Injection Molding and Near-Complete Densification of Monolithic and Al2O3 Fiber-Reinforced Ti2AlC MAX Phase Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Synthesis and Processing
2.2. Material Characterization
3. Results and Discussion
3.1. Injection Molding and Debinding
3.2. Pressureless Sintering
3.3. Powder Bed Sintering
3.4. Fiber Orientation and Distribution
3.5. Mechanical Characterization
4. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gonzalez-Julian, J. Processing of MAX phases: From synthesis to applications. J. Am. Ceram. Soc. 2021, 104, 659–690. [Google Scholar] [CrossRef]
- Barsoum, M.W. MAX Phases: Properties of Machinable Ternary Carbides and Nitrides; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2013. [Google Scholar]
- Bai, Y.; Kong, F.; He, X.; Li, N.; Qi, X.; Zheng, Y.; Zhu, C.; Wang, R.; Duff, A. Thermal shock behavior of Ti2AlC from 200 to 1400 °C. J. Am. Ceram. Soc. 2017, 100, 4190–4198. [Google Scholar] [CrossRef]
- Tallman, D.J.; Anasori, B.; Barsoum, M.W. A Critical Review of the Oxidation of Ti2AlC, Ti3AlC2 and Cr2AlC in Air. Mater. Res. Lett. 2013, 1, 115–125. [Google Scholar] [CrossRef]
- Wang, X.H.; Zhou, Y.C. High-Temperature Oxidation Behavior of Ti2AlC in Air. Oxid. Met. 2003, 59, 303–320. [Google Scholar] [CrossRef]
- Basu, S.; Obando, N.; Gowdy, A.; Karaman, I.; Radovic, M. Long-Term Oxidation of Ti2AlC in Air and Water Vapor at 1000–1300 °C Temperature Range. J. Electrochem. Soc. 2011, 159, C90–C96. [Google Scholar] [CrossRef]
- Smialek, J.L.; Cuy, M.D.; Harder, B.J.; Garg, A.; Rogers, R.B. Durability of YSZ coated Ti2AlC in 1300 °C high velocity burner rig tests. J. Am. Ceram. Soc. 2020, 103, 7014–7030. [Google Scholar] [CrossRef]
- Belmonte, M.; Koller, M.; Moyano, J.J.; Seiner, H.; Miranzo, P.; Osendi, M.I.; González-Julián, J. Multifunctional 3D-Printed Cellular MAX-Phase Architectures. Adv. Mater. Technol. 2019, 4, 1900375. [Google Scholar] [CrossRef]
- Nan, B.; Yin, X.; Zhang, L.; Cheng, L. Three-Dimensional Printing of Ti3SiC2-Based Ceramics. J. Am. Ceram. Soc. 2011, 94, 969–972. [Google Scholar] [CrossRef]
- Ma, Y.; Yin, X.; Fan, X.; Wang, L.; Greil, P.; Travitzky, N. Near-Net-Shape Fabrication of Ti3SiC2-based Ceramics by Three-Dimensional Printing. Int. J. Appl. Ceram. Technol. 2015, 12, 71–80. [Google Scholar] [CrossRef]
- Elsayed, H.; Chmielarz, A.; Potoczek, M.; Fey, T.; Colombo, P. Direct ink writing of three dimensional Ti2AlC porous structures. Addit. Manuf. 2019, 28, 365–372. [Google Scholar] [CrossRef]
- Gonzalez-Julian, J.; Classen, L.; Bram, M.; Vaßen, R.; Guillon, O. Near Net Shaping of Monolithic and Composite MAX Phases by Injection Molding. J. Am. Ceram. Soc. 2016, 99, 3210–3213. [Google Scholar] [CrossRef]
- Stumpf, M.; Fan, X.; Biggemann, J.; Greil, P.; Fey, T. Topological interlocking and damage mechanisms in periodic Ti2AlC-Al building block composites. J. Eur. Ceram. Soc. 2019, 39, 2003–2009. [Google Scholar] [CrossRef]
- German, R.M.; Bose, A. Injection Molding of Metals and Ceramics; Metal Powder Industries Federation: Princeton, NJ, USA, 1997; 413p. [Google Scholar]
- Dash, A.; Malzbender, J.; Dash, K.; Rasinski, M.; Vaßen, R.; Guillon, O.; Gonzalez-Julian, J. Compressive creep of SiC whisker/Ti3SiC2 composites at high temperature in air. J. Am. Ceram. Soc. 2020, 103, 5952–5965. [Google Scholar] [CrossRef]
- Dash, A.; Malzbender, J.; Vaßen, R.; Guillon, O.; Gonzalez-Julian, J. Short SiC fiber/Ti3SiC2 MAX phase composites: Fabrication and creep evaluation. J. Am. Ceram. Soc. 2020, 103, 7072–7081. [Google Scholar] [CrossRef]
- Naik Parrikar, P.; Gao, H.; Radovic, M.; Shukla, A. Static and Dynamic Thermo-Mechanical Behavior of Ti2AlC MAX Phase and Fiber Reinforced Ti2AlC Composites. In Conference Proceedings of the Society for Experimental Mechanics Series; Springer: New York, NY, USA, 2015; pp. 9–14. [Google Scholar]
- Gonzalez-Julian, J.; Llorente, J.; Bram, M.; Belmonte, M.; Guillon, O. Novel Cr2AlC MAX-phase/SiC fiber composites: Synthesis, processing and tribological response. J. Eur. Ceram. Soc. 2017, 37, 467–475. [Google Scholar] [CrossRef]
- Go, T.; Vaßen, R.; Guillon, O.; Gonzalez-Julian, J. Processing and oxidation response of Cr2AlC MAX-phase composites containing ceramic fibers. Open Ceram. 2021, 6, 100090. [Google Scholar] [CrossRef]
- Spencer, C.B.; Córdoba, J.M.; Obando, N.H.; Radovic, M.; Odén, M.; Hultman, L.; Barsoum, M.W. The Reactivity of Ti2AlC and Ti3SiC2 with SiC Fibers and Powders up to Temperatures of 1550 °C. J. Am. Ceram. Soc. 2011, 94, 1737–1743. [Google Scholar] [CrossRef]
- Guo, S.; Hu, C.; Gao, H.; Tanaka, Y.; Kagawa, Y. SiC(SCS-6) fiber-reinforced Ti3AlC2 matrix composites: Interfacial characterization and mechanical behavior. J. Eur. Ceram. Soc. 2015, 35, 1375–1384. [Google Scholar] [CrossRef]
- Guo, S. Improvement of mechanical properties of SiC(SCS-6) fibre-reinforced Ti3AlC2 matrix composites with Ti barrier layer. J. Eur. Ceram. Soc. 2016, 36, 1349–1358. [Google Scholar] [CrossRef]
- Spencer, C.B.; Córdoba, J.M.; Obando, N.; Sakulich, A.; Radovic, M.; Odén, M.; Hultman, L.; Barsoum, M.W. Phase Evaluation in Al2O3 Fiber-Reinforced Ti2AlC during Sintering in the 1300–1500 °C Temperature Range. J. Am. Ceram. Soc. 2011, 94, 3327–3334. [Google Scholar] [CrossRef]
- Badie, S.; Dash, A.; Sohn, Y.J.; Vaßen, R.; Guillon, O.; Gonzalez-Julian, J. Synthesis, sintering, and effect of surface roughness on oxidation of submicron Ti2AlC ceramics. J. Am. Ceram. Soc. 2021, 104, 1669–1688. [Google Scholar] [CrossRef]
- Tabares, E.; Cifuentes, S.C.; Jiménez-Morales, A.; Tsipas, S.A. Injection moulding of porous MAX phase Ti3SiC2 without using space-holder. Powder Technol. 2021, 380, 96–105. [Google Scholar] [CrossRef]
- Hashimoto, S.; Takeuchi, M.; Inoue, K.; Honda, S.; Awaji, H.; Fukuda, K.; Zhang, S. Pressureless sintering and mechanical properties of titanium aluminum carbide. Mater. Lett. 2008, 62, 1480–1483. [Google Scholar] [CrossRef]
- Lu, X.; Zhou, Y. Pressureless Sintering and Properties of Ti3AlC2. Int. J. Appl. Ceram. Technol. 2010, 7, 744–751. [Google Scholar] [CrossRef]
- Helle, A.; Easterling, K.; Ashby, M. Hot-isostatic pressing diagrams: New developments. Acta Metall. 1985, 33, 2163–2174. [Google Scholar] [CrossRef]
- Lange, F.F.; Terwilliger, G.R. Method of Compacting Shaped Powdered Objects. U.S. Patent US4041123, 22 December 1972. [Google Scholar]
- Lichti, W.P.; Hofstatter, A.F. Method of Object Consolidation Employing Graphite Particulate. U.S. Patent US4640711, 5 October 1985. [Google Scholar] [CrossRef]
- Hocquet, S.; Dupont, V.; Cambier, F.; Ludewig, F.; Vandewalle, N. Densification of complex shape ceramics parts by SPS. J. Eur. Ceram. Soc. 2020, 40, 2586–2596. [Google Scholar] [CrossRef]
- Goldberger, W.M. Method for Electroconsolidation of a Preformed Particulate Workpiece. U.S. Patent US5,348,694, 17 March 1993. [Google Scholar]
- Goldberger, W.; Merkle, B.D. Electroconsolidation offers fast, low-cost densification. Met. Powder Rep. 2001, 56, 30–33. [Google Scholar] [CrossRef]
- Barbosa, A.P.C.; Bram, M.; Stöver, D.; Buchkremer, H.P. Realization of a Titanium Spinal Implant with a Gradient in Porosity by 2-Component-Metal Injection Moulding. Adv. Eng. Mater. 2013, 15, 510–521. [Google Scholar] [CrossRef]
- German, R.M. Powder Injection Molding; Metal Powder Industries Federation: Princeton, NJ, USA, 1990; 521p. [Google Scholar]
- Weiser, M.W.; De Jonghe, L.C. Inclusion Size and Sintering of Composite Powders. J. Am. Ceram. Soc. 1988, 71, C-125–C-127. [Google Scholar] [CrossRef] [Green Version]
- Rahaman, M.N. Sintering of Ceramics; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2007; 389p. [Google Scholar]
- Hsueh, C.-H. Sintering behaviour of powder compacts with multiheterogeneities. J. Mater. Sci. 1986, 21, 2067–2072. [Google Scholar] [CrossRef]
- Stedman, S.; Evans, J.; Brook, R.; Hoffmann, M.J. Anisotropic sintering shrinkage in injection-moulded composite ceramics. J. Eur. Ceram. Soc. 1993, 11, 523–532. [Google Scholar] [CrossRef]
- Kisi, E.H.; Wu, E.; Zobec, J.S.; Forrester, J.S.; Riley, D.P. Inter-Conversion of Mn+1AXn Phases in the Ti-Al-C System. J. Am. Ceram. Soc. 2007, 90, 3371. [Google Scholar] [CrossRef]
- Pang, W.; Low, I.; O’Connor, B.; Peterson, V.; Studer, A.; Palmquist, J. In situ diffraction study of thermal decomposition in Maxthal Ti2AlC. J. Alloys Compd. 2011, 509, 172–176. [Google Scholar] [CrossRef]
- Tian, J.; Shobu, K. Fracture strength of melt-infiltrated SiC-mullite composite. J. Mater. Sci. 2004, 39, 3751–3755. [Google Scholar] [CrossRef]
- Barsoum, M.W.; El-Raghy, T.; Ali, M. Processing and characterization of Ti2AlC, Ti2AlN, and Ti2AlC0.5N0.5. Metall. Mater. Trans. A 2000, 31, 1857–1865. [Google Scholar] [CrossRef]
- Tadmor, Z. Molecular orientation in injection molding. J. Appl. Polym. Sci. 1974, 18, 1753–1772. [Google Scholar] [CrossRef]
- Gogos, C.G.; Huang, C.-F.; Schmidt, L.R. The process of cavity filling including the fountain flow in injection molding. Polym. Eng. Sci. 1986, 26, 1457–1466. [Google Scholar] [CrossRef]
- Marchioli, C.; Fantoni, M.; Soldati, A. Orientation, distribution, and deposition of elongated, inertial fibers in turbulent channel flow. Phys. Fluids 2010, 22, 033301. [Google Scholar] [CrossRef]
- Amini, S.; Barsoum, M.W.; El-Raghy, T. Synthesis and Mechanical Properties of Fully Dense Ti2SC. J. Am. Ceram. Soc. 2007, 90, 3953–3958. [Google Scholar] [CrossRef]
- El-Raghy, T.; Zavaliangos, A.; Barsoum, M.W.; Kalidindi, S.R. Damage Mechanisms around Hardness Indentations in Ti3SiC2. J. Am. Ceram. Soc. 2005, 80, 513–516. [Google Scholar] [CrossRef]
- Zhou, A.G.; Barsoum, M.W.; Basu, S.; Kalidindi, S.; Elraghy, T. Incipient and regular kink bands in fully dense and 10 vol.% porous Ti2AlC. Acta Mater. 2006, 54, 1631–1639. [Google Scholar] [CrossRef]
- Niihara, K. A fracture mechanics analysis of indentation-induced Palmqvist crack in ceramics. J. Mater. Sci. Lett. 1983, 2, 221–223. [Google Scholar] [CrossRef]
- Liang, K.M.; Orange, G.; Fantozzi, G. Evaluation by indentation of fracture toughness of ceramic materials. J. Mater. Sci. 1990, 25, 207–214. [Google Scholar] [CrossRef]
- Hettinger, J.D.; Lofland, S.E.; Finkel, P.; Meehan, T.; Palma, J.; Harrell, K.; Gupta, S.; Ganguly, A.; El-Raghy, T.; Barsoum, M.W. Electrical transport, thermal transport, and elastic properties of M2AlC (M = Ti, Cr, Nb, and V). Phys. Rev. B 2005, 72, 115120. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Zhou, Y. Solid-Liquid Reaction Synthesis and Simultaneous Densification of Polycrystalline Ti2AlC. Z. Met. 2002, 93, 66–71. [Google Scholar] [CrossRef]
- Bai, Y.; He, X.; Li, Y.; Zhu, C.; Zhang, S. Rapid synthesis of bulk Ti2AlC by self-propagating high temperature combustion synthesis with a pseudo-hot isostatic pressing process. J. Mater. Res. 2009, 24, 2528–2535. [Google Scholar] [CrossRef] [Green Version]
- Barsoum, M.W.; Brodkin, D.; El-Raghy, T. Layered machinable ceramics for high temperature applications. Scr. Mater. 1997, 36, 535–541. [Google Scholar] [CrossRef]
Samples | Hardness (GPa) | Apparent KIC (MPa·m1/2) | ||||
---|---|---|---|---|---|---|
HV1 | HV5 | HV10 | HV20 | HV30 | ||
Monolithic | 6.14 (±0.31) | 5.82 (±0.35) | 6.16 (±0.45) | 5.92 (±0.49) | 5.87 (±0.54) | 10.04 (±0.47) |
5 vol.% N720 | N/A | N/A | 6.67 (±0.59) | 6.17 (±0.15) | 6.13 (±0.32) | N/A |
10 vol.% N610 | 6.21 (±0.77) | 6.17 (±0.34) | 5.95 (±0.43) | N/A | 5.79 (±0.32) | N/A |
20 vol.% N720 | 5.51 (±0.39) | 5.89 (±0.38) | 5.52 (±0.34) | 5.62 (±0.35) | 5.39 (±0.16) | 7.90 (±0.66) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Badie, S.; Gabriel, R.; Sebold, D.; Vaßen, R.; Guillon, O.; Gonzalez-Julian, J. Injection Molding and Near-Complete Densification of Monolithic and Al2O3 Fiber-Reinforced Ti2AlC MAX Phase Composites. Materials 2021, 14, 3632. https://doi.org/10.3390/ma14133632
Badie S, Gabriel R, Sebold D, Vaßen R, Guillon O, Gonzalez-Julian J. Injection Molding and Near-Complete Densification of Monolithic and Al2O3 Fiber-Reinforced Ti2AlC MAX Phase Composites. Materials. 2021; 14(13):3632. https://doi.org/10.3390/ma14133632
Chicago/Turabian StyleBadie, Sylvain, Rimy Gabriel, Doris Sebold, Robert Vaßen, Olivier Guillon, and Jesus Gonzalez-Julian. 2021. "Injection Molding and Near-Complete Densification of Monolithic and Al2O3 Fiber-Reinforced Ti2AlC MAX Phase Composites" Materials 14, no. 13: 3632. https://doi.org/10.3390/ma14133632
APA StyleBadie, S., Gabriel, R., Sebold, D., Vaßen, R., Guillon, O., & Gonzalez-Julian, J. (2021). Injection Molding and Near-Complete Densification of Monolithic and Al2O3 Fiber-Reinforced Ti2AlC MAX Phase Composites. Materials, 14(13), 3632. https://doi.org/10.3390/ma14133632