
	−87.2
	−996.2



	WAD21
	−4500.0
	−4880.7
	55,786.9



	WBC21
	0.0
	2574.0
	9677.1



	WAB31
	−1210.0
	−353.3
	−2063.5



	WCD31
	1210.0
	353.3
	−2063.5



	WAD31
	0.0
	2574.0
	9677.1



	WBC31
	0.0
	4374.6
	9074.6



	WAB23
	3589.7
	−95.9
	−580.8



	WCD23
	6173.6
	−105.5
	435.5



	WAD23
	−435.4
	1054.6
	12,007.1



	WBC23
	−480.0
	3133.7
	11,876.9



	WAB32
	1210.0
	353.3
	−2063.5



	WCD32
	3959.7
	−389.5
	−1713.3



	WAD32
	−110.0
	2840.1
	10,744.4



	WBC32
	−121.0
	4847.4
	10,188.4



	WAB33
	3959.7
	−389.5
	−1713.3



	WCD33
	6838.9
	−429.4
	−708.6



	WAD33
	−480.0
	3133.7
	11,876.9



	WBC33
	−529.1
	5371.0
	11,378.6
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Table A2. The initial data defining the positions of the points SAij, SBij, SCij, SDij for i, j = 1, 2.






Table A2. The initial data defining the positions of the points SAij, SBij, SCij, SDij for i, j = 1, 2.





	Ratio
	Value





	dSA11 = (WAB11,WAD11)\SA11
	5.5000



	dSB11 = (WAB11,WBC11)\SB11
	5.5000



	dSC11 = (WCD11,WAD11)\SC11
	5.5000



	dSD11 = (WCD11,WAD11)\SD11
	5.5000



	dSA12 = (WAB12,WAD12)\SA12
	5.0000



	dSB12 = (WAB12, WBC12)\SB12
	5.0000



	dSC12 = (WCD12, WBC12)\SC12
	5.0000



	dSD12 = (WCD12, WAD12)\SD12
	5.0000



	dSA22 = (WAB22,WAD22)\SA22
	4.6667



	dSB22 = (WAB22, WBC22)\SB22
	4.6281



	dSC22 = (WCD22, WAD22)\SC22
	4.6667



	dSD22 = (WCD22, WAD22)\SD22
	4.6364
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Table A3. The coordinates of the points defining the reference surface ω.






Table A3. The coordinates of the points defining the reference surface ω.





	Point
	x-Coordinate [mm]
	y-Coordinate [mm]
	z-Coordinate [mm]





	SA11
	4500.0
	−4793.6
	54,790.7



	SB11
	4500.0
	4880.7
	55,786.9



	SC11
	−4500.0
	4793.6
	54,790.7



	SD11
	−4500.0
	−4880.7
	55,786.9



	SA12
	−4500.0
	−4880.7
	55,786.9



	SB12
	−4500.0
	4793.6
	54,790.7



	SC12
	−13,517.1
	4793.6
	52,918.0



	SD12
	−13,517.1
	−4793.6
	52,918.0



	SA13
	−13,517.1
	−4793.6
	52,918.0



	SB13
	−13,517.1
	4793.6
	52,918.0



	SC13
	−21,737.1
	4793.6
	49,304.2



	SD13
	−21,737.1
	−4793.6
	49,304.2



	SA21
	4500.0
	4880.7
	55,786.9



	SB21
	4500.0
	13,460.5
	53,340.4



	SC21
	−4500.0
	13,460.5
	53,340.4



	SD21
	−4500.0
	4793.6
	54,790.7



	SA31
	4500.0
	13,460.5
	53,340.4



	SB31
	4500.0
	21,957.5
	50,497.3



	SC31
	−4500.0
	21,957.5
	50,497.3



	SD31
	−4500.0
	13,460.5
	53,340.4



	SA22
	−4500.0
	4793.6
	54,790.7



	SB22
	−4500.0
	13,460.5
	53,340.4



	SC22
	−13,675.6
	13,605.3
	52,270.2



	SD22
	−13,517.1
	4793.6
	52,918.0



	SA23
	−13,517.1
	4793.6
	52,918.0



	SB23
	−13,675.6
	13,605.3
	52,270.2



	SC23
	−22,104.0
	13,660.9
	49,061.5



	SD23
	−21,737.1
	4793.6
	49,304.2



	SA32
	−4500.0
	13,460.5
	53,340.4



	SB32
	−4500.0
	21,957.5
	50,497.3



	SC32
	−13,692.4
	22,263.8
	49,770.7



	SD32
	−13,675.6
	13,605.3
	52,270.2



	SA33
	−13,675.6
	13,605.3
	52,270.2



	SB33
	−13,692.4
	22,263.8
	49,770.7



	SC33
	−22,428.4
	22,611.2
	47,304.5



	SD33
	−22,104.0
	13,660.9
	49,061.5
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Table A4. The division coefficients employed to calculate the coordinates of the Bv and Ω vertices for i, j = 1, 2.






Table A4. The division coefficients employed to calculate the coordinates of the Bv and Ω vertices for i, j = 1, 2.





	Ratio
	Value





	dA11 = (WAB11,WAD11)\A11
	5.4000



	dB11 = (WAB11,WBC11)\B11
	5.6000



	dC11 = (WCD11,WAD11)\C11
	5.4000



	dD11 = (WCD11,WAD11)\D11
	5.6000



	dA12 = (WAB12,WAD12)\A12
	5.0910



	dB12 = (WAB12, WBC12)\B12
	4.9090



	dC12 = (WCD12, WBC12)\C12
	5.0910



	dD12 = (WCD12, WAD12)\D12
	4.9090



	dA22 = (WAB22,WAD22)\A22
	4.5834



	dB22 = (WAB22, WBC22)\B22
	4.7114



	dC22 = (WCD22, WAD22)\C22
	4.5834



	dD22 = (WCD22, WAD22)\D22
	4.7190
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Table A5. The values of the division coefficients (for i, j = 1, 2) used to estimate the folding of Ω (Bv).






Table A5. The values of the division coefficients (for i, j = 1, 2) used to estimate the folding of Ω (Bv).





	Ratio
	Value





	dS11A11 = (WAB11,WAD11)\(SA11,A11)
	−0.1000



	dS11B11 = (WAB11,WBC11)\(SB11,B11)
	0.1000



	dS11C11 = (WCD11,WBC11)\(SC11,C11)
	−0.1000



	dS11D11 = (WCD11,WAD11)\(SD11,D11)
	0.1000



	dS12A12 = (WAB12,WAD12)\(SA12,A12)
	0.0910



	dS12B12 = (WAB12, WBC12)\(SA12,B12)
	−0.0910



	dS12C12 = (WCD12, WBC12)\(SA12,C12)
	0.0910



	dS12D12= (WCD12, WAD12)\(SA12,D12)
	−0.0910



	dS22A22 = (WAB22,WAD22)\(SA21,A22)
	−0.0833



	dS22B22 = (WAB22, WBC22)\(SA21,B22)
	0.0826



	dS22C22 = (WCD22, WBC22)\(SA22,C22)
	−0.0833



	dS22D22 = (WCD22, WAD22)\(SA22,D22)
	0.0826
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Table A6. The coordinates of the vertices Aij, Bij, Cij, Dij (for i, j = 1, 2, 3) of the basic configuration CB of the eaves edge net Bv1.






Table A6. The coordinates of the vertices Aij, Bij, Cij, Dij (for i, j = 1, 2, 3) of the basic configuration CB of the eaves edge net Bv1.





	Point
	x-Coordinate [mm]
	y-Coordinate [mm]
	z-Coordinate [mm]





	A11
	4400.0
	−4706.4
	53,794.5



	B11
	4600.0
	4880.7
	55,786.9



	C11
	−4400.0
	4706.4
	53,794.5



	D11
	−4600.0
	−4880.7
	55,786.9



	A12
	xD11
	yD11
	zD11



	B12
	xC11
	yC11
	zC11



	C12
	−13,822.1
	4880.7
	53,871.7



	D12
	−13,212.2
	−4706.4
	51,964.4



	A13
	xD12
	yD11
	zD11



	B13
	xC12
	yC11
	zC11



	C13
	−21,240.6
	4706.4
	48,434.8



	D13
	−22,233.7
	−4880.7
	50,173.6



	A21
	xB11
	yB11
	zB11



	B21
	4400.0
	13,218.5
	52,370.0



	C21
	−4600.0
	13,702.4
	54,310.7



	D21
	xC11
	yC11
	zC11



	A31
	xB21
	yB21
	zB21



	B31
	4600.0
	22,348.2
	51,417.8



	C31
	−4400.0
	21,566.7
	49,576.8



	D31
	xC21
	yC21
	zC21



	A22
	xD21
	yD21
	zD21



	B22
	xC21
	yC21
	zC21



	C22
	−13,367.3
	13,360.7
	51,326.4



	D22
	xC12
	yC12
	zC12



	A23
	xD22
	yD22
	zD22



	B23
	xC22
	yC22
	zC22



	C23
	−22,608.0
	13,906.3
	49,928.3



	D23
	xC13
	yC13
	zC13



	A32
	xD31
	yD31
	zD31



	B32
	xC31
	yC31
	zC31



	C32
	−14,001.5
	22,660.5
	50,672.4



	D32
	xC22
	yC22
	zC22



	A33
	xC22
	yC22
	zC22



	B33
	xC32
	yC32
	zC32



	C33
	−21916.7
	22,208.4
	46,465.1



	D33
	xC23
	yC23
	zC23
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Table A7. The values of the division coefficients (for i, j = 1, 2) used to precisely define the folding of Ω (Bv).






Table A7. The values of the division coefficients (for i, j = 1, 2) used to precisely define the folding of Ω (Bv).





	Ratio
	Value





	dA\S11
	−0.0182



	dB\S11
	0.0182



	dC\S11
	−0.0182



	dC\S11
	0.0182



	dA\S12
	0.0182



	dB\S12
	−0.0182



	dC\S12
	0.0182



	dD\S12
	−0.0182



	dA\S22
	−0.0178



	dB\S22
	0.0180



	dC\S22
	−0.0178



	dD\S22
	0.0178
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Table A8. The coordinates of the vertices Aij, Bij, Cij, Dij (for i, j = 1, 2, 3) of the first modified configuration CP1 of the eaves edge net Bv1.






Table A8. The coordinates of the vertices Aij, Bij, Cij, Dij (for i, j = 1, 2, 3) of the first modified configuration CP1 of the eaves edge net Bv1.





	Point
	x-Coordinate [mm]
	y-Coordinate [mm]
	z-Coordinate [mm]





	A11
	4400.0
	−4706.4
	53,794.5



	B11
	4600.0
	4880.7
	55,786.9



	C11
	−4400.0
	4706.4
	53,794.5



	D11
	−4600.0
	−4880.7
	55,786.9



	A12
	−4400.0
	−4706.4
	53,694.9



	B12
	−4600.0
	4880.7
	55,786.9



	C12
	−13,212.2
	4706.4
	51,964.4



	D12
	−13,822.1
	−4880.7
	53,871.7



	A13
	−13,212.2
	−4706.4
	51,964.4



	B13
	−13,822.1
	4880.7
	53,871.7



	C13
	−21,240.6
	4706.4
	48,434.8



	D13
	−22,233.7
	−4880.7
	50,173.6



	A21
	4400.0
	4706.4
	53,794.5



	B21
	4600.0
	13,702.4
	54,310.7



	C21
	−4400.0
	13,218.5
	52,370.1



	D21
	xB12
	yB12
	zB12



	A31
	4400.0
	13,218.5
	52,370.1



	B31
	4600.0
	22,348.2
	51,417.8



	C31
	−4400.0
	21,566.7
	49,576.8



	D31
	−4600.0
	13,702.4
	54,310.7



	A22
	xC11
	yC11
	zC11



	B22
	xD31
	yD31
	zD31



	C22
	−13,367.3
	13,360.7
	51,326.4



	D22
	xB13
	yB13
	zB13



	A23
	xC12
	yC12
	zC12



	B23
	−13,983.9
	13,850.0
	53,213.9



	C23
	−21,599.9
	13,415.6
	48,194.7



	D23
	−22,233.7
	4880.7
	50,173.6



	A32
	−4400.0
	13,218.5
	52,370.1



	B32
	xC21
	yC21
	zC21



	C32
	−13,383.2
	21,867.1
	48,869.1



	D32
	xB23
	yB23
	zB23



	A33
	xC22
	yC22
	zC22



	B33
	−14,001.5
	22,660.5
	50,672.4



	C33
	−21,916.7
	22,208.4
	46,465.1



	D33
	−22,608.0
	13,906.3
	49,928.3
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Table A9. The coordinates of the vertices Aij, Bij, Cij, Dij (for i, j = 1, 2, 3) of the second modified configuration CP2 of the eaves edge net Bv1.






Table A9. The coordinates of the vertices Aij, Bij, Cij, Dij (for i, j = 1, 2, 3) of the second modified configuration CP2 of the eaves edge net Bv1.





	Point
	x-Coordinate [mm]
	y-Coordinate [mm]
	z-Coordinate [mm]





	A11
	4400.0
	−4706.4
	53,794.5



	B11
	4600.0
	4880.7
	55,786.9



	C11
	−4400.0
	4706.4
	53,794.5



	D11
	−4600.0
	−4880.7
	55,786.9



	A12
	−4500.0
	−4793.6
	54,790.7



	B12
	−4300.0
	4619.2
	52,798.3



	C12
	−13,517.1
	4793.6
	52,918.0



	D12
	−12,907.3
	−4619.2
	51,010.0



	A13
	−12,602.3
	−4532.1
	50,057.1



	B13
	−13,212.2
	4706.4
	51,964.4



	C13
	−20,247.5
	4532.1
	46,696.0



	D13
	−21,240.6
	−4706.4
	48,434.8



	A21
	4500.0
	4793.6
	54,790.7



	B21
	4300.0
	12,976.6
	51,399.8



	C21
	−4500.0
	13,460.5
	53,340.4



	D21
	−4300.0
	4619.2
	52,798.3



	A31
	4200.0
	12,734.7
	50,429.5



	B31
	4400.0
	21,566.7
	49,576.8



	C31
	−4200.0
	20,785.3
	47,735.8



	D31
	−4400.0
	13,218.5
	52,370.1



	A22
	−4200.0
	4532.1
	51,802.1



	B22
	−4400.0
	13,218.5
	52,370.1



	C22
	−12,750.7
	12,871.3
	49,438.9



	D22
	−13,212.2
	4706.4
	51,964.4



	A23
	−12,907.3
	4619.2
	51,010.8



	B23
	−12,442.4
	12,626.7
	48,495.1



	C23
	−21,095.8
	13,170.2
	47,328.0



	D23
	−19,751.0
	4444.9
	45,826.6



	A32
	−4300.0
	12,976.6
	51,399.8



	B32
	−4100.0
	20,394.5
	46,815.3



	C32
	−13,074.1
	21,470.3
	47,967.4



	D32
	−12,442.4
	12,626.7
	48,495.1



	A33
	−12,134.1
	12,382.0
	47,551.3



	B33
	−12,764.9
	21,073.6
	47,065.8



	C33
	−19,870.0
	20,597.1
	43,107.6



	D33
	−20,591.8
	12,924.8
	46,461.2
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Figure 1. Experimental folded shell sheeting composed of eight folds belonging to two sheets supported by two straight skew directrices. 
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Figure 2. The external views of the same roof structure composed of several single shells arranged on an oblique plane: (a) the north side, (b) the south side. 






Figure 2. The external views of the same roof structure composed of several single shells arranged on an oblique plane: (a) the north side, (b) the south side.



[image: Materials 14 03582 g002]







[image: Materials 14 03582 g003 550] 





Figure 3. The accurate thin-walled computational mechanical model of a transformed sheet composed of four deformed shell folds. 
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Figure 4. Hyperbolic paraboloid shells: (a) geometric models; (b) umbrella structures of four quarters. 
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Figure 5. A shell structure of a few transformed shells roofing an experimental hall: (a) an outside view; (b) an inside view. 
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Figure 6. Two geometric models of building free forms roofed with complex corrugated shell sheeting structures with: (a) the rotated directrices of the central shell unit; (b) the translated directrices of the central shell unit. 
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Figure 7. Two complex shell roof structures created on the basis of a polyhedral network Γ, a polygonal network Bv and a reference surface ω characterized by: (a) the positive Gaussian curvature, (b) the negative Gaussian curvature. 
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Figure 8. Properties of a complete central mesh Γ11 of a reference network Γ, a complete mesh Bv11 of a quadrilateral eaves network Bv, a plane-walled unit Σ11 of a free-form building structure Σ, and a central shell unit Ω11 of a discontinuous shell roof structure Ω. 
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Figure 9. A reference regular surface ω based on the modified polyhedral network Γ. 
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Figure 10. A quadrilateral eaves network Bv, and a continuous ribbed shell roof structure Ω. defined on the basis of the polyhedral network Γ. 
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Figure 11. The first derivative configuration CP1 of a discontinuous shell roof structure Ω. defined on the basis of Γ and Bv. 
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Figure 12. The second derivative configuration CP2 of a discontinuous shell roof structure Ω. defined on the basis of Γ and Bv. 
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Figure 13. The polyhedral and quadrilateral nets for a continuous roof structure: (a) the one-fourth Γ1 of Γ and the one-fourth Bv1 of Bv; (b) the entire Γ and Bv networks; (c) the central meshes Γ11 and Bv11. 
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Figure 14. The polyhedral and quadrilateral nets for a discontinuous roof structure: (a) one-fourth of Γ1 and Bv1; (b) entire Γ and Bv. 
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Figure 15. The results of the further steps of the method’s algorithm used for creating Γ: (a) Γ21; (b) Γ22. 
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