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Abstract: In general, the dropwise condensation supported by superhydrophobic surfaces results
in enhanced heat transfer relative to condensation on normal surfaces. However, in supersaturated
environments that exceed a certain supersaturation threshold, moisture penetrates the surface
structures and results in attached condensation, which reduces the condensation heat transfer
efficiency. Therefore, when designing superhydrophobic surfaces for condensers, the surface structure
must be resistant to attached condensation in supersaturated conditions. The gap size and complexity
of the micro/nanoscale surface structure are the main factors that can be controlled to maintain
water repellency in supersaturated environments. In this study, the condensation heat exchange
performance was characterized for three different superhydrophobic titanium surface structures via
droplet behavior (DB) mapping to evaluate their suitability for power plant condensers. In addition,
it was demonstrated that increasing the surface structure complexity increases the versatility of the
titanium surfaces by extending the window for improved heat exchange performance. This study
demonstrates the usefulness of DB mapping for evaluating the performance of superhydrophobic
surfaces regarding their applicability for industrial condenser systems.

Keywords: superhydrophobic surface; condensation heat transfer; micro-nanostructure; droplet
behavior; dropwise condensation

1. Introduction

Humans often turn to nature for inspiration when developing new technologies. The
lotus leaf, which provided a template for researchers studying superhydrophobic surfaces,
is a classic example and has been referenced in many applied studies on superhydropho-
bicity [1–7]. The superhydrophobic surface property is determined by the contact angle.
When a droplet touches a solid surface, the surface tension is balanced between the liquid,
the solid, and the gas and the angle between the solid and the liquid surface is defined as
the contact angle. This theory is described by Young’s equation:

cos θ =
γSG − γSL

γLG
, (1)

where θ is Young’s contact angle and γSG, γSL, and γLG are the surface tension between
the solid-gas, solid-liquid, and liquid-gas interface, respectively. Depending on the surface
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energy of the solid, Young’s contact angle can be changed. In addition, if the contract angle
is smaller than the right angle, it is classified as hydrophilic. On the other hand, if it is
larger than the right angle, it is classified as hydrophobic. Physical surface modification can
maximize the original hydrophilicity/hydrophobicity by providing micro/nano structures.
When the contact angle is more than 150◦, it is classified as superhydrophobic, which is also
known as the lotus leaf effect. This principle is described by Wenzel and Cassie-Baxter’s
theory [8]. The apparent contact angle θ∗ can be expressed as follows:

cos θ∗ = f (1 + cos θ)− 1, (2)

where θ is Young’s contact angle at a flat surface and f is the fraction of the area of the solid
in contact with liquid. Superhydrophobic surfaces exhibit extreme water repulsion, which
stems from the micro/nanostructure of the surface [9–17]. Such surfaces can give rise to
self-cleaning, anti-frosting, and anti-corrosion properties, which renders them attractive for
applied materials research [5,6,15,18–20]. One area where superhydrophobic surfaces show
particular promise is in heat exchange systems, such as power plant condensers, where they
can facilitate improved condensation heat exchange performance by inducing dropwise
condensation [21–29]. For example, Paxson et al. reported heat transfer enhancement
caused by the stable dropwise condensation initiated by the chemical vapor deposition of
hydrophobic polymers, with the efficiency of the dropwise condensation process improved
by using polymer surfaces exhibiting nanoscale roughness [22].

Condensation heat exchange occurs in environments that are in a supersaturated
state (S = Pvapor/Pwall) in which the water vapor pressure is substantially higher than
typical levels. When the degree of supersaturation increases, the superhydrophobicity
becomes unstable, causing any improvements to the condensation heat exchange perfor-
mance to be lost [30–33]. In order to address this issue, several studies have explored
techniques to control the degree of supersaturation so that superhydrophobicity can be
maintained [34–43].

Jo et al. conducted a study to determine the degradation parameters that con-
trol the condensation heat transfer performance of superhydrophobic surfaces with mi-
cro/nanostructures [38]. The authors defined the concept of critical gap size as the domi-
nant criterion for the degradation of condensation heat transfer performance, with addi-
tional factors such as temperature, saturation pressure, and vapor pressure also affecting
the degradation. They concluded that a smaller critical gap size increased the difficulty for
fine water droplets to penetrate the surface, thereby preventing the condensation process
from degrading the heat transfer performance. In a separate study, Ji et al. fabricated a
replica of an actual condenser environment and compared the condensation heat transfer
performance for various supersaturation conditions using a condenser tube with a super-
hydrophobic surface. Their experiments proved that there is a range of supersaturation in
which the condensation heat transfer performance can be improved by applying a super-
hydrophobic surface [39]. Furthermore, in a previous study, our research team defined the
concept of the droplet behavior (DB) map and proposed a simple experimental method
from which the supersaturation condition is inferred according to the difference between
the surface temperature and the droplet temperature. Moreover, we proposed a method for
finding the conditions necessary to maintain the improved condensation performance [44].

In this study, a superhydrophobic surface with various nanostructures was fabricated
using titanium, which is widely used as the main material for condensers owing to its
high physical/chemical robustness. Using DB map experiments, the surface structure
that would be more advantageous in improving condensation heat transfer performance
was determined and the critical operating conditions were also derived. In addition, the
validity of the DB map experiment was demonstrated by confirming the influence of the
critical gap size on the change in the condensation performance highlighted by the DB map
experiments. Our results have the potential to dramatically expand the industrial applica-
tion range of heat exchange performance enhancement technology, which, at present, is
restricted to a few existing materials.
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2. Materials and Methods
2.1. Materials

Titanium plates (purity 99.4%, grade 1; POSCO, Pohang-si, Korea) with a dimension
of 20 mm × 20 mm × 0.5 mm were used as substrates. Sulfuric acid (H2SO4, 70% con-
centrated solution), ethylene glycol (99.5%), ammonium fluoride (NH4F, >95.0%, neutral),
and n-hexane (96%) were purchased from SAMCHUN Chemical, Korea. Perfluorooctyl-
trichlorosilane (PFOTS) was purchased from Alfa Aesar, Haverhill, MA, USA. Prior to
fabricating the surface structures, impurities were removed from the surface of the titanium
plates via acetone sonication.

2.2. Surface Preparation and Characterization

A superhydrophobic titanium surface was fabricated [10]. In order to compare the
effect of surface structure, three types of titanium plates with different surface structures
were manufactured. The pre-cleaned titanium plates were immersed for 24 h in 70%
H2SO4 solutions maintained at 25 ◦C and 40 ◦C to produce mild etched and hard etched
surfaces, respectively. During the etching reaction, the temperature of the acid solutions
was regulated at 40 ◦C by a circulator (Lab Companion, RW-0525G). After etching, each
surface was sonicated in deionized (DI) water and dried in an oven maintained at 60 ◦C.
After being hard etched, the topmost titanium surface was anodized. An ethylene glycol
mixture solution containing 1 vol% DI water and 0.25 wt% NH4F was used as the electrolyte,
with the anodization conducted at 30 V for 4 h. Post anodization, the titanium samples were
sonicated in DI water and dried in an oven for a minimum of 20 min at 60 ◦C. Each titanium
substrate was then fluorinated via immersion in an n-hexane solution with 0.1 vol% PFOTS
for 10 min. Samples were then dried in an oven for a minimum of 20 min at 60 ◦C. Since
the nanohole structure produced by the anodization of titanium had narrow and deep
holes, the resulting aspect ratio was high. Therefore, it required at least 20 min of washing
and 20 min of drying to remove the electrolytes and to completely remove the water in the
holes, respectively.

The fabricated surfaces were observed using high-resolution field-emission scanning
electron microscopy (SEM; JEOL, Tokyo, Japan). In order to evaluate the water-repellency
of the fabricated surfaces, the contact angle and sliding angle of each surface were mea-
sured with 5 µL of droplets and by using a measuring device (Smart Drop, Femtofab,
Seongnam-si, Korea). The measurements were carried out five times and the obtained
values were averaged.

2.3. Droplet-Behavior Experiments

Droplet behavior experiments were conducted to investigate whether the droplet
detached or attached according to the surface temperature, which is the temperature of the
plate, and the droplet temperature, which is the temperature of the water droplets falling on
the plate. In order to observe the droplet detachment phenomenon, the superhydrophobic
sample was fixed on a hot plate designed to have an inclination of 70◦. In order to increase
the accuracy of the surface temperature, a K-type thermocouple having an error of ± 0.5 ◦C
was attached on the hot plate using aluminum tape. The droplet temperature was also finely
adjusted by regulating the water temperature using a hot plate and a K-type thermocouple
and 10 µL of water droplets were delivered without delay using a micropipette. The setup
for the droplet behavior experiments is illustrated in Figure 1. The tendency of droplets to
attach to the surfaces was investigated for a fixed surface temperature while increasing
the droplet temperature. The surface and droplet temperatures were adjusted from 30 to
100 ◦C in 5 ◦C intervals (Figure 1a). Droplets that adhered to the surfaces were recorded as
‘O’, while droplets that failed to adhere were labeled as ‘X’ (Figure 1b). For each condition,
experiments were repeated five times to ensure the reliability of the results. The plotted
‘O’ and ‘X’ markers formed a DB map [44]. Experiments were conducted on the prepared
superhydrophobic titanium surfaces to analyze the DB maps. In addition, an experiment
was conducted to confirm the repeatability of the results under the same test conditions.
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Figure 1. (a) Experimental setup for obtaining DB maps. (b) Illustrative diagrams of detached (X)
and attached (O) droplets on a fluorinated micro/nanostructured titanium surface.

3. Results and Discussion
3.1. Fabrication of Superhydrophobic Titanium Surfaces

Superhydrophobic titanium surfaces were fabricated to examine the feasibility of
enhancing the condensation heat transfer efficiency by modifying the superhydrophobic
wettability of titanium surfaces. Furthermore, different surface structures were fabricated
and DB map experiments were carried out to examine their effect on the condensation
heat transfer performance. Figure 2 presents cross-sectional diagrams and SEM images of
the fabricated titanium surfaces. When the flat titanium surface is exposed to H2SO4, the
resulting chemical reaction causes etching and results in the formation of titanium sulfate.
The etching process ends when a certain amount of etched titanium sulfate is deposited
on the surface. The surface roughness caused by the etching process varies depending
on the temperature of the etching solution. Etching performed at 40 ◦C is more intense
than at 25 ◦C, resulting in greater surface roughness (Figure 2b,c). Following anodization,
nanohole structures are formed on the titanium surfaces, which are more complex if the
anodization is performed at 40 ◦C (Figure 2d). Although each of the surface structures
were not individually fabricated, the overall surface morphology was found to be uniform.
Therefore, it was possible to determine the gap size by using measurements of the images
obtained by using SEM analysis. The recorded gap size was obtained by measuring the
distance between peaks at 10 random locations on the sample surface and subsequently av-
eraging these values. The gap size exhibited by the mild-etched microstructure-fluorinated
(M-F) titanium surface etched at 25 ◦C in H2SO4 was 1.56 ± 0.22 µm, while the corre-
sponding value for the hard-etched M-F titanium surface etched at 40 ◦C in H2SO4 was
0.69 ± 0.07 µm. The results show that the hard-etched M-F surface exhibited a smaller gap
size than that of the mild-etched M-F. Since the micro/nanostructure-fluorinated (M-N-F)
titanium surface exhibited a hierarchical structure, the gap size was measured by dividing
it into two scales. At the microscale, the value was 0.63 ± 0.11 µm, which was similar to
that exhibited by the hard-etched M-F surface; however, analysis at the nanoscale revealed
a significantly smaller gap size of 27 ± 2 nm.
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hard-etched Ti M-F, and (d) Ti M-N-F surfaces. (e) Contact and (f) sliding angles for the different
Ti surfaces.

Average contact angles of 96.6◦ ± 6.4◦, 156.8◦ ± 5.1◦, 166.9◦ ± 6.5◦, and 172◦ ± 2.4◦

were obtained for original, mild-etched M-F, hard-etched M-F, and M-N-F titanium surfaces,
respectively (Figure 2e). As the contact angles of all the modified titanium surfaces exceed
150◦, each of these surfaces can be considered superhydrophobic. In addition, the average
sliding angles (Figure 2f), which represent the readiness of droplets to slide off a surface,
were below 15◦ for all the modified surfaces, which is much lower than the 70◦ used in the
DB map experiment. The surface inclination was fixed in order to accurately determine the
effect of the variation of the surface temperature and the droplet temperature. An angle of
70◦ was found to be the optimum angle to observe droplet attachment and detachment.

3.2. Repellency Performance Evaluation via DB Mapping

When both water droplet and the superhydrophobic aluminum surface are at room
temperature (around 25 ◦C), it is difficult for water droplets to stay on the surface even
at a very small angle. Thus, on a surface tilted at an angle of 70◦ similar to the droplet
behavior experiment, the water droplets always fall off neatly. Nevertheless, when the
droplet temperature is much larger than the surface temperature, the droplets are able
to adhere to the surface. The tendency of water droplets to attach/detach from surfaces
based on the temperature difference between the water droplets and the surfaces can
be explained by supersaturation, which is characterized as the difference in water vapor
pressure. Owing to the difference between the saturated water vapor pressure at the surface
temperature of the substrate (Pwall) and the water vapor pressure at the surface temperature
of the droplet (Pvapor), a high degree of supersaturation (S) forms at the droplet–surface
interface. Specifically, S represents the surface-temperature-dependent ratio of the actual
and saturated water vapor pressures and it has been proposed as a metric for evaluating
the condensation phenomenon [36,39,44]. It is expressed as the following.

S =
Pvapor

Pwall
. (3)

High water vapor pressure at the droplet surface causes moisture to penetrate between
the nanoscale structures covering the substrate surface, resulting in the surface becoming
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wet. For the superhydrophobic surface with a micro/nanoscale surface structure, the
attachment and detachment of droplets were tested by varying the surface and droplet
temperatures from 30 ◦C to 100 ◦C.

Figure 3 shows an example of a DB map that is divided into three zones based on the
supersaturation degree and the critical temperature boundary at which the droplets are
attached [44]. In theory, condensation can occur in an environment with S > 1; therefore,
condensation does not occur naturally in zone C in Figure 3. By contrast, condensation
occurs in zones A and B, where S > 1. Meanwhile, Sb refers to the boundary line between
zones A and B, where Sb > 1. Based on Sb, dropwise condensation occurs in zone B (where
Sb > S > 1) and attached condensation occurs in zone A (where S > Sb). In a previous study,
DB mapping was performed with superhydrophobic aluminum. The superhydrophobic
aluminum tube was manufactured and tested in an actual condenser environment and it
showed an average improvement of 105% in terms of heat exchange performance in zone
B. However, under the conditions in zone A, attached condensation was observed and the
performance was reduced by 20% compared to a typical aluminum tube. Additionally,
the surface that had undergone attached condensation in zone A did not recover its
performance even when it was subsequently subjected to the conditions in zone B. It only
showed the original improved condensation performance after it completely dried.
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Two samples were fabricated for each of the surface structures investigated in this
study, with Figure 4 showing the DB mapping results for each surface. The DB maps
corresponding to mild etched and hard etched M-F surfaces demonstrate that the boundary
line of the hard-etched M-F surface, which possesses higher structural complexity and a
smaller gap size, is observed at a higher value in comparison to the mild-etched M-F.
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This implies that the condensation heat transfer performance can be enhanced by
realizing dropwise condensation in conditions with higher supersaturation levels. The
average supersaturation level across all boundary lines was found to be 1.45 and 2.5 for the
mild- (Sbm) and hard-etched (Sbh) M-F surfaces, respectively. Therefore, in order to enhance
the condensation heat transfer performance, a condensation heat exchange environment
that satisfies both Sbm < 1.45 and Sbh < 2.5 must be created. As shown in Figure 4b, in
the 30 ◦C to 100 ◦C temperature range, water droplets do not adhere to all sections of
the M-N-F surface that contains 20 nm holes. Based on the supersaturation zone that
can be inferred from the DB mapping, attached condensation will not occur even in an
environment exhibiting a minimum S of 23. The same result was obtained upon performing
DB mapping after immersing the titanium samples in water at room temperature for five
weeks. The critical value of supersaturation that induces attached condensation could
not be determined from this result. However, improved heat transfer performance can
be achieved during operation under any oversaturated-vapor environment provided that
seawater (at room temperature) is used within the condenser tubes of the actual power
plant and the temperature of the steam in contact with the tube is maintained between
30 ◦C and 80 ◦C. Enhancing the condensation heat transfer performance of titanium tubes
via the proposed technique is expected to provide significant economic benefits for many
industrial applications.

4. Conclusions

In this study, we used DB mapping to estimate the environmental conditions in which
the condensation heat exchange performance can be improved by using superhydrophobic
titanium surfaces with chemically etched micro/nanoscale surface modifications. Addi-
tionally, we showed that the behavior of high-temperature droplets changes according to
the complexity of the surface structure. Three types of superhydrophobic titanium surfaces
(each with a different surface structure) were fabricated. The DB maps were constructed
based on droplet behavior experiments in which the temperatures of the titanium surface
and the water droplets varied. Each of the etched superhydrophobic titanium surfaces
exhibited a contact angle greater than 150◦. However, DB mapping revealed that the water
repellency of the surfaces decreased as the droplet temperature increased at certain temper-
ature conditions. Moreover, it was found that the water repellency improved as the size
of the surface structures became smaller and more complex. As the boundary lines repre-
senting droplet attachment/detachment in the DB maps correspond to supersaturation,
we found that more complex surface structures exhibited higher water-repellency stabil-
ity under higher supersaturation conditions. Based on these results, it is recommended
that superhydrophobic surfaces used in actual plant condensers exhibit complex surface
structures. As titanium is the most widely used material in condensers in power plants,
titanium was used in this study to increase the applicability of our results. Moreover,
as the process can be applied regardless of the size and shape of materials, it has the
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potential to be used in actual mass production. Finally, following the approach outlined in
this study, the application of superhydrophobic titanium surfaces is expected to improve
the condensation heat transfer performance in all supersaturation zones encountered in
industrial condensers.
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