Determination of the PIC700 Ceramic’s Complex Piezo-Dielectric and Elastic Matrices from Manageable Aspect Ratio Resonators
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Material Coefficient Determination
2.3. Finite Element Modelling
3. Results and Discussion
3.1. Measurements and Calculation of the Piezoelectric, Elastic, and Dielectric Material Coefficients
3.1.1. Shear Resonance of a, Non-Standard, Thickness-Poled and Longitudinally Excited Shear Plate
3.1.2. Resonances of a Thickness-Poled and Excited Thin Disk
- (a)
- Extensional radial resonance of the disk
- (b)
- Extensional thickness resonance of the disk
3.1.3. Longitudinal Resonance of a Longitudinally Poled and Excited Cylinder
3.1.4. Combined Determination of the Remaining Material Coefficients
- (a)
- from the inversion of the matrices, we have the following expression:
- (b)
- knowing cE11, cE12, and cE13, we can make use of Equation (62) in [8] to obtain e31 from the following:
- (c)
- by the relationships between the coefficients, we can calculate h31 using the following expression:
- (d)
- making use of Equation (29) in [8], we can obtain sD13 from the following:
3.2. Validation of the Piezoelectric, Elastic, and Dielectric Material Coefficients
3.2.1. Meaningful Losses
3.2.2. Finite Element Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ditas, P.; Hennig, E.; Kynast, A. Lead-Free Piezoceramic Materials for Ultrasonic Applications. Sensors and Measuring Systems 2014; 17. ITG/GMA Symposium. NurembergGer. 2014, pp. 1–4. Available online: https://ieeexplore.ieee.org/abstract/document/6856648 (accessed on 8 June 2021).
- Rödel, J.; Webber, K.; Dittmer, R.; Jo, W.; Kimura, M.; Damjanovic, D. Transferring lead-free piezoelectric ceramics into application. J. Eur. Ceram. Soc. 2015, 35, 1659–1681. [Google Scholar] [CrossRef]
- Pardo, L.; García, A.; Montero de Espinosa, F.; Brebøl, K. Shear resonance mode decoupling to determine the characteristic matrix of piezoceramics for 3-D modeling. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2011, 58, 646–657. [Google Scholar] [CrossRef]
- Fenu, N.; Giles-Donovan, N.; Sadiq, M.R.; Cochran, S. Full Set of Material Properties of Lead-Free PIC 700 for Transducer Designers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2021, 68, 1797–1807. [Google Scholar] [CrossRef] [PubMed]
- Holland, R. Representation of dielectric, elastic and piezoelectric losses by complex coefficients. IEEE Trans. Sonics Ultrason. 1967, 14, 18–20. [Google Scholar] [CrossRef]
- Gonzalez, A.M.; Garcia, Á.; Benavente-Peces, C.; Pardo, L. Revisiting the characterization of the losses in piezoelectric materials. Materials 2016, 9, 72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meeke, T.R. Publication and proposed revision of ANSI/IEEE standard 176-1987. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 1996, 43, 717–772. [Google Scholar] [CrossRef]
- European Standard EN 50324-2. Piezoelectric Properties of Ceramic Materials and Components—Part 2: Methods of Measurement—Low Power; CENELEC European Committee for Electrotechnical Standardization: Brussels, Belgium, 2002. [Google Scholar]
- Fialka, J.; Beneš, P. Comparison of Methods for the Measurement of Piezoelectric Coefficients. IEEE Trans. Instrum. Meas. 2013, 62, 1047–1057. [Google Scholar] [CrossRef]
- Algueró, M.; Alemany, C.; Pardo, L.; Gonzalez, A.M. A method for obtaining the full set of linear electric, mechanical and electro-mechanical coefficients, and all related losses, of a piezoelectric ceramic. J. Am. Ceram. Soc. 2004, 87, 209–215. [Google Scholar] [CrossRef]
- Pardo, L.; Algueró, M.; Brebøl, K. Iterative method in the characterization of piezoceramics of industrial interest. Adv. Sci. Technol. 2006, 45, 2448–2458. [Google Scholar] [CrossRef] [Green Version]
- Pardo, L.; Garcia, A.; Brebøl, K.; Piazza, D.; Galassi, C. Key Issues in the matrix characterization of porous PZT based ceramics with Morphotropic Phase Boundary Composition. J. Electroceram. 2007, 19, 413–418. [Google Scholar] [CrossRef] [Green Version]
- Pardo, L.; Algueró, M.; Brebøl, K. Resonance modes in standard piezoceramic shear geometry: A discussion based on Finite Element Analysis. J. Phys. Fr. 2005, 128, 207–211. [Google Scholar] [CrossRef] [Green Version]
- Pardo, L.; Montero de Espinosa, F.; Brebøl, K. Study by laser interferómetry of the resonance modes of the shear plate used in the Standards characterization of piezoceramics. J. Electroceram. 2007, 19, 437–442. [Google Scholar] [CrossRef]
- Hikita, K.; Hiruma, Y.; Nagata, H.; Takenaka, T. Shear-Mode Piezoelectric Properties of KNbO3-Based Ferroelectric Ceramics. Jpn. J. Appl. Phys. 2009, 48, 07GA05. [Google Scholar] [CrossRef]
- Alemany, C.; Pardo, L.; Jimenez, B.; Carmona, F.; Mendiola, J.; Gonzalez, A. Automatic iterative evaluation of complex material constants in piezoelectric ceramics. J. Phys. D Appl. Phys. 1994, 27, 148. [Google Scholar] [CrossRef]
- Alemany, C.; Gonzalez, A.M.; Pardo, L.; Jimenez, B.; Carmona, F.; Mendiola, J. Automatic determination of complex constants of piezoelectric lossy materials in the radial mode. J. Phys. D Appl. Phys. 1995, 28, 945–956. [Google Scholar] [CrossRef]
- Pardo, L.; Brebøel, K. Properties of Ferro-Piezoelectric Ceramic Materials in the Linear Range: Determination from Impedance Measurements at Resonance. In Multifunctional Polycrystalline Ferroelectric Materials; Processing and Properties. Springer Series in Materials Science vol. 140; Pardo, L., Ricote, J., Eds.; Springer: Dordrecht, The Netherlands, 2011; pp. 617–649. [Google Scholar] [CrossRef] [Green Version]
- PI Ceramics Piezoceramic Materials Datasheet. Available online: https://www.piceramic.com/en/products/piezoelectric-materials/ (accessed on 8 June 2021).
- Determination of Piezoelectric, Dielectric and Elastic Complex Coefficients in the Linear Range from the Electromechanical Resonance Modes of Poled Ferroelectric Ceramics. Available online: http://icmm.csic.es/gf2/medidas.htm (accessed on 8 June 2021).
- Pardo, L.; Reyes-Montero, A.; García, Á.; Jacas-Rodríguez, A.; Ochoa, P.; González, A.M.; Jiménez, F.J.; Vázquez-Rodríguez, M.; Villafuerte-Castrejón, M.E. A Modified Iterative Automatic Method for Characterization at Shear Resonance: Case Study of Ba0.85Ca0.15Ti0.90Zr0.10O3 Eco-Piezoceramics. Materials 2020, 13, 1666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ochoa-Perez, P.; Gonzalez-Crespo, A.M.; Garcia-Lucas, A.; Jimenez-Martinez, F.J.; Vazquez-Rodriguez, M.; Pardo, L. FEA study of shear mode decoupling in non-standard thin plates of a lead-free piezoelectric ceramic. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2021, 68, 325–333. [Google Scholar] [CrossRef] [PubMed]
- Sherrit, S. An accurate equivalent circuit for the unloaded piezoelectric vibrator in the thickness mode. J. Phys. D Appl. Phys. 1997, 30, 2354. [Google Scholar] [CrossRef]
- Pérez, N.; Buiochi, F.; Brizzotti Andrade, M.A.; Adamowski, J.C. Numerical Characterization of Piezoceramics Using Resonance Curves. Materials 2016, 9, 71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Erhart, J.; Půlpán, P.; Pustka, M. Piezoelectric Ceramic Resonators; Topics in Mining, Metallurgy and Materials Engineering; Springer International Inc. Publishing: Cham, Germany, 2017; pp. 61–66. [Google Scholar]
- Pérez, N.; García, A.; Riera, E.; Pardo, L. Electromechanical Anisotropy at the Ferroelectric to Relaxor Transition of (Bi0.5Na0.5)0.94Ba0.06TiO3 Ceramics from the Thermal Evolution of Resonance Curves. Appl. Sci. 2018, 8, 121. [Google Scholar] [CrossRef] [Green Version]
sE,Dαβ= s′ + is″/ 10−12·m2·N−1 | sE11 | sE12 | sE13 | sE33 | sE55 | sE66 | sD11 | sD12 | sD13 | sD33 | sD55 | sD66 |
s′ | 8.5998 | −2.0200 | 1.673 | 8.9803 | 20.7702 | 21.24 | 8.5219 | −2.0979 | 2.004 | 7.4639 | 18.6114 | 21.24 |
s″ | −0.0663i | +0.0154i | −0.012i | −0.114i | −0.2550i | −0.163i | −0.0577i | +0.024i | −0.03i | −0.0486i | −0.2322i | −0.163i |
cE,Dαβ= c′ + ic″/ 1010 N·m−2 | cE11 | cE12 | cE13 | cE33 | cE55 | cE66 | cD11 | cD12 | cD13 | cD33 | cD55 | cD66 |
c′ | 13.102 | 3.686 | −3.127 | 12.299 | 4.8139 | 4.708 | 14.056 | 4.641 | −5.019 | 16.092 | 5.3722 | 4.708 |
c″ | +0.107i | +0.034i | −0.044i | −0.164i | +0.0591i | +0036i | +0.043i | −0.029i | +0.049i | +0.033i | +0.067i | +0036i |
diα = d′ + id″ /10−12C·N−1 | d31 | d33 | d15 | eiα = e′ + ie″ /C·m−2 | e31 | e33 | e15 |
d′ | −21.1408 | 89.685 (**) | 102.9606 | e′ | −6.357 | 11.0862 | 4.9590 |
d″ | +1.4046i | −3.162i | −4.4218i | e″ | +0.265i | +0.5252i | −0.1520i |
hiα = h′ + ih″ /108 V·m−2 | h31 | h33 | h15 | giα = g′ + ig″ /mV·N−1 | g31 | g33 | g15 |
h′ | −15.173 | 26.4709 | 11.2442 | g′ | −3.6952 | 15.632 | 20.9383 |
h″ | −0.408i | +0.5634i | +0.5044i | g″ | +0.1393i | −0.0180i | +0.6777i |
εS,Tik = ε′ + iε″ /ε0 | εS11 | εS33 | εT11 | εT33 | βS,Tik = β′+iβ″ /10−4/ε0 | βS11 | βS33 | βT11 | βT33 | Poisson´s Ratio (σP) |
ε′ | 554.02 | 472.31 | 496.43 | 648.00 | β′ | 17.948 | 21.073 | 20.029 | 15.414 | 0.235 |
ε″ | −41.78i | −32.46i | −37.54i | −22.1i | β″ | +1.353i | +1.448i | +1.515i | +0.526i | +0.00002i |
kx = k′ + ik″ | k31 | k33 | k15 | kp | kt | Nx /kHz·mm | N33 | N15 | Np | Nt |
k′ | 0.07632 | 0.41102 | 0.32239 | 0.14737 | 0.43482 | 2231.47 | 1480.72 | 3021.04 | 2381.00 | |
k″ | −0.00405i | −0.00504i | −0.00028i | −0.00783i | −0.00776i |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pardo, L.; García, Á.; Schubert, F.; Kynast, A.; Scholehwar, T.; Jacas, A.; Bartolomé, J.F. Determination of the PIC700 Ceramic’s Complex Piezo-Dielectric and Elastic Matrices from Manageable Aspect Ratio Resonators. Materials 2021, 14, 4076. https://doi.org/10.3390/ma14154076
Pardo L, García Á, Schubert F, Kynast A, Scholehwar T, Jacas A, Bartolomé JF. Determination of the PIC700 Ceramic’s Complex Piezo-Dielectric and Elastic Matrices from Manageable Aspect Ratio Resonators. Materials. 2021; 14(15):4076. https://doi.org/10.3390/ma14154076
Chicago/Turabian StylePardo, Lorena, Álvaro García, Franz Schubert, Antje Kynast, Timo Scholehwar, Alfredo Jacas, and José F. Bartolomé. 2021. "Determination of the PIC700 Ceramic’s Complex Piezo-Dielectric and Elastic Matrices from Manageable Aspect Ratio Resonators" Materials 14, no. 15: 4076. https://doi.org/10.3390/ma14154076
APA StylePardo, L., García, Á., Schubert, F., Kynast, A., Scholehwar, T., Jacas, A., & Bartolomé, J. F. (2021). Determination of the PIC700 Ceramic’s Complex Piezo-Dielectric and Elastic Matrices from Manageable Aspect Ratio Resonators. Materials, 14(15), 4076. https://doi.org/10.3390/ma14154076