Sequential Processing of Cold Gas Sprayed Alloys by Milling and Deep Rolling
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cold Gas Sprayed Coatings
2.2. Post Processing
2.2.1. Milling
2.2.2. Deep Rolling
2.3. Further Devices
3. Results
3.1. Inital State of CS Coatings
3.2. Milling
3.3. Deep Rolling
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ae | (mm) | width of cut |
ap | (mm) | depth of cut |
db | (mm) | tool diameter |
Fa | (N) | active force |
Fr, Fr, theor. | (N) | deep rolling force, theoretical deep rolling force |
Fx, Fy | (N) | X- and Y-force components |
fpeak | (Hz) | frequency |
n | (min−1) | spindle speed |
pr | (bar) | deep rolling pressure |
R2 | (–) | determination coefficient |
Ra, Rz | (µm) | surface roughness (profile-based) |
Sa, Sz | (µm) | surface roughness (areal) |
sFa | (N) | standard deviation of the mean of Fa |
so | (mm) | step over |
vc | (m ∙ min−1) | cutting speed |
vf | (mm/min) | feed velocity |
vr | (mm/min) | rolling speed vr |
Wa | (µm) | waviness |
x, y, z | (µm) or (mm) | distance in different coordinate directions; z: distance from the surface |
σ | (various) | standard deviation |
References
- Schmidt, M.; Merklein, M.; Bourell, D.; Dimitrov, D.; Hausotte, T.; Wegener, K.; Overmeyer, L.; Vollertsen, F.; Levy, G.N. Laser based additive manufacturing in industry and academia. CIRP Ann. 2017, 66, 561–583. [Google Scholar] [CrossRef]
- Thompson, M.K.; Moroni, G.; Vaneker, T.; Fadel, G.; Campbell, R.I.; Gibson, I.; Bernard, A.; Schulz, J.; Graf, P.; Ahuja, B.; et al. Design for Additive Manufacturing: Trends, opportunities, considerations, and constraints. CIRP Ann. 2016, 65, 737–760. [Google Scholar] [CrossRef] [Green Version]
- Bourell, D.; Kruth, J.P.; Leu, M.; Levy, G.; Rosen, D.; Beese, A.M.; Clare, A. Materials for additive manufacturing. CIRP Ann. 2017, 66, 659–681. [Google Scholar] [CrossRef]
- Sampath, S.; Jiang, X.Y.; Matejicek, J.; Prchlik, L.; Kulkarni, A.; Vaidya, A. Role of thermal spray processing method on the microstructure, residual stress and properties of coatings: An integrated study for Ni–5 wt.%Al bond coats. Mater. Sci. Eng. A 2004, 364, 216–231. [Google Scholar] [CrossRef]
- Villa, M.; Dosta, S.; Guilemany, J.M. Optimization of 316L stainless steel coatings on light alloys using Cold Gas Spray. Surf. Coat. Technol. 2013, 235, 220–225. [Google Scholar] [CrossRef]
- Coddet, P.; Verdy, C.; Coddet, C.; Debray, F.; Lecouturier, F. Mechanical properties of thick 304L stainless steel deposits processed by He cold spray. Surf. Coat. Technol. 2015, 277, 74–80. [Google Scholar] [CrossRef]
- Rokni, M.R.; Nutt, S.R.; Widener, C.A.; Champagne, V.K.; Hrabe, R.H. Review of Relationship between Particle Deformation, Coating Microstructure, and Properties in High-Pressure Cold Spray. J. Spray Technol. 2017, 26, 1308–1355. [Google Scholar] [CrossRef]
- Grujicic, M.; Zhao, C.L.; DeRosset, W.S.; Helfritch, D. Adiabatic shear instability based mechanism for particles/substrate bonding in the cold-gas dynamic-spray process. Mater. Des. 2004, 25, 681–688. [Google Scholar] [CrossRef]
- van Steenkiste, T.; Smith, J.R. Evaluation of Coatings Produced via Kinetic and Cold Spray Processes. J. Spray Technol. 2004, 13, 274–282. [Google Scholar] [CrossRef]
- Marx, S.; Paul, A.; Köhler, A.; Hüttl, G. Cold Spraying: Innovative Layers for New Applications. J. Spray Technol. 2006, 15, 177–183. [Google Scholar] [CrossRef]
- Yin, S.; Cizek, J.; Cupera, J.; Hassani, M.; Luo, X.; Jenkins, R.; Xie, Y.; Li, W.; Lupoi, R. Formation conditions of vortex-like intermixing interfaces in cold spray. Mater. Des. 2021, 200, 109444. [Google Scholar] [CrossRef]
- Papyrin, A. Cold Spray Technology, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2007; ISBN 9780080451558. [Google Scholar]
- Gärtner, F.; Stoltenhoff, T.; Schmidt, T.; Kreye, H. The Cold Spray Process and Its Potential for Industrial Applications. J. Spray Technol. 2006, 15, 223–232. [Google Scholar] [CrossRef]
- Irissou, E.; Legoux, J.-G.; Ryabinin, A.N.; Jodoin, B.; Moreau, C. Review on Cold Spray Process and Technology: Part I—Intellectual Property. J. Spray Technol. 2008, 17, 495–516. [Google Scholar] [CrossRef] [Green Version]
- Champagne, V.K. The Cold Spray Materials Deposition Process: Fundamentals and Applications; Woodhead Publishing: Sawston, UK, 2007; ISBN 9781420066708. [Google Scholar]
- AL-Mangour, B.; Mongrain, R.; Irissou, E.; Yue, S. Improving the strength and corrosion resistance of 316L stainless steel for biomedical applications using cold spray. Surf. Coat. Technol. 2013, 216, 297–307. [Google Scholar] [CrossRef]
- Liu, T.; Leazer, J.D.; Brewer, L.N. Particle deformation and microstructure evolution during cold spray of individual Al-Cu alloy powder particles. Acta Mater. 2019, 168, 13–23. [Google Scholar] [CrossRef]
- Ogawa, K.; Ito, K.; Ichimura, K.; Ichikawa, Y.; Ohno, S.; Onda, N. Characterization of Low-Pressure Cold-Sprayed Aluminum Coatings. J. Spray Technol. 2008, 17, 728–735. [Google Scholar] [CrossRef]
- Schulze, V.; Bleicher, F.; Groche, P.; Guo, Y.B.; Pyun, Y.S. Surface modification by machine hammer peening and burnishing. CIRP Ann. 2016, 65, 809–832. [Google Scholar] [CrossRef]
- Wohlfahrt, H. The Influence of Peening Conditions on the Resulting Distribution of Residual Stress. In Proceedings of the Second International Conference on Shot Peening, Chicago, IL, USA, 14–17 May 1984; pp. 316–331. [Google Scholar]
- Bleicher, F.; Lechner, C.; Habersohn, C.; Kozeschnik, E.; Adjassoho, B.; Kaminski, H. Mechanism of surface modification using machine hammer peening technology. CIRP Ann. Manuf. Technol. 2012, 1, 375–378. [Google Scholar] [CrossRef]
- Breidenstein, B.; Brenne, F.; Wu, L.; Niendorf, T.; Denkena, B. Effect of Post-Process Machining on Surface Properties of Additively Manufactured H13 Tool Steel. HTM J. Heat Treat. Mater. 2018, 73, 173–186. [Google Scholar] [CrossRef]
- Kloos, K.H.; Adelmann, J. Schwingfestigkeitssteigerung durch Festwalzen. Mater. Werkst. 1988, 19, 15–23. [Google Scholar] [CrossRef]
- Broszeit, E. Grundlagen der Schwingfestigkeitssteigerung durch Fest- und Glattwalzen. Mater. Werkst. 1984, 15, 416–420. [Google Scholar] [CrossRef]
- Breidenstein, B.; Denkena, B.; Meyer, K.; Prasanthan, V. Influence of subsurface properties on the application behavior of hybrid components. Procedia CIRP 2020, 87, 302–308. [Google Scholar] [CrossRef]
- Wielki, N. Potential of deep rolling as a finishing process directly after SLM to generate beneficial surface and subsurface properties: Euspen Conference Proceedings Bilbao June 2019. In Proceedings of the Euspen’ 19th International Conference & Exhibition, Bilbao, Spain, 3–7 June 2019; pp. 370–371. [Google Scholar]
- Meyer, D.; Wielki, N. Internal reinforced domains by intermediate deep rolling in additive manufacturing. CIRP Ann. 2019. [Google Scholar] [CrossRef]
- Sandvik. OSPREY ® 316L for Additive Manufacturing: Datasheet. Available online: https://www.metalpowder.sandvik/siteassets/metal-powder/datasheets/osprey-316l-am-austenitic-stainless-steels.pdf (accessed on 21 October 2020).
- Springer, H.; Baron, C.; Mostaghimi, F.; Poveleit, J.; Mädler, L.; Uhlenwinkel, V. Additive manufacturing of high modulus steels: New possibilities for lightweight design. Addit. Manuf. 2020, 32, 101033. [Google Scholar] [CrossRef]
Fe | Mn | Al | C | Ti | B | Si | P | S | Cr | Ni | Mo | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
316L 1 | 62–68 | ≤2 | 0 | ≤0.03 | 0 | 0 | ≤1 | ≤0.045 | ≤0.03 | 16–18 | 10–14 | 2–3 |
FeTiB 2 | 82.4 | 0 | 0 | 0 | 5.6 | 12.0 | 0 | 0 | 0 | 0 | 0 | 0 |
FeMnAlC 2 | 59.1 | 32.7 | 4.6 | 3.6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Process gas | N2 | |
Gas pressure | 50 bar | |
Gas temperature | 1000 °C | |
Standoff distance | 30 mm | |
Gun travel speed | 250 mm/s | |
Step distance | 1 mm | |
Feeding rate | 2 kg/h | |
Nozzle path | Zigzag | |
Layers | 316L and FeMnAlC: | 6 |
FeTiB: | 25 or 30 | |
Particle size | 316L: | 15–38 µm |
FeTiB: | 15–40 µm | |
FeMnAlC: | 15–40 µm |
Component | Values | ||
---|---|---|---|
Tool diameter db (mm) | 6 (HG 6) | ||
Deep rolling pressure pr (bar) | 100 | 200 | 400 |
Measured rolling Force Fr (N) | 240 ± 5 | 492 ± 9 | 996 ± 13 |
Step over so (mm) | 0.1 | ||
Rolling speed vr (mm/min) | 100 | ||
Lubricant | 8%-emulsion | ||
Size of deep rolled area (mm2) | varied ≥ 7 × 7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meyer, D.; Schönemann, L.; Mensching, N.; Uhlenwinkel, V.; Karpuschewski, B. Sequential Processing of Cold Gas Sprayed Alloys by Milling and Deep Rolling. Materials 2021, 14, 3699. https://doi.org/10.3390/ma14133699
Meyer D, Schönemann L, Mensching N, Uhlenwinkel V, Karpuschewski B. Sequential Processing of Cold Gas Sprayed Alloys by Milling and Deep Rolling. Materials. 2021; 14(13):3699. https://doi.org/10.3390/ma14133699
Chicago/Turabian StyleMeyer, Daniel, Lars Schönemann, Nicole Mensching, Volker Uhlenwinkel, and Bernhard Karpuschewski. 2021. "Sequential Processing of Cold Gas Sprayed Alloys by Milling and Deep Rolling" Materials 14, no. 13: 3699. https://doi.org/10.3390/ma14133699
APA StyleMeyer, D., Schönemann, L., Mensching, N., Uhlenwinkel, V., & Karpuschewski, B. (2021). Sequential Processing of Cold Gas Sprayed Alloys by Milling and Deep Rolling. Materials, 14(13), 3699. https://doi.org/10.3390/ma14133699