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Abstract: The paper reports the results of a comparative analysis of the experimental shear capacity
obtained from the tests of reinforced concrete beams with various static schemes, loading modes
and programs, and the shear capacity calculated using selected models. Single-span and two-
span reinforced concrete beams under monotonic and cyclic loads were considered in the analysis.
The computational models were selected based on their application to engineering practice, i.e.,
the approaches implemented in the European and US provisions. Due to the changing strength
characteristics of concrete, the analysis was also focused on concrete contribution in the shear capacity
of reinforced concrete beams in the cracked phase and on the angle of inclination of diagonal struts.
During the laboratory tests, a modern ARAMIS digital image correlation (DIC) system was used for
tracking the formation and development of diagonal cracks.

Keywords: reinforced concrete beams; support zone; shear load capacity; calculation models; shear
reinforcement; cyclic load

1. Introduction

The issue of the load-bearing capacity of reinforced concrete (RC) beams in the support
zone, though extensively studied for years, still lacks proper understanding [1]. The
problem is complex. Due to a complex state of stresses in the support zone, the primary
stress trajectory is not parallel to the axis of the element. The problem becomes even more
complex when reinforced concrete is used as a construction material. Reinforced concrete
is a conglomerate composed of two interacting materials, concrete and steel, with different
properties and the concrete matrix consists of various size aggregate particles randomly
distributed in the cement paste. High heterogeneity of the material causes its parameters
to rely on multiple factors. At service loads, reinforced concrete members go through
two different stages, uncracked and cracked, which alter the state of internal stresses,
leading to a change in concrete behavior. All this renders the description of RC member
behavior under load a very challenging task and requires the adoption of many simplifying
assumptions that must be verified experimentally. Considering that concrete and steel
with increased strengths are more commonly used today (high and ultra-high-strength
concrete and high-strength and high-ductility steel), the behavior description, particularly
in the support zones, is invariably relevant. Determining maximum values of major
tensile stresses occurring in the support zone can be limited, with some simplifications, to
determining shear stresses in the neutral axis. For this reason, the bearing capacity is most
often referred to as shear capacity.

Solving the shear problem theoretically seems virtually impossible, hence the need
for calculation models that can describe, as precisely as possible, the behavior of the
support zones of RC beams under load. Theoretical and experimental studies show (e.g.,
the works of R. Walther [2]) that shear capacity depends both on the shear force and
the bending moment. The separation of these impacts greatly simplifies the design but
fails to fully reflect the actual bearing capacity of the RC beam support zone. The topic
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remains open and needs to be pursued despite a long-term research effort for developing a
general computational model able to faithfully describe the support zone behavior in RC
beams under load. This need is evidenced by continuous changes introduced or planned
to be introduced in standard recommendations, for example, in fib Model Code 2010
(MC2010) [3] or the US provisions, ACI 318-19 [4].

Advances in the use of RC structures, bold realizations of engineering and monu-
mental structures, and their mass scale push engineers and researchers to find savings
in the consumption of concrete and steel. As a result, concrete and steel technology is
improving [5–7]. Targeted additives and admixtures [8], higher strength properties of steel
and concrete create the need to update the approach to safe dimensioning of RC elements
based on experimentally verified theoretical assumptions [9].

This work aims to present a comparative analysis of the shear capacity of RC beams
with various static schemes and loading modes and programs obtained experimentally
and computationally from selected models. It is important to note here that both the static
scheme and the beam reinforcement were designed to ensure shear failure. The results
obtained were the basis for determining the experimental shear capacity of the beams.
Comparative analysis was based on numerical models chosen to fit different theoretical
assumptions.

The analysis uses test results for single-span and double-span reinforced concrete
beams loaded to failure in a monotonic and cyclic manner. The computational models
were selected in the context of their application to engineering practice, including the
approaches implemented in the European and US provisions. Due to the changing strength
characteristics of structural concrete, the analysis was designed to include the concrete
contribution in the shear capacity of cracked RC beams. The adopted testing program
for single span simply supported beams and those with two spans under monotonic
and variable loads was assumed to allow establishing the element that would be a high-
credibility numerical model verification pattern. During the laboratory loading tests, a
modern ARAMIS digital image correlation (DIC) system was used to allow continuous
tracking of displacements and crack (incl. diagonal cracks) formation and development.

2. Materials and Methods
2.1. Test Elements

The tests were conducted on 11 RC beams loaded to shear failure. The beams were
made from concrete in a prefabrication plant to the designed class C40/50 and steel B500SP
with a characteristic yield strength fyk = 500 MPa and class C. The designed concrete class
was used for the production of reinforced concrete bridge members. The composition
of the developed mixture was provided by an automatic concrete batching plant. The
tested beams differed in length, cross-sectional dimensions, reinforcement structure, loading
program and static scheme. The list of elements with the adopted symbols is presented in
Table 1. The letter M in the beam symbol indicates monotonic loading increasing to failure,
and the letter C—low-cycle loading. The structure of the reinforcement is shown in Figure 1.

Table 1. Beam reinforcement.

Symbol
Dimension [m] Longitudinal

Reinforcement [mm] Stirrups
[mm/m]

Number of
Elements [pcs]

Static
Scheme

Length Cross-Section Top Bottom

S2M-1 to 4 3.30 0.12 × 0.30 2φ8 3φ12 + 2φ14 φ4.5/0.20 4 Single-span
S2C-1,2 3.30 0.12 × 0.30 2φ8 3φ12 + 2φ14 φ4.5/0.20 2 Single-span
B3C-1,2 6.30 0.12 × 0.30 2φ12 3φ12 + 2φ14 φ4.5/0.30 2 Two-span

BL-02-M-1,3,4 6.60 0.20 × 0.45 2φ10 4φ20 + 2φ20 φ6.0/0.50 3 Single-span
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Figure 1. Reinforcement in beams (a) S2, (b) B3, (c) BL-02.

The cross-sections of the longitudinal and shear reinforcement used in the tested
elements, along with the calculated reinforcement ratio, are summarized in Table 2. To ob-
tain shear failure, the reinforcement system had to provide significant bending capacity
at relatively low shear capacity. For this purpose, a relatively high ratio of longitudinal
reinforcement (0.02) was assumed (bars in the tension zone), and the spacing of stirrups
approximately met the minimum shear reinforcement ratio, which according to Eurocode 2
is 0.0011.
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Table 2. Summary of beam areas and longitudinal and shear reinforcement ratio.

Beams Bottom Bars
As1 [cm2]

Average Bottom
Reinforcement Ratio

ρAs1

Top Bars
As2 [cm2]

Shear
Reinforcement

Asw [cm2]

Shear
Reinforcement

Ratio ρw

S2M-1 to 4 6.47 0.0212 1.01 0.32 0.0013
S2C-1,2 6.47 0.0212 1.01 0.32 0.0013
B3C-1,2 4.52 0.0148 2.26 0.32 0.0009

BL-02-M-1,3,4 18.85 0.0235 1.57 0.32 0.0009

The average reinforcement ratio given in Table 2 results from the actual dimensions
of the beam sections and the actual arrangement of the bars, which were obtained from
the structural survey, illustrated, for example, in Figure 2. The survey was performed after
loading the beam to failure and crushing it outside of the failure zone. Measurements
were performed to determine the actual location of the centers of gravity of the tension
reinforcement d1 and compression reinforcement d2, the effective depth of the section d
and the lever arm of internal forces z.

Figure 2. Survey of reinforcement distribution in the tested beams (a) view of the inside of the beam, and (b) the beam cross
section with the actual location of the bars.

In the subsequent analyses, for a given type of beam reinforcement structure, averaged
results of the reinforcement ratio were used. Due to different stirrup spacing on individual
sections of the beam, the shear reinforcement ratio (Table 2) was determined for the support
zone (ρw).

2.2. Test Setups

Figure 3 shows the test setups attached to the testing facility for single-span and
double-span beams with span lengths of 3.00 m and 6.00 m, measured in the axes of the
supports. The load programs were feasible as the test facility was equipped with a power
supply system and a possibility of programming the load provided by the controller and a
set of actuators. The load was applied using hydraulic actuators denoted as S1—1000 kN,
S2 and S3—400 kN, and S4—600 kN.
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Figure 3. Schematic view of the test setups for beams (a) S2M, S2C, B3C, (b) BL-02M.

In line with the adopted static test scheme, two types of supports, point and wide,
were used, as shown in Figure 4. Point supports were made in the form of steel cylinders
welded (non-sliding support) or not (sliding support) to a flat bar (beams BL-02M). The
support called the wide support was made in the form of sliding and non-sliding bridge
spherical bearings (beams S2M, C and B3).
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Figure 4. Types of used supports: (a) sliding point support, (b) non-sliding point support, (c) wide (bearing) sliding support,
(d) wide non-sliding support.

2.3. Static Scheme and Load Program

Two static schemes were implemented for testing, as shown in Figure 5. Beams
denoted S2M-1 and 2, S2C-1 and 2 (Figure 5a), BL-02M-1, 3 and 4 (Figure 5b,c) were tested
as statically determinate single-span beams with a span in the support axes of 3.00 m
and 6.00 m, respectively. Beams denoted as B3C-1 and 2 were statically indeterminate
two-span elements (Figure 5d) with an equal span length of 3.00 m. For shear failure, loads
in the form of concentrated forces were applied close to the supports, thereby achieving a
relatively strong influence of the transverse force on capacity against a small influence of
the bending moment. The S2M and S2C beams were loaded using two actuators (S2 and
S3) placed at a distance of 0.60 m from the axis of the supports (Figure 5a). The S2M beams
were loaded to failure with two equal monotonically increasing forces, while the loading
of the S2C beams was low-cyclic (Figure 6a). The beam denoted as BL-02M-1 was loaded
monotonically to failure with one concentrated force (S1) applied at a distance of 0.8 m
from the support axis (Figure 5b), and the beam BL-02M-3 and 4 at a distance of 1.1 m from
the support axis (Figure 5c). The monotonic load was characterized by a constant increase
in force at a rate of 0.40 kN/min until the elements were destroyed.

The two-span beam static scheme was adopted for two elements denoted as B3C-1
and 2. The load consisted of three concentrated forces applied from three actuators, S2, S3
and S4, arranged along the length of the beam as shown in Figure 5d. Variable low-cyclic
loads were applied to S2C-1 and 2 and B3C-1 and 2 beams in three ranges 100,000 cycles
each, while for technical reasons, the force value did not go to zero. The upper values of
the forces in the individual load ranges were assumed successively at levels corresponding
to approximately 0.30; 0.50; and 0.70 of the expected destructive load. Due to the adopted
ranges of forces and hardware capabilities, the load frequencies f ranged from 1 Hz to
0.06 Hz. A list of load ranges for individual beams, along with the frequencies used, is
given in Table 3.
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Figure 5. Static schemes (a) beams S2M and S2C, (b) beam BL-02M-1 (c) beams BL-02M-2 and 3 (d) beams B3C.

Figure 6. Low-cycle load program for beams (a) S2C (b) B3C.

Table 3. Levels and frequencies of individual beams loading.

Beam Range I
[kN]

Frequency
I f [Hz]

Range II
[kN]

Frequency
II f [Hz]

Range III
[kN]

Frequency
III f [Hz]

S2C-1,2 5–30 0.5 5–70 0.5 5–110 0.3
B3C-1,2 15–25 0.25 15–35 0.12 15–55 0.06

Beams S2C-1 and 2 were loaded with two forces acting simultaneously within the
given ranges. Beams B3C-1 and 2 were loaded with three forces (Figure 5d); two on one
span (S2 and S3) and one on the other span (S4). The load on the spans changed sinusoidally
with a phase shift of 1800. The load on individual spans was alternating; during the increase
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in the load on one span, actuators S2 and S3, the other span was unloaded, actuator S4.
Then the situation reversed and during the increase in the load on the span provided by
the S4 actuator, the span loaded with the S2 and S3 actuators was unloaded. The described
loading program is shown in Figure 6b, where the continuous blue line indicates loading
with two forces, and the dashed red line indicates loading with one force. The cyclic
loading programs indicate that although all ranges were intended to be 100,000 cycles, the
last load range was reduced to 300 cycles due to the failure of the beams.

2.4. Test Apparatus

In addition to actuators enabling the implementation of the loading program, mea-
suring equipment was used, which included the HBM measuring set and the DIC system
(ARAMIS) [10,11]. The Hottinger Baldwin Messtechnik measurement set, consisting of
two modular measuring amplifiers and inductive transducers (road sensors), recorded
loads and displacements (Figure 7). The optical measuring system, ARAMIS, [10,11], was
applied to analyze, calculate and document strain fields for the prepared beam surfaces
(Figure 8). Additionally, using the analogue voltage outputs of the load controller, the
entire test apparatus was synchronized, and the automatically set force was used to control
the measurements performed by the HBM and optical systems [12]. This synchronization
enabled assigning deflection results and the strain field image to each force value, which
was also used to control the correctness of the measurements.

Figure 7. HBM measuring set (a) central unit, (b) distance sensor.
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Five displacement sensors with a measuring range of 0.05 m were used for testing the
single-span beams and ten sensors for testing the two-span beams. The sensors were placed
at the beam midspan, under the force application points, and at a distance of ~0.25 m from
the axis of the supports. Beam deflections measured with the HBM measuring set were
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used to verify the deformation results obtained from the optical measuring system. The
deflections read from the sensors to an accuracy of 0.01 mm had the same values.

The DIC system (ARAMIS) is used for non-contact, three-dimensional measurements
of the surface deformation located within the measurement field range. It performs analyses
and calculations and documents strains, allowing a graphical representation of results in a
color scale. The calculations use a series of photos from two digital cameras. The strain
of the pattern put on the side surface of the tested element is identified. The first photo
in the series is taken as a photo of the component before loading and serves as the point
of reference. After taking all the photos, the program compares them by assigning small
square or rectangular planes, called facets, to the tested surface, and finds these facets in
subsequent photos. Owing to the preparation of the tested surface, each facet has one
and unique structure of black points. The system program compares the displacements
of characteristic points (centers of facets). The device uses two-image photogrammetry
for measurements [13]. This allows non-contact measurements that do not interfere with
the loading process. The DIC system (ARAMIS) [11,12] (Figure 8) used in this study was
equipped with two tripods with two cameras each. The system made it possible to measure
strains, spatial deformations and cracks on the side surface of the beams during the entire
loading process on two surfaces measuring 2.00 m × 1.50 m.

Considering the dimensions of the tested elements and the force distribution, the
following measurement fields were adopted:

• for elements S2M and S2C, two tripods of the optical system allowed testing two
beam support surfaces by creating overlapping measurement fields with dimensions
0.30 m × 1.40 m (Figure 9a),

• for BL-02M elements, due to loading with one concentrated force, the measurement
field covered the support zone at the actuator with dimensions of 0.45 m × 1.70 m
and 0.45 m × 1.80 m (Figure 9b,c),

• for double-span elements B3C, two tripods of the optical system were used to cover the
measurement areas of the support zone loaded with two forces and with one force, thus
creating two measurement fields with dimensions of 0.30 m × 1.40 m each (Figure 9d).
The surface of the measurement fields, shown in Figure 9, had to be adequately
prepared before the test by applying a black paint pattern to enable continuous
tracking of strain changes. Strain analyses and calculations were performed on the
prepared measurement fields of the beams after the test ended.

Figure 9. Measuring surfaces of the optical system for beams (a) S2M-1, 2 and S2C-1, 2, (b) BL-02-M-1, (c) BL-02-M-3, 4,
(d) B3C-1, 2 (double-span beams).
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2.5. Additional Tests
2.5.1. Concrete Strength

The class of concrete and its strength characteristics were determined through axial
compression tests (Figure 10) of concrete samples taken during beam manufacture. The
elements were made in battery molds for two or four beams. Six cubic samples with
dimensions 0.15 m × 0.15 m × 0.15 m and three cylinders with a diameter of 0.15 m and a
height of 0.30 m were taken from each concrete mix batch.

Figure 10. (a) Hydraulic press (b) An example image of concrete sample destruction.

Table 4 summarizes the average values of concrete compressive strength fcmCUBE
obtained from the tests of concrete cubes, and fcm—average values of cylindrical strength
of concrete estimated from the tests on cubic samples. Other values given in Table 4 include
the strengths calculated using the formulas given in Eurocode 2 [14]: the characteristic
value of strength on cubic samples—fckCUBE, the characteristic value of the strength of
concrete on cylindrical samples—fck and the average value of axial tensile strength fctm.

Table 4. Basic parameters of concrete.

Beams fcm
CUBE [MPa] fcm [MPa] fck

CUBE [MPa] fck [MPa] fctm [MPa]

Single-span beams
0.12 m × 0.30 m × 3.30 m

S2M-1,2 71.9 57.5 63.9 49.5 4.0
S2M-3,4 74.1 59.3 66.1 51.3 4.1
S2C-1,2 74.1 59.3 66.1 51.3 4.1

Two-span beams
0.12 m × 0.30 m × 6.30 m B3C-1,2 71.2 57.0 63.2 49.0 4.0

Single-span beams
0.20 m × 0.45 m × 6.60 m

BL-02-1
65.2 52.1 57.2 44.1 3.7BL-02-3

BL-02-4

Figure 11 shows an example of a force–strain diagram of six concrete samples for one
series of concrete beams B3C obtained using testXpert software.
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Figure 11. Force–strain relationships for concrete in beams B3C.

2.5.2. Steel Strength

The strength of the steel reinforcing bars used in the beams was determined through
the axial tensile test of shear and longitudinal reinforcement samples (Figure 12). The
reinforcing bar samples were taken during the fabrication of the elements and for control
during the structural survey (Figure 2).

Figure 12. (a) Testing machine (b) An example image of the destruction of a steel sample.

Table 5 shows the results of the average yield stress—tensile strength fm of the rein-
forcing bars used as the longitudinal and shear reinforcement in individual beams. The
table also shows the automatically obtained results of the elasticity modulus—Es and the
calculated characteristic values of the yield strength of the longitudinal reinforcement—fyk
and shear reinforcement fywk.

Table 5. Basic parameters of steel.

Beams fm [MPa] fyk [MPa] fywk [MPa] Es [GPa]

Single-span beams
0.12 m × 0.30 m × 3.30 m

S2M-1,2,3,4

646.0 562.5 559.6 199.7

S2C-1,2

Two-span beams
0.12 m × 0.30 m × 6.30 m

B3C-1
B3C-2

Single-span beams
0.20 m × 0.45 m × 6.60 m

BL-02M-1
BL-02M-3
BL-02M-4
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Due to the high repeatability of the results obtained for a given diameter and between
diameters, the same steel parameters were adopted (Figure 13). The strength of the steel
bars was estimated as the average value of all (about 100) bar axial tensile test results.

Figure 13. Stress–strain curve for bars (a) φ12, (b) φ14.

3. Test Results and Analysis
3.1. Results of Experimental Research

Analysis of the shear capacity of reinforced concrete beams was primarily focused on
the obtained load levels at which the element failed. Based on these levels, the values of
the cross-sectional forces were determined, i.e., the shear force V and the bending moment
M, given in Table 6. The DIC system (ARAMIS) helped determine the angle of inclination
θ of the diagonal compression struts at the moment corresponding to the force destructive
value. The angle was assumed to be equal to the angle of inclination of the diagonal cracks
βr (Figure 14). The inclination angle was measured after the test from the strain maps of
the prepared measurement fields on the side surface of the beams (Figure 9) recorded by
the ARAMIS DIC system. Additionally, due to different geometries of the tested elements,
the values of shear stresses at the neutral axis τ were determined for future comparisons
based on shear forces (Figure 15) at failure, calculated from Formula (1).

τ =
V
b·z (1)

where: V—shear force, b—width of the element, z—lever arm.
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The calculated failure shear stresses in the beams under monotonic and cyclic loading
are shown in Figure 15.

Examples of strain maps of the element’s side surface superimposed on reinforcement
drawings are shown in Figure 14.

On the deformation maps corresponding to the measurement fields, which after
completion of the test are assumed with the DIC (ARAMIS), the strains are marked using a
color scale. The blue color marks the base area on which no strains are recorded yet. When
they appear, the color of a given area becomes brighter, then changes to green and up to
red, which indicates significant strains. In Figure 14, local accumulation of strains (brighter
and then red) can be observed in the support zone of the beams, which for concrete (brittle
material) is identified as cracks. In this way, the angle of inclination of the support zone
diagonal cracks can be determined.

Table 6. A list of the destructive loads of reinforced concrete beams with the corresponding cross-sectional forces and the
angles of inclination of compression struts.

Beams
Angle θ

[deg.]
Destructive Load

Shear Force and Bending
Moment at the

Destructive Load
Shear
Stress
τ [MPa]

S1 [kN] S2 [kN] S3 [kN] S4 [kN] V [kN] M [kNm]

S2M-1 31 - 150.6 149.8 - 151.3 90.9 5.4
S2M-2 30 - 147.5 152.2 - 152.1 91.4 5.5
S2M-3 27 - 134.7 134.7 - 135.6 81.5 5.1
S2M-4 27 - 134.7 133.2 - 134.3 80.8 5.1
S2C-1 28 - 109.8 109.7 - 110.5 66.5 4.3
S2C-2 35 - 109.7 109.8 - 110.6 66.5 4.1
B3C-1 47 - 54.8 54.8 15.8 64.0 15.5 2.5
B3C-2 44 - 54.9 54.8 15.3 64.1 15.4 2.4

BL-02-1 32 402.0 - - - 353.4 283.4 4.8
BL-02-3 45 261.1 - - 217.5 240.6 2.9
BL-02-4 34 295.3 - - 245.5 271.3 3.3

Figure 14. Examples of strain maps from beams (a) beam S2M-1, (b) beam BL-02-(M), (c) support zone surface of beam B3C-2.
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The calculated failure shear stresses in the beams under monotonic and cyclic loading 
are shown in Figure 15. 

Examples of strain maps of the element’s side surface superimposed on reinforce-
ment drawings are shown in Figure 14. 

On the deformation maps corresponding to the measurement fields, which after com-
pletion of the test are assumed with the DIC (ARAMIS), the strains are marked using a 
color scale. The blue color marks the base area on which no strains are recorded yet. When 
they appear, the color of a given area becomes brighter, then changes to green and up to 
red, which indicates significant strains. In Figure 14, local accumulation of strains 
(brighter and then red) can be observed in the support zone of the beams, which for con-
crete (brittle material) is identified as cracks. In this way, the angle of inclination of the 
support zone diagonal cracks can be determined.  

  

Figure 15. A diagram of shear stresses at failure of the tested elements.

3.2. Calculation Models

The development of built environments across the world has pushed forward R&D
in concrete technology in the search for material saving opportunities and new methods
for dimensioning reinforced concrete elements. Over the years of research, several shear
capacity computational models have been developed to describe the behavior of the
support zone under load. Formulated at the beginning of the 20th century by Mörsch [2],
the classical theory assumed that concrete in the beam’s tension zone carries no tensile
stresses at any cross-section, including between cracks. Hence, the principal stresses
depend only on the shear stresses. This model—called the Mörsch truss—has survived for
decades, and after various modifications was incorporated in different codes of practice,
such as Polish standards [15,16], European standards [14,17], including ModelCode 2010
(MC2010) [3], and US standards [4,18]. The truss model has been greatly modified over
the years, often significantly altering the classical Mörsch approach. New approaches
were proposed by A. Ahmad and ALL Baker [19,20], F. Leonhardt and R. Walther [2,21], H.
Kupfer and W. Dilger [22,23], H. Rüsch [24,25] or A. Lipski [26]. These studies, however,
remained in the sphere of theoretical considerations and, mainly due to their complexity,
only some of them found their application in engineering practice.

Another approach to shear capacity of reinforced concrete elements is the ultimate
failure state theory. It assumes that at the time of failure, the diagonal crack separates the
beam into two parts connected by concrete in the non-cracked compression zone and by
the reinforcement cut by that diagonal crack in the cracked zone. In this approach, the
ultimate limit state of the concrete compression zone in the area above the so-called major
diagonal crack is controversial because the strain in this area of concrete is determined
by the combined effect of the moment and shear force. The precursor of this approach
was M. S. Boriszański, who in 1937 began his research on the shear strength of reinforced
concrete beams under the supervision of prof. A. A. Gwozdiew. The results of their
analyses were published in [27]. Their method was later modified by Gyengö, Visa, Bay,
Walther [2] and Kani [2,28,29]. Like its predecessor, the Boriszański state limit of failure
approach was used in standard regulations, including the Soviet NiTU 123-55 and Polish
standards [30]. Proposed changes or modifications to the classical theory developed and
published by many researchers were often controversial. A compendium of knowledge
about shear in reinforced concrete elements, truss models and the limit state method, with
the conclusions, recommendations and guidelines from the author, is contained in the
works of Godycki [2,20].

Studies related to the behavior of the support zone in reinforced concrete elements
are still carried out in many research centers with improved apparatus and computational
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capabilities. Results of these studies have extended the existing body of knowledge and to
the development of new theories and methods, such as the Modified Compression Field
Theory [31] used in MC2010 [3], the Simplified Modified Compression Field Method [32,33],
or the Generalized Stress Field approach [34].

Other, less known shear design approaches found in the literature include the shear
zone model [35,36], dimensioning methods such as semi-probabilistic (e.g., Monte Carlo
method) [37,38], finite element [39–41] or neural networks methods [42,43].

Due to the multitude of theoretical models for the support zone of reinforced concrete
elements, only those that were or are the basis for standard regulations used in engineering
practice were used for this analysis, with the concrete contribution in the shear load capacity
of beams taken into account. These were primarily the models based on the ultimate state
of failure (concrete contribution) [30], a truss model that does not include the contribution
of concrete [16] also used in European standards [14,17], and the modified compression
field method [32] accounting for the aggregate interlock [3,44–46].

Additionally, the analysis included models whose assumptions have been used in
the provisions of American standards of 2014 and 2019 [4,18] and the calculation mod-
els [47], Caldera, Mari, Bairan, Oller And Ribas Method [48–51], Bentz and Collins [31,52],
Reineck, [53], Park and Choi [54–56], Forsch, Yu, Cusatis and Bazant [57–59], Li, Hsu And
Hwang [60–64], that led to the changes introduced in the US standard [4] of 2019 [65,66].
This choice was also dictated by the US approach to estimating the total shear bearing
capacity of RC beams. It differs slightly from the European requirements. As a result, the
calculations of the theoretical load capacity of the tested reinforced concrete beams were
made on the basis of 21 models used in the European and US specifications.

3.3. Selection of Models for Calculation

A comparative analysis of the shear capacity results obtained from the tests and from
the calculations was initially planned. The following calculation models were considered:

• Boriszański failure model [2,30],
• Mörsch truss model acc. to Kupfer–Rüsch [67] (PN-B-03264:2002) [16],
• Mörsch truss model acc. to Kupfer–Rüsch (PN-EN-1992-1:2008) [14],
• Mörsch truss model acc. to Kupfer–Rüsch (DIN 1045-1:2008) [17],
• models acc. to Model Code 2010; approximations 1, 2 and 3, [3,68],
• models acc. to ACI-318-14; approaches 1, 2, 3, 4 (ACI-318-14) [18],
• model acc. to ACI-318-19; approaches 1, 2, 3 (ACI-318-19) [4],
• Clader, Mari, Bairan, Oller and Ribas model, [48],
• Bentz and Collins model—simplified and detailed method, [52],
• Reineck model [53],
• Hong-Gun Park, Kyoung-Kyu Choi model [54],
• Forsch, Yu, Cusatis and Bazant model [57],
• Li, Hsu and Hwang [60].

However, as this number of models makes the comparison very difficult, a preliminary
selection was performed based on experimental results. The experimental shear capacity
of all tested elements was compared with the capacities calculated using all the models.
The comparison was divided into two stages:

• comparison of the experimental load capacity with the shear capacity of the concrete
cross-section in the beam supporting zone,

• comparison of the experimental load capacity with the shear capacity of the beam
support zone.

As a result of the comparison, models that did not meet the assumed criteria were
excluded from further analysis. The adopted criteria were:

• obtaining the calculated shear capacity of concrete or the calculated shear capacity for
a given element greater than the experimental capacity,
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• no repeatability of the model in the already selected group to avoid duplicating the
results obtained,

• adopting substantial simplifications in the model in order to simplify the design
calculations at the expense of the accuracy of the results.

The results of the initial verification are summarized in Tables 7 and 8. Table 7 is for
the theoretical load-bearing capacity of concrete, while Table 8 presents the total shear
capacity results.

Table 7. A summary of the concrete load-bearing capacity of the reinforced concrete beam support zone according to
selected calculation models with color marking of the models selected for further analysis.

Model B3C-1 B3C-2 S2C-1 S2C-2 S2M-1 S2M-2 S2M-3 S2M-4 BL-02-1 BL-02-3 BL-02-4

Destructive Stresses
(D.S.) 2.5 2.4 4.3 4.1 5.4 5.5 5.1 5.1 4.8 2.9 3.3

75% D.S. 1.8 1.8 3.2 3.1 4.0 4.1 3.8 3.8 3.6 2.2 2.5
50% D.S. 1.2 1.2 2.1 2.1 2.7 2.7 2.6 2.5 2.4 1.5 1.7

Mörsch truss analogy by
Kupfer–Rüsch

(PN-B-03264:2002) [16]
3.3 3.4 3.6 3.5 3.4 3.4 3.5 3.5 2.7 2.7 2.7

ACI-318-14 W4 [18] 2.6 2.7 2.6 2.5 2.5 2.5 2.6 2.6 2.3 2.3 2.3
Reineck [53] 2.7 2.8 2.8 2.6 2.6 2.6 2.7 2.7 2.3 2.3 2.3

Table 8. A summary of the total load-bearing capacity of the reinforced concrete beam support zone according to selected
calculation models with color marking of the models selected for further analysis.

Model B3C-1 B3C-2 S2C-1 S2C-2 S2M-1 S2M-2 S2M-3 S2M-4 BL-02-1 BL-02-3 BL-02-4

Destructive Stresses
(D.S.) 2.5 2.4 4.3 4.1 5.4 5.5 5.1 5.1 4.8 2.9 3.3

75% D.S. 1.8 1.8 3.2 3.1 4.0 4.1 3.8 3.8 3.6 2.2 2.5
50% D.S. 1.2 1.2 2.1 2.1 2.7 2.7 2.6 2.5 2.4 1.5 1.7

Li, Hsu and Hwang [60] 2.4 2.5 2.8 2.6 2.6 2.7 2.7 2.7 2.1 1.7 1.7

The results shown in Tables 7 and 8 were the basis for excluding the following models
(exceeded shear capacity of the support zone):

• Mörsch truss model acc. to Kupfer–Rüsch (PN-B-03264:2002) [16],
• Reineck model [53],
• ACI-318-14 model approach 4 [18],
• Li, Hsu and Hwang [60].

In addition, due to the significant simplifications adopted in the model, the modified
Mörsch truss model used in the Model Code 2010 approximation 1 was omitted during
the design [3]. Significant similarities between the models affected the exclusion of the
following models:

• the model used in DIN 1045-1:2008 [17],
• the model used in ACI-318-14 approaches 1 and 2 [18],
• the model used in ACI-318-19 approaches 2 and 3 [4].

As a deviation from the adopted criteria, two models were kept:

• Boriszański failure model (PN-B-03264: 1984)—as the only model of the computational
approach based on the limit state of failure [1,30], and,

• the simplified modified compressed field theory model used in Model Code 2010
approximation No. 3 [3]—as it is the only approach adopted in Model Code 2010,
in which the total shear capacity of the support zone accounts for the resistance of
cracked concrete expressed by aggregate interlock.

After the verification and consideration of individual solutions, the following models
were finally adopted for further analysis:

• Boriszański model of failure (BOR) [2,30],
• Mörsch truss model acc. to Kupfer–Rüsch (PN-EN-1992-1-1:2008), (M-KR) [17],
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• Model Code 2010, approximations 2 and 3, (MC2010 AP2 and AP3) [3],
• ACI-318-14 approach 3, (ACI-318-14 W3) [18],
• ACI-318-19 approach 1, (ACI-318-19 W1) [4],
• Bentz and Collins—detailed method, (BC-DM) [52],
• Cladera, Mari, Bairan, Oller and Ribas model, (CMBOR) [48],
• Forsch, Yu, Cusatis and Bazant model, (FYCB) [57],
• Hong-Gun Park, Kyoung-Kyu Choi model, (PC) [54].

Symbols that are used in the presented later graphs for a given model are in round
brackets.

3.4. Analysis of the Results

The comparative analysis of the shear capacity of reinforced concrete beams deter-
mined based on selected calculation models and the capacity obtained from experimental
tests was performed taking into account:

• the compliance of the shear capacity values obtained from the tests with those calcu-
lated according to the selected models,

• the effect of adopting the diagonal compression strut inclination angle θ,
• the contribution of concrete in shear resistance.

First, the experimental values and the calculated shear capacity were compared with
each other. These values were determined by adopting the inclination angle of diagonal
compression struts from the tests. The angle θ was adopted based on the inclination of the
diagonal cracks βr (Figure 16). The values of angles θ from the tests are compiled in Table 6,
and the calculated values of shear capacity are summarised in Table 9. Tables 4 and 5 show
experimentally determined concrete and steel strengths used in the calculations.

Figure 16. Comparison of destructive shear stresses obtained from the tests and calculated based on
the real value of diagonal compression strut inclination angle θreal.
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Table 9. Shear capacity of reinforced concrete beams according to selected models, adopting the angle θ from the tests.

Model B3C-1 B3C-2 S2C-1 S2C-2 S2M-1 S2M-2 S2M-3 S2M-4 BL-02-1 BL-02-3 BL-02-4

Destructive Stresses (D.S.) 2.5 2.4 4.3 4.1 5.4 5.5 5.1 5.1 4.8 2.9 3.3
75% D.S. 1.8 1.8 3.2 3.1 4.0 4.1 3.8 3.8 3.6 2.2 2.5
50% D.S. 1.2 1.2 2.1 2.1 2.7 2.7 2.6 2.5 2.4 1.5 1.7

Boriszański Failure Model
(PN-B-03264:1984) [2,30] 4.0 4.1 5.0 4.8 4.7 4.5 4.9 4.9 2.8 2.8 2.8

Mörsch truss analogy by Kupfer–Rüsch
(PN-EN-1992-1-1:2008) [14] 0.5 0.5 1.4 1.1 1.2 1.3 1.5 1.5 0.5 0.3 0.3

Generalized stress field approach
(Model Code 2010 AP2) [3] 0.5 0.6 1.4 1.1 1.2 1.3 1.5 1.5 0.5 0.3 0.5

Simplified modified
compression field theory

(Model Code 2010 AP3) [3]
0.6 0.7 1.5 1.1 1.3 1.3 1.5 1.5 0.6 0.4 0.6

ACI-318-14 W3 [18] 2.2 2.2 2.8 2.6 2.6 2.7 2.7 2.7 2.1 2.1 2.1

ACI-318-19 W1 [4] 2.1 2.2 3.0 2.9 2.3 2.3 2.3 2.4 1.7 1.7 1.7

Bentz and Collins—detailed method [52] 1.7 1.7 2.6 2.0 2.3 2.4 2.6 2.6 1.5 1.3 1.4
Cladera, Mari, Bairan, Oller and Ribas [48] 2.2 2.2 3.3 3.2 3.1 3.1 3.2 3.2 2.4 2.4 2.4

Forsch, Yu, Cusatis and Bazant [57] 1.5 1.6 2.3 2.2 2.2 2.2 2.3 2.3 1.5 1.5 1.5
Hong-Gun Park, Kyoung-Kyu Choi [54] 1.2 1.0 2.1 1.7 1.8 1.9 2.1 2.1 1.2 0.9 1.1
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It can be seen that shear capacity values calculated according to the failure state model
(BOR) [2,30] exceed those obtained from the tests. The shear capacity is exceeded in four
beams, 75% of the shear capacity in five beams, and 50% in three beams. The values of
the shear capacity calculated from the remaining models are largely less than 75% of the
experimental capacity. Furthermore, the capacities calculated using models based on the
truss model, i.e.,

• Mörsch truss by Kupfer–Rüsch (K.R.M.) (PN-EN-1992-1-1:2008), (M-KR) [14],
• Model Code 2010 approximations 2 and 3 (MC2010 AP2 and 3) [3],

are markedly lower than those from the tests.
The lowest values of shear capacity obtained from the tests are for the two-span beams

with variable low-cycle loads (B3C); it is more than two times less than that of simply
supported beams with the same cross-section under monotonic loading (S2M). Despite
the lower shear capacity of the B3C beams obtained in the tests, the calculated values
from the selected models do not exceed this capacity. To a lesser extent, but analogous
relationship occurs between the experimental and calculated shear values for single-span
S2C beams under cyclic loading. For most of the models, the adopted value of θ has a
significant impact on the calculated capacity of the reinforced concrete beams near the
support zone. For this reason, the measured and estimated angles θ were additionally
compared. The following models proposed four methods of estimating the angle: Model
Code 2010 approximation 2 and 3 [3], the Bentz and Collins model [52] and the Hong-Gun,
Kyoung-Kyu Choi model [54].

The bar chart in Figure 17 compares the estimated and experimental values of angle
θ. Bars represent angle θ corresponding to the diagonal crack’s inclination; the values
estimated based on the models are shown using points varied in color and shape.

Figure 17. Comparison of the experimental and estimated values of angle θ.

The greatest, more than two-fold difference between the measured and the estimated
angles is observed for two-span beams under cyclic loading (B3C).

Figure 18a illustrates the effect of adopting the estimated angle θ, corresponding to
the angle of inclination of the concrete compression struts. It was developed analogously to
Figure 16 but shows the calculated shear capacity only for those models where θ estimation
is included. This applies to models:

• used in Model Code 2010, approximation 2 and 3 [3],
• Hong-Gun Park, Kyoung-Kyu Choi model [54],
• Bentz and Collins model—detailed method [52].
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Figure 18. Comparison diagram of destructive shear stresses, experimental and calculated with (a) theoretical value of the
θteo angle (b) real value of the θreal angle.



Materials 2021, 14, 4092 21 of 29

For a more precise illustration of the differences, the diagram in Figure 18b shows
the shear capacity values calculated based on the angle θ measured in the tests, as in
Figure 16. The calculations were narrowed down to the procedures including angle θ

estimation methods. In the context of the differences seen in Figure 17, the comparison
of the values in Figure 18 a and b reveals significant changes in shear capacity calculated
based on the measured and estimated angles. Compared to shear capacity calculated using
the measured θ, the largest difference is observed when the shear capacity is calculated
according to the Hong-Gun Park model, Kyoung-Kyu Choi (PC) [54]. At the estimated
angle θ, shear capacity values are higher than when the measured θ from experiments
is adopted. For eight beams, the shear capacity values exceed 75% of the experimental
shear capacity at almost twice as low values of the estimated angle θ, compared to the
experimental θ, Figure 17.

Analysis of the results of the comparison between the experimental stresses and those
calculated with the estimated angle θ (Figure 18a,b) shows reduced differences between
the experimental shear capacity and calculated using the measured angle θ. Compared
to the experimental shear capacity, the calculated values are still much lower. Only the
capacities calculated using the Hong-Gun Park, Kyoung-Kyu Choi (PC) [54] model are
greater than 75% of the experimental value. The same relation applies to the capacities
calculated according to the model of Clader, Mari, Bairan, Oller and Ribas (C.M.B.O.R.) [48]
(Figure 16), which is θ-independent. Therefore, it can be inferred that the values of θ
adopted in calculations tend to play the role of a calibration factor. This is also confirmed
by significant differences between the experimental and estimated angles θ, as shown in
Figure 17.

Analysis of shear capacity of reinforced concrete beams should also account for the
static scheme because statically indeterminate structural elements under variable loads
dominate in building structures. Therefore, the beams loaded in a low-cycle manner were
selected and subjected to additional extended analysis. After rejecting the models according
to which the shear stresses are much lower and exceed (Figure 14) the experimental
capacities, the analysis was performed using the following models:

• model used in ACI-318-14 approach 3 (ACI-318-14 W3) [18],
• model used in ACI-318-19 approach 1 (ACI-319-14 W1) [4],
• Bentz and Collins model—detailed method (B.C.-DT) [52],
• Cladera, Mari, Bairan, Oller and Ribas model (CMBOR) [48],
• Forsch, Yu, Cusatis and Bazant model (FYCB.) [57].

Figure 19 compares the results of experimental shear stresses based on the destructive
loads and those calculated using the models above and the angle θ measured for beams
loaded in a cyclic manner.

A similar comparison in terms of the θ effect on shear stresses is shown in Figure 20.
The shear stresses represented by different point shapes were calculated with the estimated
θ angle taken into account. The models used for the comparison are those that provide the
method of estimating the angle θ. Shear stresses calculated using both the measured and the
estimated angle θ are lower than those obtained from the tests. For statically determinate
beams, practically all values of shear capacity are between 75% and 50% of the destructive
shear stress, while for statically indeterminate beams, the shear stresses calculated based
on the ACI-318-14 W3 [18], ACI-318-19 W1 [4] models and CMBOR [48] are close to the
experimental results. It thus follows that for statically indeterminate beams, the models
listed above provide the best agreement between the experimental and calculated shear
capacity values.
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Figure 19. Comparison of experimental and theoretical shear stresses calculated based on the
measured angle θreal for beams loaded cyclically.

Figure 20. Comparison of experimental and theoretical shear stresses calculated based on the
theoretical values of the angle θteo for beams loaded cyclically.

Considering that some models include the concrete contribution term in shear capacity
determination and some ignore its effect, the further analysis focused on the concrete
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contribution as provided by selected models. It is important because, depending on the
calculation model, the values of the concrete shear capacity vary significantly. The models
in which concrete contribution after cracking is included in shear capacity are:

• Boriszański model [2,30],
• Model Code 2010 approximation 3 [3],
• Hong-Gun Park, Kyoung-Kyu Choi [54],
• Bentz and Collins—simplified method [52],
• Cladera, Mari, Bairan, Oller and Ribas [48],
• Forsch, Yu, Cusatis and Bazant [57].

As the estimated concrete shear capacity is exceeded in:

• Mörsch truss model acc. to PN-EN-1992-1-1:2008 [14],
• Model Code 2010 approximation 2 [3],

the shear reinforcement is assumed to carry all shear stresses.
It is worth noting that among the models showing the greatest correspondence be-

tween the calculated and experimental shear capacity, there are those in which both shear
reinforcement contribution and concrete contribution are included. It seems that the great-
est differences between the calculated and experimental shear capacity are obtained using
the truss-based models (Figures 16 and 18). Shear capacity calculated according to these
models, after exceeding the formula-specified value (concrete shear capacity) results only
from the capacity of shear reinforcement bars. This approach changed slightly in MC2010
AP3 [3] which added concrete contribution but only due to “aggregate interlocking” in
the diagonal crack. This effect is computationally negligible, as evidenced by the results
shown in Figures 16 and 18. It is therefore justified to continue the considerations over
determining the force that the cracked support zone concrete can carry and analyze the
approaches in which, in addition to the shear reinforcement, the concrete contribution is
taken into account to a greater extent [2–4,18,30,48,52,54,57]. For this purpose, Table 10
lists the shear capacities of RC beam support zone concrete accounted for in shear capacity
values according to the models that include this capacity.

Table 10. Shear capacity of reinforced concrete beams according to selected models, assuming the angle θ from the tests.

Model B3C-1 B3C-2 S2C-1 S2C-2 S2M-1 S2M-2 S2M-3 S2M-4 BL-02-1 BL-02-3 BL-02-4

Destructive Stresses (D.S.) 2.5 2.4 4.3 4.1 5.4 5.5 5.1 5.1 4.8 2.9 3.3
75% D.S. 1.8 1.8 3.2 3.1 4.0 4.1 3.8 3.8 3.6 2.2 2.5
50% D.S. 1.2 1.2 2.1 2.1 2.7 2.7 2.6 2.5 2.4 1.5 1.7

Boriszański Failure Model
[2,30] 2.3 2.3 2.8 2.6 2.6 2.5 2.7 2.7 1.6 1.6 1.6

Simplified modified
compression field theory

(* Model Code 2010 AP3) [3]
0.16 0.18 0.07 0.08 0.05 0.04 0.04 0.04 0.08 0.12 0.10

ACI-318-14 W3 [18] 1.6 1.6 1.9 1.8 1.8 1.8 1.8 1.8 1.7 1.7 1.7

ACI-318-19 W1 [4] 1.5 1.6 2.1 2.0 1.4 1.5 1.5 1.5 1.3 1.3 1.3

Bentz and Collins—detailed
method [52] 1.1 1.1 1.1 0.9 1.0 1.1 1.1 1.1 1.0 1.0 1.0

Cladera, Mari, Bairan, Oller
and Ribas [48] 1.4 1.5 2.2 2.1 2.1 2.1 2.2 2.2 2.0 2.0 2.0

Forsch, Yu, Cusatis and
Bazant [57] 0.9 0.9 1.4 1.4 1.3 1.4 1.4 1.4 1.1 1.1 1.1

Hong-Gun Park,
Kyoung-Kyu Choi [54] 0.6 0.4 1.2 0.9 1.0 1.0 1.2 1.2 0.8 0.5 0.8

Figures 21 and 22 show the calculated concrete contribution relative to the shear
capacity obtained based on destructive forces in the case of 11 reinforced concrete beams
(Figure 21) and only cyclically loaded elements (Figure 22). The shear resistance of concrete
in individual beams was marked with different point shapes representing different models.
The destructive shear stresses are marked with red points connected by dashed lines. For
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comparative purposes, points connected by dashed lines corresponding to 75% of the
experimental shear capacity are added.

Figure 21. Destructive shear stresses and calculated concrete shear resistance.

Figure 22. Destructive shear stresses and calculated concrete shear capacity for cyclically loaded
elements.
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From the figures above, it follows that the concrete contribution calculated with the
procedures proposed in ACI-318-14 W3 [18], ACI-318-19 W1 [4], C.M.B.O.R. [48] in the exper-
imental shear capacity exceeds 50%, particularly in the case of the statically indeterminate
beams B3C loaded cyclically. It is only several percent when MC2010 AP3 [3] is used.

4. Discussion

Developments in concrete and steel technology have enhanced the strength and duc-
tility of these materials, Figures 11 and 13, generating a need for finding new dimensioning
methods for reinforced concrete elements. The methods have to be based on scientifically
warranted theoretical assumptions to account for higher strengths and ductility. This espe-
cially applies to the supporting zone of RC beams, where a complex state of stress occurs.
This state of stress is additionally intensified by two phases, non-cracked and cracked, a
reinforced concrete element experiences under service conditions. The resulting difficulties
in describing the behavior of the support zones, most often referred to as shear, force the
simplifications that must be verified experimentally. As the computational models pro-
posed [2,19–64] fail to fully describe the real shear strength of reinforced concrete elements,
the search for uniform models to formulate the shear design provisions is being continued.
The models for incorporation in standard requirements are selected from among those that
ensure the most reliable results for the adequate level of structural reliability. Therefore, it is
important to experimentally verify previously and currently used models when developing
the calculation model of the behavior of the supporting zone. Such a comparative analysis
of the experimental to calculated values of shear capacity was performed. The elements
under analysis differed in the static scheme, cross-sectional dimensions, and the loading
mode and program. The analysis used computational models based on a series of modifi-
cations of the classic theory developed by Mörsch [2], the so-called truss model [3,14–17].
These included the ultimate state of failure model by Boriszański [2,30], the modified
compressed field theory [3,31], the simplified modified compressed field theory [33], and
the generalized stress field approach [30]. The verification was based on the test results
of 11 shear-damaged reinforced concrete beams. The DIC system (ARAMIS) used in the
study allowed non-contact and continuous tracking of the formation and development of
diagonal cracks and the measurement of the angle of their inclination.

The principal findings from the performed laboratory tests and comparative analyses
are as follows:

• the loading program, static scheme, and the dimensions of the beam cross-section
affect the experimental shear capacity of the reinforced concrete beam support zone,

• as demonstrated, statically indeterminate elements show lower shear capacity than
statically determinate elements under cyclic and monotonic loads,

• based on the results in Figures 16 and 18–20, verification tests of the calculation model
should be carried out on statically indeterminate beams under cyclic loads,

• shear capacity estimated from the model based on the state of failure according to
Boriszański (BOR) [2,30] exceeded the capacity obtained experimentally for four beams,
which means that this model will not ensure the adequate level of structural reliability,

• values of shear capacity calculated from the modified truss model largely depend on
the angle θ (the angle of inclination of a diagonal strut) and are much lower than the
values obtained experimentally,

• the measured angle of the diagonal crack varies from the value calculated from the
adopted models, in which the estimation method is given—Figure 17 (Model Code
2010 approximation 2 and 3 [3], the Bentz and Collins model [52] and the Hong-Gun
Park model, Kyoung-Kyu Choi) [54–56],

• the ctg θ value used in some models does not result from the inclination angle θ of
the compressed concrete diagonals and can be used as an effective parameter for
adjusting the shear design values to fit the experimental results (e.g., Model Code 2010
approximations 2 and 3 [3], Bentz and Collins [52] and Hong-Gun Park, Kyoung-Kyu
Choi model) [54–56],
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• the highest agreement between the experimental and calculated shear capacity val-
ues was obtained from the models that do not depend on the angle θ (ACI-318-14
approach 3 [18], ACI-318-19 approach 1 [4], Cladera, Mari, Bairan, Oller and Ribas
(CMBOR) [48]),

• the shear capacity of the RC beam support zone depends on the shear strength pro-
vided by the shear reinforcement and concrete (e.g., interlocking effect—MC2010 [3],
dowel action—e.g., ACI [4,18]) during loading and after cracking. For this reason, it
should be taken into account in shear capacity estimation.

5. Conclusions

The findings above lead to the following conclusions concerning the shear capacity of
the support zone in reinforced concrete beams:

• verification of calculation models, including numerical models, should be based on
test results for statically indeterminate beams under cyclic loading;

• the highest agreement between the experimental and calculated shear capacity was
obtained from the models that are independent of angle θ;

• the value of ctg θ can serve as a parameter adjusting calculated shear capacity to real
values;

• the support zone capacity calculations for the entire loading process and after cracking
should take into account the capacities of both transverse reinforcement and concrete.

The comparative analysis conclusions were based on the tests of beams made of the
same concrete class and steel type. The concrete had higher strength than the designed
grade C40/50, and the ultimate strains exceeded 3.5 ‰ (Figure 12). The steel was character-
ized by very high ductility (Figure 13). Since the shear resistance is largely dependent on
the properties of these materials, further research is required. It would be then possible to
develop a database of research results allowing the verification of existing and newly devel-
oped models. Statistical analysis would ensure an adequate level of safety and reliability
of structures.

The planned program of further shear tests of beams includes tests to supplement
the material gap, i.e., tests of cyclically loaded double-span beams made of concrete class
C30/37 and reinforcing steel class B, as well as high-strength concretes of approx. 90 MPa.
Considering the importance of the fire resistance of reinforced concrete structures, tests
should also be carried out for beam behavior at high temperatures, which has a significant
impact on the adhesion of steel to concrete [69]. However, to do this, a broad testing
program for members [70] at high temperatures is required along with adequate laboratory
equipment. Future research directions include the development of a numerical model
for the behavior of the support zone of reinforced concrete beams under load and its
verification based on test results, as well as testing the shear capacity of reinforced concrete
beams strengthened with composites and beams with non-metallic reinforcement.
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10. Goszczyńska, B.; Trąmpczyński, W.; Bacharz, M.; Bacharz, K.; Tworzewska, J.; Tworzewski, P. Doświadczalna analiza odkształceń
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39. Chorzępa, M.; Kim, Y.J.; Yun, G.J.; Harmon, T.G.; Dyke, S. Cyclic Shear-Friction Constitutive Model for Finite Element Analysis of

Reinforced Concrete Membrane Elements. ACI Struct. J. 2011, 108, 324–331.
40. Bhatt, P.; Kader, A.M. Prediction of shear strength of reinforced concrete beams by nonlinear finite element analysis. Comput.

Struct. 1998, 68, 139–155. [CrossRef]
41. Potisuk, T.; Higgins, C.C.; Miller, T.H.; Yim, S.C. Finite Element Analysis of Reinforced Concrete Beams with Corrosion Subjected

to Shear. Adv. Civ. Eng. 2011. [CrossRef]
42. Arafar, M.; Alqedra, M.; An-Najjar, H. Neural Network Models for Predicting Shear Strength of Reinforced Normal and

High-strength Concrete Deep Beams. J. Appl. Sci. 2011, 11, 266–274. [CrossRef]
43. Koo, S.; Shin, D.; Kim, C. Application of Principal Component Analysis Approach to Predict Shear Strength of Reinforced

Concrete Beams with Stirrups. Materials 2021, 14, 3471. [CrossRef]
44. Walrawen, J.C. Fundamental Analysis of Aggregate Interlock. J. Struct. Div. 1981, 107, 2245–2270. [CrossRef]
45. Lantsonght, E.O.; van der Veem, C.; Walrawen, J.C. Case Study on Aggregate Interlock Capacity for the Shear Assessment of

Cracked Reinforced-Concrete Bridge Cross Sections. J. Bridge Eng. 2016, 21, 04016004. [CrossRef]
46. Sun, C.; Chen, Q.; Xiao, J.; Ge, W. Study on aggregate interlock behavior of pre-cracked recycled aggregate concrete without

stirrups. J. Build. Eng. 2021, 39, 102257. [CrossRef]
47. Belarbi, A.; Kuchma, D.A.; Sanders, D.H. Proposals for New One-Way Shear Equations for the 318 Building Code. Concr. Int.

2017, 39, 29–32.
48. Cladera, A.; Mari, A.; Bairan, J.-M.; Oller, E.; Ribas, C. One way Shear Design Method Based on a Multi-Action Model. Concr. Int.

2017, 39, 40–46.
49. Mari, A.; Bairan, J.; Caldera, A.; Oller, E.; Ribas, C. Shear Flexural Strength Mechanical Model for the Design and Assessment of

Reinforced Concrete Beams. Struct. Infrastruct. Eng. 2015, 11, 1399–1419. [CrossRef]
50. Caldera, A.; Mari, A.; Ribas, C.; Bairan, J.; Oller, E. Predicting the Shear-Flexural Strength of Slender Reinforced Concrete T and I

Shaped Beams. Eng. Struct. 2015, 101, 386–398. [CrossRef]
51. Mari, A.; Bairan, J.M.; Caldera, A.; Oller, E. Shear Design and Assessment of Reinforced and Prestressed Concrete Beams Based

on a Mechanical Model. J. Struct. Eng. 2016, 142, 04016064. [CrossRef]
52. Benatz, E.C.; Collins, M.P. Updating the ACI Shear Design Provisions. Concr. Int. 2017, 39, 33–38.
53. Reineck, K.H. Proposal for ACI 318 Shear Design. Concr. Int. 2017, 39, 65–70.
54. Hong-Gun Park, K.-K.C. Unified Shear Design Method of Concrete Beams Based on Compression Zone Failure Mechanism.

Concr. Int. 2017, 39, 59–63.
55. Choi, K.-K.; Park, H.-G.; Wight, J. Unified Shear Strength Model for Reinforced Concrete Beams—Part 1: Development. ACI

Struct. J. 2007, 104, 142.
56. Choi, K.-K.; Park, H.-G. Unified Shear Strength Model for Reinforced Concrete Beams—Part 2: Verification and Simplified

Method. ACI Struct. J. 2007, 104, 153.
57. Forsch, R.J.; Yu, Q.; Cusatis, G.; Bažant, Z.P. A Unified Approach to Shear Design. Concr. Int. 2017, 39, 47–52.
58. Tureyen, A.K.; Forsch, R.J. Concrete shear strength: Another prospective. Struct. J. 2003, 100, 609–615.
59. Tureyen, A.K.; Wolf, T.S.; Forsch, R.J. Shear strength of reinforced concrete T-beams without transverse reinforcement. ACI Struct.

J. 2006, 103, 656.
60. Li, Y.-A.; Hsu, T.T.; Hwang, S.-J. Shear Strength of Prestressed and Nonprestressed Concrete Beams. Concr. Int. 2017, 39, 53–57.
61. Kuo, W.W.; Hsu, T.T.C.; Hwang, S.J. Shear Strength of Reinforced Concrete Beams. ACI Struct. J. 2014, 111, 809–818. [CrossRef]
62. Laskar, A.; Hsu, T.T.C.; Mo, Y.L. Shear strengths of Prestressed Concrete Beam Part 1: Experiments and Shear Design Equations.

ACI Struct. J. 2010, 107, 330–339.
63. Hsu, T.T.C.; Laskar, A.; Mo, Y.L. Shear Strengths of Prestressed Concrete Beams Part 2: Comparisons with ACI and AASHTO

Provisions. ACI Struct. J. 2010, 107, 340–345.
64. Kuchma, D.A.; Wei, S.; Sanders, D.H.; Belarbi, A.; Novak, L.C. Development of the One-Way Shear Design Provisions of ACI

318-19 for Reinforced Concrete. ACI Struct. J. 2019, 116, 285–295. [CrossRef]
65. Bazant, Z.P.; Yu, Q.; Gerstle, G.; Hanson, J.; Ju, J.W. Justification of ACI 446 Proposal for Updating ACI Code Provisions for Shear

Design of Reinforced Concrete Beams. ACI Struct. J. 2007, 104, 601–610.

http://doi.org/10.1016/S0045-7949(98)00034-0
http://doi.org/10.1155/2011/706803
http://doi.org/10.3923/jas.2011.266.274
http://doi.org/10.3390/ma14133471
http://doi.org/10.1061/JSDEAG.0005820
http://doi.org/10.1061/(ASCE)BE.1943-5592.0000847
http://doi.org/10.1016/j.jobe.2021.102257
http://doi.org/10.1080/15732479.2014.964735
http://doi.org/10.1016/j.engstruct.2015.07.025
http://doi.org/10.1061/(ASCE)ST.1943-541X.0001539
http://doi.org/10.14359/51686733
http://doi.org/10.14359/51716739


Materials 2021, 14, 4092 29 of 29

66. Aguilar, V.H. Realiability of Shear-Critical Reinforced Concrete Members. Ph.D. Thesis, Auburn University, Auburn, AL,
USA, 2020.
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Warszawa, Poland, 2005. (In Polish)

68. Sigrist, V.; Bentz, E.; Ruiz, M.F.; Foster, S.; Muttoni, A. Background to the fib Model Code 2010 shear provisions—Part I: Beams
and slabs. Struct. Concr. J. Fib 2013, 14, 195–203. [CrossRef]

69. Piloto, P.A.G.; Ramos-Gavilán, A.B.; Gonçalves, C.; Mesquita, L.M.R. Experimental bending tests of partially encased beams at
elevated temperatures. Fire Saf. J. 2017, 92, 23–41. [CrossRef]

70. Ferreira, D.M.; Araújo, A.; Fonseca, E.M.M.; Piloto, P.A.G.; Pinto, J. Behaviour of non-loadbearing tabique wall subjected to
fire—Experimental and numerical analysis. J. Build. Eng. 2017, 9, 164–176. [CrossRef]

http://doi.org/10.1002/suco.201200066
http://doi.org/10.1016/j.firesaf.2017.05.014
http://doi.org/10.1016/j.jobe.2016.11.003

	Introduction 
	Materials and Methods 
	Test Elements 
	Test Setups 
	Static Scheme and Load Program 
	Test Apparatus 
	Additional Tests 
	Concrete Strength 
	Steel Strength 


	Test Results and Analysis 
	Results of Experimental Research 
	Calculation Models 
	Selection of Models for Calculation 
	Analysis of the Results 

	Discussion 
	Conclusions 
	References

