Polyelectrolyte Multilayers: An Overview on Fabrication, Properties, and Biomedical and Environmental Applications
Abstract
:1. Introduction
2. Polyelectrolytes
3. Fabrication Methods for Polyelectrolyte Multilayers
4. Factors Controlling the Fabrication of Multilayers
5. The Main Expected Properties of Multilayers
6. Biomedical and Environmental Applications of Polyelectrolyte Multilayers
6.1. Biomedical Applications
6.1.1. Loading and Release of Active Compounds
6.1.2. Tissue Engineering Applications
6.1.3. Thin Films with Antimicrobial Activity
6.1.4. Enzyme-Based Biosensors for Medical Applications
6.2. Environmental Applications
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Iler, R.K. Multilayers of colloidal particles. J. Colloid Interface Sci. 1966, 21, 569–594. [Google Scholar] [CrossRef]
- Decher, G.; Hong, J.D.; Schmitt, J. Buildup of ultrathin multilayer films by a self-assembly process: III. Consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces. Thin Solid Film. 1992, 210–211, 831–835. [Google Scholar] [CrossRef]
- Tripathy, S.K.; Kumar, J.; Nalva, S. Applications of polyelectrolytes and theoretical models. In Handbook of Polyelectrolytes and Their Applications; American Scientific Publishers: Santa Clarita, CA, USA, 2002. [Google Scholar]
- Dragan, E.S. New Trends in Ionic (Co)Polymers and Hybrids; Nova Science Publishers, Inc.: New York, NY, USA, 2007. [Google Scholar]
- Elizarova, I.S.; Luckham, P.F. Layer-by-layer adsorption: Factors affecting the choice of substrates and polymers. Adv. Colloid Interface Sci. 2018, 262, 1–20. [Google Scholar] [CrossRef]
- De Villiers, M.M.; Otto, D.P.; Strydom, S.J.; Lvov, Y.M. Introduction to nanocoatings produced by layer-by-layer (LbL) self-assembly. Adv. Drug Deliv. Rev. 2011, 63, 701–715. [Google Scholar] [CrossRef] [PubMed]
- Taketa, T.B.; Bataglioli, R.A.; Rocha Neto, J.B.M.; de Carvalho, B.G.; de la Torre, L.G.; Beppu, M.M. Fundamentals and biomedical applications of biopolymer-based layer-by-layer films. Biopolym. Membr. Films. 2020, 219–242. [Google Scholar] [CrossRef]
- Guzmán, E.; Rubio, R.G.; Ortega, F. A closer physico-chemical look to the Layer-by-Layer electrostatic self-assembly of polyelectrolyte multilayers. Adv. Colloid Interface Sci. 2020, 282. [Google Scholar] [CrossRef]
- Elbert, D.L.; Herbert, C.B.; Hubbell, J.A. Thin polymer layers formed by polyelectrolyte multilayer techniques on biological surfaces. Langmuir 1999, 15, 5355–5362. [Google Scholar] [CrossRef]
- Picart, C.; Mutterer, J.; Richert, L.; Luo, Y.; Prestwich, G.D.; Schaaf, P.; Voegel, J.C.; Lavalle, P. Molecular basis for the explanation of the exponential growth of polyelectrolyte multilayers. Proc. Natl. Acad. Sci. USA 2002, 99, 12531–12535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, L.; Pristinski, D.; Zhuk, A.; Stoddart, C.; Ankner, J.F.; Sukhishvili, S.A. Linear versus Exponential Growth of Weak Polyelectrolyte Multilayers: Correlation with Polyelectrolyte Complexes. Macromolecules 2012, 45, 3892–3901. [Google Scholar] [CrossRef]
- An, Q.; Huang, T.; Shi, F. Covalent layer-by-layer films: Chemistry, design, and multidisciplinary applications. Chem. Soc. Rev. 2018, 47, 5061–5098. [Google Scholar] [CrossRef] [PubMed]
- Shim, B.S.; Podsiadlo, P.; Lilly, D.G.; Agarwal, A.; Lee, J.; Tang, Z.; Ho, S.; Ingle, P.; Paterson, D.; Lu, W.; et al. Nanostructured thin films made by dewetting method of layer-by-layer assembly. Nano Lett. 2007, 7, 3266–3273. [Google Scholar] [CrossRef] [PubMed]
- Richardson, J.J.; Cui, J.; Björnmalm, M.; Braunger, J.A.; Ejima, H.; Caruso, F. Innovation in Layer-by-Layer Assembly. Chem. Rev. 2016, 116, 14828–14867. [Google Scholar] [CrossRef] [Green Version]
- Elosua, C.; Lopez-torres, D.; Hernaez, M.; Matias, I.R.; Arregui, F.J. Comparative study of layer-by-layer deposition techniques for poly (sodium phosphate) and poly (allylamine hydrochloride). Nanoscale Res. Lett. 2013, 8, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Xu, Y.; Zhang, X.; Wu, H.; Shen, J.; Chen, R.; Xiong, Y.; Li, J.; Guo, S. Progress in Polymer Science Progress on the layer-by-layer assembly of multilayered polymer composites: Strategy, structural control and applications. Prog. Polym. Sci. 2019, 89, 76–107. [Google Scholar] [CrossRef]
- Schlenoff, J.B.; Dubas, S.T.; Farhat, T. Sprayed polyelectrolyte multilayers. Langmuir 2000, 16, 9968–9969. [Google Scholar] [CrossRef]
- Alongi, J.; Carosio, F.; Frache, A.; Malucelli, G. Layer by Layer coatings assembled through dipping, vertical or horizontal spray for cotton flame retardancy. Carbohydr. Polym. 2013, 92, 114–119. [Google Scholar] [CrossRef]
- Dierendonck, M.; De Koker, S.; De Rycke, R.; De Geest, B.G. Just spray it-LbL assembly enters a new age. Soft Matter 2014, 10, 804–807. [Google Scholar] [CrossRef]
- Hsu, B.B.; Hagerman, S.R.; Hammond, P.T. Rapid and efficient sprayed multilayer films for controlled drug delivery. J. Appl. Polym. Sci. 2016, 133, 1–8. [Google Scholar] [CrossRef]
- Ariga, K.; Ahn, E.; Park, M.; Kim, B.S. Layer-by-Layer Assembly: Recent Progress from Layered Assemblies to Layered Nanoarchitectonics. Chem. Asian J. 2019, 14, 2553–2566. [Google Scholar] [CrossRef]
- Li, Y.; Wang, X.; Sun, J. Layer-by-layer assembly for rapid fabrication of thick polymeric films. Chem. Soc. Rev. 2012, 41, 5998–6009. [Google Scholar] [CrossRef]
- Cho, J. Fabrication of Highly Ordered Multilayer Films. Adv. Mater. 2001, 13, 1076–1078. [Google Scholar] [CrossRef]
- Kiel, M.; Mitzscherling, S.; Leitenberger, W.; Santer, S.; Tiersch, B.; Sievers, T.K.; Möhwald, H.; Bargheer, M. Structural characterization of a spin-assisted colloid-polyelectrolyte assembly: Stratified multilayer thin films. Langmuir 2010, 26, 18499–18502. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Dai, L.; Zhang, L.; Ji, S. Effects of external electric field on film growth, morphology, and nanostructure of polyelectrolyte and nanohybrid multilayers onto insulating substrates. Langmuir 2011, 27, 2093–2098. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Lu, Y.; Sun, J.; Zhang, J.; Sun, C.; Liu, J.; Shen, J. Site-selective lateral multilayer assembly of bienzyme with polyelectrolyte on ITO electrode based on electric field-induced directly layer-by-layer deposition. Biomacromolecules 2003, 4, 1161–1167. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, X.; Gu, J.; Yang, H.; Nie, J.; Ma, G. Electrodeposition of alginate/chitosan layer-by-layer composite coatings on titanium substrates. Carbohydr. Polym. 2014, 103, 38–45. [Google Scholar] [CrossRef]
- Barker, S.L.R.; Ross, D.; Tarlov, M.J.; Gaitan, M.; Locascio, L.E. Control of flow direction in microfluidic devices with polyelectrolyte multilayers. Anal. Chem. 2000, 72, 5925–5929. [Google Scholar] [CrossRef]
- Kim, H.J.; Lee, K.; Kumar, S.; Kim, J. Dynamic sequential layer-by-layer deposition method for fast and region-selective multilayer thin film fabrication. Langmuir 2005, 21, 8532–8538. [Google Scholar] [CrossRef]
- Madaboosi, N.; Uhlig, K.; Jäger, M.S.; Möhwald, H.; Duschl, C.; Volodkin, D.V. Microfluidics as a tool to understand the build-up mechanism of exponential-like growing films. Macromol. Rapid Commun. 2012, 33, 1775–1779. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Y.; Cheng, Y.; Kim, E.; Rubloff, G.W.; Bentley, W.E.; Payne, G.F. Coupling electrodeposition with layer-by-layer assembly to address proteins within microfluidic channels. Adv. Mater. 2011, 23, 5817–5821. [Google Scholar] [CrossRef]
- Borges, J.; Mano, J.F. Molecular interactions driving the layer-by-layer assembly of multilayers. Chem. Rev. 2014, 114, 8883–8942. [Google Scholar] [CrossRef]
- Xiao, F.X.; Pagliaro, M.; Xu, Y.J.; Liu, B. Layer-by-layer assembly of versatile nanoarchitectures with diverse dimensionality: A new perspective for rational construction of multilayer assemblies. Chem. Soc. Rev. 2016, 45, 3088–3121. [Google Scholar] [CrossRef] [PubMed]
- Decher, G.; Lehr, B.; Lowack, K.; Lvov, Y.; Schmitt, J. New nanocomposite films for biosensors: Layer-by-layer adsorbed films of polyelectrolytes, proteins or DNA. Biosens. Bioelectron. 1994, 9, 677–684. [Google Scholar] [CrossRef]
- Dubas, S.T.; Schlenoff, J.B. Factors controlling the growth of polyelectrolyte multilayers. Macromolecules 1999, 32, 8153–8160. [Google Scholar] [CrossRef]
- Dubas, S.T.; Schlenoff, J.B. Swelling and smoothing of polyelectrolyte multilayers by salt. Langmuir 2001, 17, 7725–7727. [Google Scholar] [CrossRef]
- Mjahed, H.; Voegel, J.C.; Senger, B.; Chassepot, A.; Rameau, A.; Ball, V.; Schaaf, P.; Boulmedais, F. Hole formation induced by ionic strength increase in exponentially growing multilayer films. Soft Matter 2009, 5, 2269–2276. [Google Scholar] [CrossRef]
- Dubas, S.T.; Schlenoff, J.B. Polyelectrolyte multilayers containing a weak polyacid: Construction and deconstruction. Macromolecules 2001, 34, 3736–3740. [Google Scholar] [CrossRef]
- Buron, C.C.; Filiâtre, C.; Membrey, F.; Bainier, C.; Buisson, L.; Charraut, D.; Foissy, A. Surface morphology and thickness of a multilayer film composed of strong and weak polyelectrolytes: Effect of the number of adsorbed layers, concentration and type of salts. Thin Solid Film 2009, 517, 2611–2617. [Google Scholar] [CrossRef]
- Kharlampieva, E.; Kozlovskaya, V.; Chan, J.; Ankner, J.F.; Tsukruk, V.V. Spin-assisted layer-by-layer assembly: Variation of stratification as studied with neutron reflectivity. Langmuir 2009, 25, 14017–14024. [Google Scholar] [CrossRef]
- Guzmán, E.; Ritacco, H.; Ortega, F.; Rubio, R.G. Evidence of the influence of adsorption kinetics on the internal reorganization of polyelectrolyte multilayers. Colloids Surf. Physicochem. Eng. Asp. 2011, 384, 274–281. [Google Scholar] [CrossRef]
- Tang, K.; Besseling, N.A.M. Formation of polyelectrolyte multilayers: Ionic strengths and growth regimes. Soft Matter 2016, 12, 1032–1040. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hernandez-Montelongo, J.; Nascimento, V.F.; Hernández-Montelongo, R.; Beppu, M.M.; Cotta, M.A. Fractal analysis of the formation process and morphologies of hyaluronan/chitosan nanofilms in layer-by-layer assembly. Polymer 2020, 191, 1–8. [Google Scholar] [CrossRef]
- Burke, S.E.; Barrett, C.J. pH-responsive properties of multilayered poly(L-lysine)/hyaluronic acid surfaces. Biomacromolecules 2003, 4, 1773–1783. [Google Scholar] [CrossRef]
- Itano, K.; Choi, J.; Rubner, M.F. Mechanism of the pH-induced discontinuous swelling/deswelling transitions of poly(allylamine hydrochloride)-Containing polyelectrolyte multilayer films. Macromolecules 2005, 38, 3450–3460. [Google Scholar] [CrossRef]
- Schönhoff, M.; Bieker, P. Linear and exponential growth regimes of multilayers of weak polyelectrolytes in dependence on pH. Macromolecules 2010, 43, 5052–5059. [Google Scholar] [CrossRef]
- Fu, J.; Ji, J.; Shen, L.; Küller, A.; Rosenhahn, A.; Shen, J.; Grunze, M. pH-amplified exponential growth multilayers: A facile method to develop hierarchical micro- and nanostructured surfaces. Langmuir 2009, 25, 672–675. [Google Scholar] [CrossRef] [PubMed]
- Guzmán, E.; Ortega, F.; Prolongo, M.G.; Starov, V.M.; Rubio, R.G. Influence of the molecular architecture on the adsorption onto solid surfaces: Comb-like polymers. Phys. Chem. Chem. Phys. 2011, 13, 16416–16423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barrantes, A.; Santos, O.; Sotres, J.; Arnebrant, T. Influence of pH on the build-up of poly-L-lysine/heparin multilayers. J. Colloid Interface Sci. 2012, 388, 191–200. [Google Scholar] [CrossRef]
- Poptoshev, E.; Schoeler, B.; Caruso, F. Influence of Solvent Quality on the Growth of Polyelectrolyte Multilayers. Langmuir 2004, 20, 829–834. [Google Scholar] [CrossRef]
- Chen, Q.; Ma, N.; Qian, H.; Wang, L.; Lu, Z. Layer-by-Layer assembly of two polyacrylate derivatives: Effect of solvent composition and side-chain structure. Polymer 2007, 48, 2659–2664. [Google Scholar] [CrossRef]
- Lvov, Y.; Decher, G.; Mohwald, M. Assembly, Structural Characterization, and Thermal Behavior of Layer-by-Layer Deposited Ultrathin Films of Poly(vinyl sulfate) and Poly(allylamine). Langmuir 1993, 9, 481–486. [Google Scholar] [CrossRef]
- Salomäki, M.; Vinokurov, I.A.; Kankare, J. Effect of temperature on the buildup of polyelectrolyte multilayers. Langmuir 2005, 21, 11232–11240. [Google Scholar] [CrossRef]
- Vikulina, A.S.; Anissimov, Y.G.; Singh, P.; Prokopović, V.Z.; Uhlig, K.; Jaeger, M.S.; Von Klitzing, R.; Duschl, C.; Volodkin, D. Temperature effect on the build-up of exponentially growing polyelectrolyte multilayers. An exponential-to-linear transition point. Phys. Chem. Chem. Phys. 2016, 18, 7866–7874. [Google Scholar] [CrossRef] [Green Version]
- Steitz, R.; Jaeger, W.; Klitzing, R.V. Influence of charge density and ionic strength on the multilayer formation of strong polyelectrolytes. Langmuir 2001, 17, 4471–4474. [Google Scholar] [CrossRef]
- Glinel, K.; Moussa, A.; Jonas, A.M.; Laschewsky, A. Influence of polyelectrolyte charge density on the formation of multilayers of strong polyelectrolytes at low ionic strength. Langmuir 2002, 18, 1408–1412. [Google Scholar] [CrossRef]
- Koetse, M.; Laschewsky, A.; Jonas, A.M.; Wagenknecht, W. Influence of charge density and distribution on the internal structure of electrostatically self-assembled polyelectrolyte films. Langmuir 2002, 18, 1655–1660. [Google Scholar] [CrossRef]
- Choi, J.; Rubner, M.F. Influence of the degree of ionization on weak polyelectrolyte multilayer assembly. Macromolecules 2005, 38, 116–124. [Google Scholar] [CrossRef]
- Schoeler, B.; Kumaraswamy, G.; Caruso, F. Investigation of the Influence of Polyelectrolyte Charge Density on the growth of multilayer thin films by LBLma011349p.pdf. Macromolecules 2002, 35, 889–897. [Google Scholar] [CrossRef]
- Voigt, U.; Jaeger, W.; Findenegg, G.H.; Klitzing, R.V. Charge effects on the formation of multilayers containing strong polyelectrolytes. J. Phys. Chem. B 2003, 107, 5273–5280. [Google Scholar] [CrossRef]
- Guzmán, E.; Ortega, F.; Baghdadli, N.; Cazeneuve, C.; Luengo, G.S.; Rubio, R.G. Adsorption of conditioning polymers on solid substrates with different charge density. ACS Appl. Mater. Interfaces 2011, 3, 3181–3188. [Google Scholar] [CrossRef] [PubMed]
- Kujawa, P.; Moraille, P.; Sanchez, J.; Badia, A.; Winnik, F.M. Effect of molecular weight on the exponential growth and morphology of hyaluronan/chitosan multilayers: A surface plasmon resonance spectroscopy and atomic force microscopy investigation. J. Am. Chem. Soc. 2005, 127, 9224–9234. [Google Scholar] [CrossRef] [PubMed]
- Sergeeva, I.P.; Semenov, D.A.; Sobolev, V.D.; Churaev, N.V. Layer-to-layer adsorption of oppositely charged polyelectrolytes: The effect of molecular mass: 2. Bilayer systems. Colloid J. 2008, 70, 616–620. [Google Scholar] [CrossRef]
- Jang, Y.; Seo, J.; Akgun, B.; Satija, S.; Char, K. Molecular weight dependence on the disintegration of spin-assisted weak polyelectrolyte multilayer films. Macromolecules 2013, 46, 4580–4588. [Google Scholar] [CrossRef]
- Towle, E.G.; Ding, I.; Peterson, A.M. Impact of molecular weight on polyelectrolyte multilayer assembly and surface properties. J. Colloid Interface Sci. 2020, 570, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Meharg, B.M.; Lee, I. Adsorption and interlayer diffusion controlled growth and unique surface patterned growth of polyelectrolyte multilayers. Polymer 2017, 109, 297–306. [Google Scholar] [CrossRef] [Green Version]
- Zan, X.; Hoagland, D.A.; Wang, T.; Peng, B.; Su, Z. Polyelectrolyte uptake by PEMs: Impacts of molecular weight and counterion. Polymer 2012, 53, 5109–5115. [Google Scholar] [CrossRef]
- Shen, L.; Chaudouet, P.; Ji, J.; Picart, C. PH-amplified multilayer films based on hyaluronan: Influence of HA molecular weight and concentration on film growth and stability. Biomacromolecules 2011, 12, 1322–1331. [Google Scholar] [CrossRef] [PubMed]
- Guzmán, E.; San Miguel, V.; Peinado, C.; Ortega, F.; Rubio, R.G. Polyelectrolyte multilayers containing triblock copolymers of different charge ratio. Langmuir 2010, 26, 11494–11502. [Google Scholar] [CrossRef] [Green Version]
- Guzmán, E.; Ritacco, H.A.; Ortega, F.; Rubio, R.G. Growth of polyelectrolyte layers formed by poly(4-styrenesulfonate sodium salt) and two different polycations: New insights from study of adsorption kinetics. J. Phys. Chem. C 2012, 116, 15474–15483. [Google Scholar] [CrossRef]
- Andreeva, D.V. Polyelectrolyte multilayers for drug delivery. Adv. Ave. Dev. Nov. Carr. Bioact. Biol. Agents 2020, 183–209. [Google Scholar] [CrossRef]
- Dodoo, S.; Steitz, R.; Laschewsky, A.; Von Klitzing, R. Effect of ionic strength and type of ions on the structure of water swollen polyelectrolyte multilayers. Phys. Chem. Chem. Phys. 2011, 13, 10318–10325. [Google Scholar] [CrossRef] [Green Version]
- Dodoo, S.; Balzer, B.N.; Hugel, T.; Laschewsky, A.; Von Klitzing, R. Effect of ionic strength and layer number on swelling of polyelectrolyte multilayers in water vapour. Soft Mater. 2013, 11, 157–164. [Google Scholar] [CrossRef]
- Salomäki, M.; Kankare, J. Specific anion effect in swelling of polyelectrolyte multilayers. Macromolecules 2008, 41, 4423–4428. [Google Scholar] [CrossRef]
- Bonderer, L.J.; Studart, A.R.; Gauckler, L.J.; Gaucklerf, L. Bioinspired of Platelet Design and Assembly Reinforced Polymer Films. Science 2008, 319, 1069–1073. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Cheng, Q.; Lin, L.; Jiang, L. Synergistic toughening of bioinspired poly(vinyl alcohol)-clay- nanofibrillar cellulose artificial nacre. ACS Nano 2014, 8, 2739–2745. [Google Scholar] [CrossRef]
- Guzmán, E.; Ritacco, H.; Rubio, J.F.; Rubio, R.G. Salt-induced changes in the growth of polyelectrolyte layers of poly (diallyl- dimethylammonium chloride) and poly (4-styrene sulfonate of sodium) Salt-induced changes in the growth of polyelectrolyte layers of poly (diallyl- dimethylammonium chlorid). Soft Matter May 2009, 5, 2130–2142. [Google Scholar] [CrossRef]
- Guzmán, E.; Maestro, A.; Llamas, S.; Álvarez-Rodríguez, J.; Ortega, F.; Maroto-Valiente, Á.; Rubio, R.G. 3D solid supported inter-polyelectrolyte complexes obtained by the alternate deposition of poly (diallyldimethylammonium chloride) and poly (sodium 4-styrenesulfonate). Beilstein J. Nanotechnol. 2016, 197–208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reisch, A.; Tirado, P.; Roger, E.; Boulmedais, F.; Collin, D.; Voegel, J.C.; Frisch, B.; Schaaf, P.; Schlenoff, J.B. Compact saloplastic poly(acrylic acid)/poly(allylamine) complexes: Kinetic control over composition, microstructure, and mechanical properties. Adv. Funct. Mater. 2013, 23, 673–682. [Google Scholar] [CrossRef] [Green Version]
- Ghiorghita, C.A.; Bucatariu, F.; Dragan, E.S. Influence of cross-linking in loading/release applications of polyelectrolyte multilayer assemblies. A review. Mater. Sci. Eng. C. 2019, 105, 110050. [Google Scholar] [CrossRef]
- Bhat, R.; Karim, A.A. Ultraviolet irradiation improves gel strength of fish gelatin. Food Chem. 2009, 113, 1160–1164. [Google Scholar] [CrossRef]
- Brinkman, W.T.; Nagapudi, K.; Thomas, B.S.; Chaikof, E.L. Photo-cross-linking of type I collagen gels in the presence of smooth muscle cells: Mechanical properties, cell viability, and function. Biomacromolecules 2003, 4, 890–895. [Google Scholar] [CrossRef]
- Prasertsung, I.; Damrongsakkul, S.; Saito, N. Crosslinking of a Gelatin Solutions Induced by Pulsed Electrical Discharges in Solutions. Plasma Process. Polym. 2013, 10, 792–797. [Google Scholar] [CrossRef]
- Simon, F.; Dragan, E.S.; Bucatariu, F. Reactive polyelectrolyte multilayers onto silica particles. React. Funct. Polym. 2008, 68, 1178–1184. [Google Scholar] [CrossRef]
- Zhu, X.; Jańczewski, D.; Lee, S.S.C.; Teo, S.L.M.; Vancso, G.J. Cross-linked polyelectrolyte multilayers for marine antifouling applications. ACS Appl. Mater. Interfaces 2013, 5, 5961–5968. [Google Scholar] [CrossRef]
- Bucatariu, F.; Ghiorghita, C.A.; Simon, F.; Bellmann, C.; Dragan, E.S. Poly(ethyleneimine) cross-linked multilayers deposited onto solid surfaces and enzyme immobilization as a function of the film properties. Appl. Surf. Sci. 2013, 280, 812–819. [Google Scholar] [CrossRef]
- Bucatariu, F.; Schwarz, D.; Zaharia, M.; Steinbach, C.; Ghiorghita, C.A.; Schwarz, S.; Mihai, M. Nanostructured polymer composites for selective heavy metal ion sorption. Colloids Surf. A Physicochem. Eng. Asp. 2020, 603. [Google Scholar] [CrossRef]
- Bucatariu, F.; Ghiorghita, C.A.; Dragan, E.S. Cross-linked multilayer films deposited onto silica microparticles with tunable selectivity for anionic dyes. Colloids Surf. A Physicochem. Eng. Asp. 2018, 537, 53–60. [Google Scholar] [CrossRef]
- Ehterami, A.; Salehi, M.; Farzamfar, S.; Samadian, H.; Vaez, A.; Ghorbani, S.; Ai, J.; Sahrapeyma, H. Chitosan/alginate hydrogels containing Alpha-tocopherol for wound healing in rat model. J. Drug Deliv. Sci. Technol. 2019, 51, 204–213. [Google Scholar] [CrossRef]
- Lu, Y.; Fan, L.; Yang, L.Y.; Huang, F.; Ouyang, X.K. PEI-modified core-shell/bead-like amino silica enhanced poly (vinyl alcohol)/chitosan for diclofenac sodium efficient adsorption. Carbohydr. Polym. 2020, 229, 115459. [Google Scholar] [CrossRef]
- Bucatariu, F.; Ghiorghita, C.A.; Cocarta, A.I.; Dragan, E.S. Cross-linked multilayer-dye films deposited onto silica surfaces with high affinity for pepsin. Appl. Surf. Sci. 2016, 390, 320–327. [Google Scholar] [CrossRef]
- O’Connor, N.A.; Jitianu, M.; Nunez, G.; Picard, Q.; Wong, M.; Akpatsu, D.; Negrin, A.; Gharbaran, R.; Lugo, D.; Shaker, S.; et al. Dextran hydrogels by crosslinking with amino acid diamines and their viscoelastic properties. Int. J. Biol. Macromol. 2018, 111, 370–378. [Google Scholar] [CrossRef] [Green Version]
- Bucatariu, F.; Simon, F.; Fundueanu, G.; Dragan, E.S. Design of silica microparticles with oligopeptide brushes and their interaction with proteins. Colloid Polym. Sci. 2011, 289, 33–41. [Google Scholar] [CrossRef]
- Dragan, E.S.; Bucatariu, F. Cross-linked multilayers of poly(vinyl amine) as a single component and their interaction with proteins. Macromol. Rapid Commun. 2010, 31, 317–322. [Google Scholar] [CrossRef]
- Bigi, A.; Cojazzi, G.; Panzavolta, S.; Roveri, N.; Rubini, K. Stabilization of gelatin films by crosslinking with genipin. Biomaterials 2002, 23, 4827–4832. [Google Scholar] [CrossRef]
- Bhattarai, N.; Gunn, J.; Zhang, M. Chitosan-based hydrogels for controlled, localized drug delivery. Adv. Drug Deliv. Rev. 2010, 62, 83–99. [Google Scholar] [CrossRef]
- Bucatariu, F.; Ghiorghita, C.A.; Dragan, E.S. Sorption and release of drugs in/from cross-linked poly(ethyleneimine) multilayer films deposited onto silica microparticles. Colloids Surf. B Biointerfaces 2015, 126, 224–231. [Google Scholar] [CrossRef]
- Dai, F.; Yu, J.; Yuan, M.; Deng, Z.; Wang, Y.; Fan, Y.; Deng, H.; Cheng, Y. Enhanced cellular compatibility of chitosan/collagen multilayers LBL modified nanofibrous mats. Mater. Des. 2021, 205, 109717. [Google Scholar] [CrossRef]
- Xu, Q.; Liu, H.; Ye, Z.; Nan, K.; Lin, S.; Chen, H.; Wang, B. Antimicrobial efficiency of PAA/(PVP/CHI) erodible polysaccharide multilayer through loading and controlled release of antibiotics. Carbohydr. Polym. 2017, 161, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Amorim, S.; Pashkuleva, I.; Reis, C.A.; Reis, R.L.; Pires, R.A. Tunable layer-by-layer films containing hyaluronic acid and their interactions with CD44. J. Mater. Chem. B 2020, 8, 3880–3885. [Google Scholar] [CrossRef] [PubMed]
- Arias, C.J.; Surmaitis, R.L.; Schlenoff, J.B. Cell Adhesion and Proliferation on the “living” Surface of a Polyelectrolyte Multilayer. Langmuir 2016, 32, 5412–5421. [Google Scholar] [CrossRef]
- Antipov, A.A.; Sukhorukov, G.B.; Leporatti, S.; Radtchenko, I.L.; Donath, E.; Möhwald, H. Polyelectrolyte multilayer capsule permeability control. Colloids Surf. A Physicochem. Eng. Asp. 2002, 198–200, 535–541. [Google Scholar] [CrossRef]
- De Grooth, J.; Oborný, R.; Potreck, J.; Nijmeijer, K.; De Vos, W.M. The role of ionic strength and odd-even effects on the properties of polyelectrolyte multilayer nanofiltration membranes. J. Membr. Sci. 2015, 475, 311–319. [Google Scholar] [CrossRef]
- Sukhorukov, G.B.; Antipov, A.A.; Voigt, A.; Donath, E.; Mohwald, H. pH-Controlled Macromolecule Encapsulation in and Release from Polyelectrolyte Multilayer Nanocapsules. Macromol. Rapid Commun. 2001, 22, 44–46. [Google Scholar] [CrossRef]
- Luo, G.F.; Xu, X.D.; Zhang, J.; Yang, J.; Gong, Y.H.; Lei, Q.; Jia, H.Z.; Li, C.; Zhuo, R.X.; Zhang, X.Z. Encapsulation of an adamantane-doxorubicin prodrug in pH-responsive polysaccharide capsules for controlled release. ACS Appl. Mater. Interfaces 2012, 4, 5317–5324. [Google Scholar] [CrossRef] [PubMed]
- Déjugnat, C.; Sukhorukov, G.B. pH-responsive properties of hollow polyelectrolyte microcapsules templated on various cores. Langmuir 2004, 20, 7265–7269. [Google Scholar] [CrossRef]
- Marchenko, I.; Yashchenok, A.; Borodina, T.; Bukreeva, T.; Konrad, M.; Möhwald, H.; Skirtach, A. Controlled enzyme-catalyzed degradation of polymeric capsules templated on CaCO3: Influence of the number of LbL layers, conditions of degradation, and disassembly of multicompartments. J. Control. Release 2012, 162, 599–605. [Google Scholar] [CrossRef]
- Francesko, A.; Fernandes, M.M.; Ivanova, K.; Amorim, S.; Reis, R.L.; Pashkuleva, I.; Mendoza, E.; Pfeifer, A.; Heinze, T.; Tzanov, T. Bacteria-responsive multilayer coatings comprising polycationic nanospheres for bacteria biofilm prevention on urinary catheters. Acta Biomater. 2016, 33, 203–212. [Google Scholar] [CrossRef]
- Albright, V.; Zhuk, I.; Wang, Y.; Selin, V.; van de Belt-Gritter, B.; Busscher, H.J.; van der Mei, H.C.; Sukhishvili, S.A. Self-defensive antibiotic-loaded layer-by-layer coatings: Imaging of localized bacterial acidification and pH-triggering of antibiotic release. Acta Biomater. 2017, 61, 66–74. [Google Scholar] [CrossRef]
- Craig, M.; Altskär, A.; Nordstierna, L.; Holmberg, K. Bacteria-triggered degradation of nanofilm shells for release of antimicrobial agents. J. Mater. Chem. B. 2016, 4, 672–682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caruso, F.; Möhwald, H. Protein multilayer formation on colloids through a stepwise self- assembly technique. J. Am. Chem. Soc. 1999, 121, 6039–6046. [Google Scholar] [CrossRef]
- Schüler, C.; Caruso, F. Decomposable hollow biopolymer-based capsules. Biomacromolecules 2001, 2, 921–926. [Google Scholar] [CrossRef]
- Dai, Z.; Voigt, A.; Leporatti, S.; Donath, E.; Dähne, L.; Möhwald, H. Layer-by-Layer Self-Assembly of Polyelectrolyte and Low Molecular Weight Species into Capsules. Adv. Mater. 2001, 13, 1339–1342. [Google Scholar] [CrossRef]
- Radtchenko, I.L.; Sukhorukov, G.B.; Leporatti, S.; Khomutov, G.B.; Donath, E.; Möhwald, H. Assembly of alternated multivalent ion/polyelectrolyte layers on colloidal particles. Stability of the multilayers and encapsulation of macromolecules into polyelectrolyte capsules. J. Colloid Interface Sci. 2000, 230, 272–280. [Google Scholar] [CrossRef] [PubMed]
- Skirtach, A.G.; Dejugnat, C.; Braun, D.; Susha, A.S.; Rogach, A.L.; Parak, W.J.; Möhwald, H.; Sukhorukovt, G.B. The role of metal nanoparticles in remote release of encapsulated materials. Nano Lett. 2005, 5, 1371–1377. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, M.B.; Hatami, J.; Mano, J.F. Coating strategies using layer-by-layer deposition for cell encapsulation. Chem. Asian J. 2016, 11, 1753–1764. [Google Scholar] [CrossRef] [PubMed]
- Dominguez-Arca, V.; Costa, R.R.; Carvalho, A.M.; Taboada, P.; Reis, R.L.; Prieto, G.; Pashkuleva, I. Liposomes embedded in layer by layer constructs as simplistic extracellular vesicles transfer model. Mater. Sci. Eng. C 2021, 121, 111813. [Google Scholar] [CrossRef] [PubMed]
- Costa, R.R.; Testera, A.M.; Arias, F.J.; Rodriguez-Cabello, J.C.; Mano, J.F. Layer-by-layer film growth using polysaccharides and recombinant polypeptides: A combinatorial approach. J. Phys. Chem. B 2013, 117, 6839–6848. [Google Scholar] [CrossRef] [PubMed]
- Guillot-Ferriols, M.; Rodriguez-Hernandez, J.C.; Correia, D.M.; Carabineiro, S.A.C.; Lanceros-Mendez, S.; Gomez Ribelles, J.L.; Gallego Ferrer, G. Poly(vinylidene) fluoride membranes coated by heparin/collagen layer-by-layer, smart biomimetic approaches for mesenchymal stem cell culture. Mater. Sci. Eng. C 2020, 117, 111281. [Google Scholar] [CrossRef]
- Ivanova, K.; Ivanova, A.; Ramon, E.; Hoyo, J.; Sanchez-Gomez, S.; Tzanov, T. Antibody-enabled antimicrobial nanocapsules for selective elimination of Staphylococcus aureus. ACS Appl. Mater. Interfaces 2020, 12, 35918–35927. [Google Scholar] [CrossRef]
- Francesko, A.; Ivanova, K.; Hoyo, J.; Perez-Rafael, S.; Petkova, P.; MacedoFernandes, M.; Heinze, T.; Mendoza, E.; Tzanov, T. Bottom up layer-by-layer assembling of antibacterial freestanding nanobiocomposite films. Biomacromolecules 2018, 19, 3628–3636. [Google Scholar] [CrossRef]
- Ivanova, A.; Ivanova, K.; Hoyo, J.; Heinze, T.; Sanchez-Gomez, T.T. Layer-by-layer decorated nanoparticles with tunable antibacterial and antibiofilm properties against both gram-positive and gram-negative bacteria. ACS Appl. Mater. Interfaces 2018, 10, 3314–3323. [Google Scholar] [CrossRef]
- Barsan, M.M.; David, M.; Florescu, M.; Laura, Ţ.; Brett, C.M.A. A new self-assembled layer-by-layer glucose biosensor based on chitosan biopolymer entrapped enzyme with nitrogen doped graphene. Bioelectrochemistry 2014, 99, 46–52. [Google Scholar] [CrossRef]
- Miyazaki, C.M.; Pereira, T.P.; Mascagni, D.B.T.; De Moraes, M.L.; Ferreira, M. Monoamine oxidase B layer-by-layer film fabrication and characterization toward dopamine detection. Mater. Sci. Eng. C 2016, 58, 310–315. [Google Scholar] [CrossRef]
- Wohl, B.M.; Engbersen, J.F.J. Responsive layer-by-layer materials for drug delivery. J. Control. Release 2012, 158, 2–14. [Google Scholar] [CrossRef]
- Shende, P.; Patil, A.; Prabhakar, B. Layer-by-layer technique for enhancing physicochemical properties of actives. J. Drug Deliv. Sci. Technol. 2020, 56, 101519. [Google Scholar] [CrossRef]
- Qiu, X.; Leporatti, S.; Donath, E.; Möhwald, H. Studies on the drug release properties of polysaccharide multilayers encapsulated ibuprofen microparticles. Langmuir 2001, 17, 5375–5380. [Google Scholar] [CrossRef]
- Kumar, K.N.A.; Ray, S.B.; Nagaraja, V.; Raichur, A.M. Encapsulation and release of rifampicin using poly (vinyl pyrrolidone)-poly(methacrylic acid) polyelectrolyte capsules. Mater. Sci. Eng. C 2009, 29, 2508–2513. [Google Scholar] [CrossRef]
- Brandt, V.; Jafelicci, M.; Verza, B.S.; Beucken, J.J.J.P.; Van Den Piazza, R.D.; Tagit, O.; Spolidorio, D.M.P.; Bar, V.A.R.; Eduardo, C.; De Avila, E.D. A long-term controlled drug-delivery with anionic beta cyclodextrin complex in layer-by-layer coating for percutaneous implants devices. Carbohydr. Polym. 2021, 257. [Google Scholar] [CrossRef]
- Al Thaher, Y. Tailored gentamicin release from silica nanocarriers coated with polyelectrolyte multilayers. Colloids Surf. A Physicochem. Eng. Asp. 2021, 614, 126210. [Google Scholar] [CrossRef]
- Pilicheva, B.; Uzunova, Y.; Bodurov, I.; Viraneva, A.; Exner, G.; Sotirov, S.; Yovcheva, T.; Marudova, M. Layer-by-layer self-assembly films for buccal drug delivery: The effect of polymer cross-linking. J. Drug Deliv. Sci. Technol. 2020, 59, 101897. [Google Scholar] [CrossRef]
- Chen, Y.; Lin, X.; Park, H.; Greever, R. Study of artemisinin nanocapsules as anticancer drug delivery systems. Nanomed. Nanotechnol. Biol. Med. 2009, 5, 316–322. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Li, J.; Tang, X.; Huang, K.; Chen, L. Polyelectrolyte three layer nanoparticles of chitosan/dextran sulfate/chitosan for dual drug delivery. Colloids Surf. B Biointerfaces 2020, 190, 110925. [Google Scholar] [CrossRef]
- Ramasamy, T.; Haidar, Z.S.; Hiep, T.; Yeon, J.; Jeong, J.; Soo, B.; Choi, H.; Soon, C.; Oh, J. Acta Biomaterialia Layer-by-layer assembly of liposomal nanoparticles with PEGylated polyelectrolytes enhances systemic delivery of multiple anticancer drugs. Acta Biomater. 2014, 10, 5116–5127. [Google Scholar] [CrossRef]
- Ramasamy, T.; Hiep, T.; Yeon, J.; Jun, H.; Hwan, J.; Soon, C.; Choi, H.; Oh, J. Layer-by-layer coated lipid-polymer hybrid nanoparticles designed for use in anticancer drug delivery. Carbohydr. Polym. 2014, 102, 653–661. [Google Scholar] [CrossRef]
- Fan, Y.F.; Wang, Y.N.; Fan, Y.G.; Ma, J.B. Preparation of insulin nanoparticles and their encapsulation with biodegradable polyelectrolytes via the layer-by-layer adsorption. Int. J. Pharm. 2006, 324, 158–167. [Google Scholar] [CrossRef]
- Schneider, G.; Decher, G. From Functional Core/Shell Nanoparticles Prepared via Layer-by-Layer Deposition to Empty Nanospheres. Nano Lett. 2004, 4, 1833–1839. [Google Scholar] [CrossRef]
- Antipov, A.A.; Sukhorukov, G.B. Polyelectrolyte multilayer capsules as vehicles with tunable permeability. Adv. Colloid Interface Sci. 2004, 111, 49–61. [Google Scholar] [CrossRef] [PubMed]
- Caruso, F.; Trau, D.; Möhwald, H.; Renneberg, R. Enzyme Encapsulation in Layer-by-Layer Engineered Polymer Multilayer Capsules. Langmuir 2000, 16, 1485–1488. [Google Scholar] [CrossRef]
- Vengatajalabathy Gobi, K.; Mizutani, F. Layer-by-layer construction of an active multilayer enzyme electrode applicable for direct amperometric determination of cholesterol. Sens. Actuators B Chem. 2001, 80, 272–277. [Google Scholar] [CrossRef]
- Hyun, K.H.; Han, S.W.; Koh, W.G.; Kwon, Y. Fabrication of biofuel cell containing enzyme catalyst immobilized by layer-by-layer method. J. Power Sources 2015, 286, 197–203. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, Y.; Tang, N.; Cheng, P.; Xiang, J.; Du, W.; Wang, X. Bioinspired stability improvement of layer-by-layer microcapsules using a bioadhesive for enzyme encapsulation. React. Funct. Polym. 2016, 99, 73–79. [Google Scholar] [CrossRef]
- Arana-Peña, S.; Rios, N.S.; Mendez-Sanchez, C.; Lokha, Y.; Carballares, D.; Gonçalves, L.R.B.; Fernandez-Lafuente, R. Coimmobilization of different lipases: Simple layer by layer enzyme spatial ordering. Int. J. Biol. Macromol. 2020, 145, 856–864. [Google Scholar] [CrossRef]
- Karimpil, J.J.; Melo, J.S.; D’Souza, S.F. Immobilization of lipase on cotton cloth using the layer-by-layer self-assembly technique. Int. J. Biol. Macromol. 2012, 50, 300–302. [Google Scholar] [CrossRef]
- Ghiorghita, C.A.; Bucatariu, F.; Dragan, E.S. Poly(N,N-dimethylamino)ethyl methacrylate/sodium alginate multilayers and their interaction with proteins/enzymes. Int. J. Biol. Macromol. 2018, 107, 1584–1590. [Google Scholar] [CrossRef]
- Zhao, Z.X.; Wang, X.S.; Qin, X.; Chen, Q.; Anzai, J. ichi. Enzyme microcapsules with substrate selective permeability constructed via layer-by-layer polyelectrolyte self-assembly. Mater. Sci. Eng. C 2012, 32, 569–573. [Google Scholar] [CrossRef]
- Perazzini, R.; Saladino, R.; Guazzaroni, M.; Crestini, C. A novel and efficient oxidative functionalization of lignin by layer-by-layer immobilised Horseradish peroxidase. Bioorganic Med. Chem. 2011, 19, 440–447. [Google Scholar] [CrossRef] [PubMed]
- Demuth, P.C.; Moon, J.J.; Suh, H.; Hammond, P.T.; Irvine, D.J. Releasable Layer-by-Layer Assembly of Stabilized Lipid Nanocapsules on Microneedles for Enhanced Transcutaneous Vaccine Delivery. ACS Nano 2012, 6. [Google Scholar] [CrossRef]
- Demuth, P.C.; Min, Y.; Huang, B.; Kramer, J.A.; Miller, A.D.; Barouch, D.H.; Hammond, P.T.; Irvine, D.J. Polymer multilayer tattooing for enhanced DNA vaccination. Nat. Mater. 2013, 12, 367–376. [Google Scholar] [CrossRef] [Green Version]
- De Geest, B.G.; Willart, M.A.; Hammad, H.; Lambrecht, B.N.; Pollard, C.; Bogaert, P.; De Filette, M.; Saelens, X.; Vervaet, C.; Remon, J.P.; et al. Polymeric multilayer capsule-mediated vaccination induces protective immunity against cancer and viral infection. ACS Nano 2012, 6, 2136–2149. [Google Scholar] [CrossRef]
- Mandapalli, P.K.; Labala, S.; Jose, A.; Bhatnagar, S.; Janupally, R.; Sriram, D.; Venuganti, V.V.K. Layer-by-Layer Thin Films for Co-Delivery of TGF-β siRNA and Epidermal Growth Factor to Improve Excisional Wound Healing. AAPS PharmSciTech 2017, 18, 809–820. [Google Scholar] [CrossRef] [PubMed]
- Jewell, C.M.; Zhang, J.; Fredin, N.J.; Wolff, M.R.; Hacker, T.A.; Lynn, D.M. Release of plasmid DNA from intravascular stents coated with ultrathin multilayered polyelectrolyte films. Biomacromolecules 2006, 7, 2483–2491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blacklock, J.; You, Y.-Z.; Zhou, Q.-H.; Mao, G.; Oupický, D. Gene delivery in vitro and in vivo from bioreducible multilayered polyelectrolyte films of plasmid DNA. Biomaterials 2009, 30, 939–950. [Google Scholar] [CrossRef] [Green Version]
- Kidambi, S.; Sheng, L.; Yarmush, M.L.; Toner, M.; Lee, I.; Chan, C. Patterned co-culture of primary hepatocytes and fibroblasts using polyelectrolyte multilayer templates. Macromol. Biosci. 2007, 7, 344–353. [Google Scholar] [CrossRef]
- Ryu, S.; Yoo, J.; Han, J.; Kang, S.; Jang, Y.; Han, H.J.; Char, K.; Kim, B.S. Cellular Layer-by-Layer Coculture Platform Using Biodegradable, Nanoarchitectured Membranes for Stem Cell Therapy. Chem. Mater. 2017, 29, 5134–5147. [Google Scholar] [CrossRef]
- Li, X.; Xie, J.; Yuan, X.; Xia, Y. Coating electrospun poly(ε-caprolactone) fibers with gelatin and calcium phosphate and their use as biomimetic scaffolds for bone tissue engineering. Langmuir 2008, 24, 14145–14150. [Google Scholar] [CrossRef]
- Khademhosseini, A.; Suh, K.Y.; Yang, J.M.; Eng, G.; Yeh, J.; Levenberg, S.; Langer, R. Layer-by-layer deposition of hyaluronic acid and poly-L-lysine for patterned cell co-cultures. Biomaterials 2004, 25, 3583–3592. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, D.; Jiang, X.; He, L.; Fu, L.; Zhao, Y.; Wang, Y.; Mo, H.; Shen, J. Multistructured vascular patches constructed via layer-by-layer self-assembly of heparin and chitosan for vascular tissue engineering applications. Chem. Eng. J. 2019, 370, 1057–1067. [Google Scholar] [CrossRef]
- Neto, M.R.; Beppu, M.M.; Taketa, T.B.; Bataglioli, A. Probing axial metal distribution on biopolymer-based layer-by-layer films for antimicrobial use. Colloids Surf. B Biointerfaces 2021, 199. [Google Scholar] [CrossRef]
- Fu, J.; Ji, J.; Yuan, W.; Shen, J. Construction of anti-adhesive and antibacterial multilayer films via layer-by-layer assembly of heparin and chitosan. Biomaterials 2005, 26, 6684–6692. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Peng, L. Antimicrobial and antioxidant surface modification of cellulose fibers using layer-by-layer deposition of chitosan and lignosulfonates. Carbohydr. Polym. 2015, 124, 35–42. [Google Scholar] [CrossRef]
- Azlin-Hasim, S.; Cruz-Romero, M.C.; Cummins, E.; Kerry, J.P.; Morris, M.A. The potential use of a layer-by-layer strategy to develop LDPE antimicrobial films coated with silver nanoparticles for packaging applications. J. Colloid Interface Sci. 2016, 461, 239–248. [Google Scholar] [CrossRef]
- Ramanavicius, S.; Ramanavicius, A. Conducting polymers in the design of biosensors and biofuel cells. Polymers 2021, 13, 49. [Google Scholar] [CrossRef]
- Shao, Y.; Xu, S.; Zheng, X.; Wang, Y.; Xu, W. Optical fiber LSPR biosensor prepared by gold nanoparticle assembly on polyelectrolyte multilayer. Sensors 2010, 10, 3585–3596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, B.; Hou, S.; Miao, Z.; Zhang, C.; Ji, Y. Layer-by-layer self-assembling gold nanorods and glucose oxidase onto carbon nanotubes functionalized sol-gel matrix for an amperometric glucose biosensor. Nanomaterials 2015, 5, 1544–1555. [Google Scholar] [CrossRef] [Green Version]
- Reshetilov, A.; Plekhanova, Y.; Tarasov, S.; Tikhonenko, S.; Dubrovsky, A.; Kim, A.; Kashin, V.; Machulin, A.; Wang, G.J.; Kolesov, V.; et al. Bioelectrochemical properties of enzyme-containing multilayer polyelectrolyte microcapsules modified with multiwalled carbon nanotubes. Membranes 2019, 9, 53. [Google Scholar] [CrossRef] [Green Version]
- Assunção, I.C.C.; Sério, S.; Ferreira, Q.; Jones, N.C.; Hoffmann, S.V.; Ribeiro, P.A.; Raposo, M. Graphene oxide layer-by-layer films for sensors and devices. Nanomaterials 2021, 11, 1556. [Google Scholar] [CrossRef]
- Bai, R.G.; Muthoosamy, K.; Tuvikene, R.; Manickam, S.; Ming, H.N. Highly sensitive electrochemical biosensor using folic acid-modified reduced graphene oxide for the detection of cancer biomarker. Nanomaterials 2021, 11, 1272. [Google Scholar] [CrossRef]
- Istrate, O.M.; Rotariu, L.; Bala, C. Amperometric L-Lactate biosensor based upon a gold nanoparticles/reduced graphene oxide/polyallylamine hydrochloride modified screen-printed graphite electrode. Chemosensors 2021, 9, 74. [Google Scholar] [CrossRef]
- Mavrikou, S.; Tsekouras, V.; Hatziagapiou, K.; Paradeisi, F.; Bakakos, P.; Michos, A.; Koutsoukou, A.; Konstantellou, E.; Lambrou, G.I.; Koniari, E.; et al. Clinical Application of the Novel Cell-Based Biosensor for the Ultra-Rapid Detection of the SARS-CoV-2 S1 Spike Protein Antigen: A Practical Approach. Biosensors 2021, 11, 224. [Google Scholar] [CrossRef]
- Piroozmand, F.; Mohammadipanah, F.; Faridbod, F. Emerging biosensors in detection of natural products. Synth. Syst. Biotechnol. 2020, 5, 293–303. [Google Scholar] [CrossRef]
- Moraes, M.L.; Oliveira, O.N.; Filho, U.P.R.; Ferreira, M. Phytase immobilization on modified electrodes for amperometric biosensing. Sens. Actuators B Chem. 2008, 131, 210–215. [Google Scholar] [CrossRef]
- Zou, Y.; Xiang, C.; Sun, L.; Xu, F. Amperometric glucose biosensor prepared with biocompatible material and carbon nanotube by layer-by-layer self-assembly technique. Electrochim. Acta. 2008, 53, 4089–4095. [Google Scholar] [CrossRef]
- Zhou, X.H.; Xi, F.N.; Zhang, Y.M.; Lin, X.F. Reagentless biosensor based on layer-by-layer assembly of functional multiwall carbon nanotubes and enzyme-mediator biocomposite. J. Zhejiang Univ. Sci. B 2011, 12, 468–476. [Google Scholar] [CrossRef] [Green Version]
- Buron, C.; Quinart, M.; Vrlinic, T.; Yunus, S.; Glinel, K.; AM, J.; Lakard, B. Application of original assemblies of polyelectrolytes, urease and electrodeposited polyaniline as sensitive films of potentiometric urea biosensors. Electrochim. Acta 2014, 148, 53–61. [Google Scholar] [CrossRef]
- Moraes, M.L.; Rodrigues Filho, U.P.; Oliveira, O.N.; Ferreira, M. Immobilization of uricase in layer-by-layer films used in amperometric biosensors for uric acid. J. Solid State Electrochem. 2007, 11, 1489–1495. [Google Scholar] [CrossRef]
- Wang, B.; Ji, X.; Zhao, H.; Wang, N.; Li, X.; Ni, R.; Liu, Y. An amperometric β-glucan biosensor based on the immobilization of bi-enzyme on Prussian blue–chitosan and gold nanoparticles–chitosan nanocomposite films. Biosens. Bioelectron. J. 2014, 55, 113–119. [Google Scholar]
- Shi, H.; Song, Z.; Huang, J.; Yang, Y.; Zhao, Z.; Anzai, J.I.; Osa, T.; Chen, Q. Effects of the type of polycation in the coating films prepared by a layer-by-layer deposition technique on the properties of amperometric choline sensors. Sens. Actuators B Chem. 2005, 109, 341–347. [Google Scholar] [CrossRef]
- Swati, M.; Hase, N.K.; Srivastava, R. Nanoengineered optical urea biosensor for estimating hemodialysis parameters in spent dialysate. Anal. Chim. Acta 2010, 676, 68–74. [Google Scholar] [CrossRef]
- Fiorentino, D.; Gallone, A.; Fiocco, D.; Palazzo, G.; Mallardi, A. Mushroom tyrosinase in polyelectrolyte multilayers as an optical biosensor for o-diphenols. Biosens. Bioelectron. 2010, 25, 2033–2037. [Google Scholar] [CrossRef]
- Constantine, C.A.; Mello, S.V.; Dupont, A.; Cao, X.; Santos, D.; Oliveira, O.N.; Strixino, F.T.; Pereira, E.C.; Cheng, T.C.; Defrank, J.J.; et al. Layer-by-layer self-assembled chitosan/poly(thiophene-3-acetic acid) and organophosphorus hydrolase multilayers. J. Am. Chem. Soc. 2003, 125, 1805–1809. [Google Scholar] [CrossRef]
- Disawal, S.; Qiu, J.; Elmore, B.B.; Lvov, Y.M. Two-step sequential reaction catalyzed by layer-by-layer assembled urease and arginase multilayers. Colloids Surf. B Biointerfaces 2003, 32, 145–156. [Google Scholar] [CrossRef]
- Kasprzyk-Hordern, B.; Dinsdale, R.M.; Guwy, A.J. The removal of pharmaceuticals, personal care products, endocrine disruptors and illicit drugs during wastewater treatment and its impact on the quality of receiving waters. Water Res. 2009, 43, 363–380. [Google Scholar] [CrossRef]
- Rivera-Utrilla, J.; Sánchez-Polo, M.; Ferro-García, M.Á.; Prados-Joya, G.; Ocampo-Pérez, R. Pharmaceuticals as emerging contaminants and their removal from water. A review. Chemosphere 2013, 93, 1268–1287. [Google Scholar] [CrossRef]
- Jiang, J.Q.; Zhou, Z.; Sharma, V.K. Occurrence, transportation, monitoring and treatment of emerging micro-pollutants in waste water—A review from global views. Microchem. J. 2013, 110, 292–300. [Google Scholar] [CrossRef]
- Yang, Y.; Ok, Y.S.; Kim, K.H.; Kwon, E.E.; Tsang, Y.F. Occurrences and removal of pharmaceuticals and personal care products (PPCPs) in drinking water and water/sewage treatment plants: A review. Sci. Total. Environ. 2017, 596–597, 303–320. [Google Scholar] [CrossRef]
- Teodosiu, C.; Gilca, A.F.; Barjoveanu, G.; Fiore, S. Emerging pollutants removal through advanced drinking water treatment: A review on processes and environmental performances assessment. J. Clean. Prod. 2018, 197, 1210–1221. [Google Scholar] [CrossRef]
- Rasheed, T.; Bilal, M.; Nabeel, F.; Adeel, M.; Iqbal, H.M.N. Environmentally-related contaminants of high concern: Potential sources and analytical modalities for detection, quantification, and treatment. Environ. Int. 2019, 122, 52–66. [Google Scholar] [CrossRef]
- Gilca, A.F.; Teodosiu, C.; Fiore, S.; Musteret, C.P. Emerging disinfection byproducts: A review on their occurrence and control in drinking water treatment processes. Chemosphere 2020, 259, 127476. [Google Scholar] [CrossRef]
- Norman Network 2016, List of Emmerging Substances. 2016. Available online: https://www.normandata.eu/?q=node/19 (accessed on 6 May 2021).
- Ghiorghita, C.A.; Mihai, M. Recent developments in layer-by-layer assembled systems application in water purification. Chemosphere 2021, 270, 129477. [Google Scholar] [CrossRef]
- Li, S.; Wang, D.; Xiao, H.; Zhang, H.; Cao, S.; Chen, L.; Ni, Y.; Huang, L. Ultra-low pressure cellulose-based nanofiltration membrane fabricated on layer-by-layer assembly for efficient sodium chloride removal. Carbohydr. Polym. 2021, 255, 117352. [Google Scholar] [CrossRef]
- Huang, Y.; Sun, J.; Wu, D.; Feng, X. Separation and Purification Technology Layer-by-layer self-assembled chitosan/PAA nanofiltration membranes. Sep. Purif. Technol. 2018, 207, 142–150. [Google Scholar] [CrossRef]
- Yang, Y.; Lan, Q.; Wang, Y. Chinese Journal of Chemical Engineering Gradient nanoporous phenolics as substrates for high- fl ux nano fi ltration membranes by layer-by-layer assembly of polyelectrolytes. Chin. J. Chem. Eng. 2020, 28, 114–121. [Google Scholar] [CrossRef]
- Fadhillah, F.; Alghamdi, A.M.; Alsubei, M.D.; Aljlil, S.A. Journal of King Saud University—Engineering Sciences Synthesis of protein-fouling-resistance polyelectrolyte multilayered nanofiltration membranes through spin-assisted layer-by-layer assembly. J. King Saud Univ. Eng. Sci. 2020. [Google Scholar] [CrossRef]
- Tripathi, B.P.; Dubey, N.C.; Stamm, M. Functional polyelectrolyte multilayer membranes for water purification applications. J. Hazard. Mater. 2013, 252–253, 401–412. [Google Scholar] [CrossRef] [PubMed]
- Fadhillah, F.; Zaidi, S.M.J.; Khan, Z.; Khaled, M.M.; Rahman, F.; Hammond, P.T. Development of polyelectrolyte multilayer thin film composite membrane for water desalination application. Desalination 2013, 318, 19–24. [Google Scholar] [CrossRef]
- Magnenet, C.; Lakard, S.; Buron, C.C.; Lakard, B. Functionalization of organic membranes by polyelectrolyte multilayer assemblies: Application to the removal of copper ions from aqueous solutions. J. Colloid Interface Sci. 2012, 376, 202–208. [Google Scholar] [CrossRef]
- Ilyas, S.; Abtahi, S.M.; Akkilic, N.; Roesink, H.D.W.; De Vos, W.M. Weak polyelectrolyte multilayers as tunable separation layers for micro-pollutant removal by hollow fiber nanofiltration membranes. J. Membr. Sci. 2017, 537, 220–228. [Google Scholar] [CrossRef]
- Rajesh, S.; Zhao, Y.; Fong, H.; Menkhaus, T.J. Polyacrylonitrile nanofiber membranes modified with ionically crosslinked polyelectrolyte multilayers for the separation of ionic impurities. Nanoscale 2016, 8, 18376–18389. [Google Scholar] [CrossRef] [PubMed]
- Ilyas, S.; de Grooth, J.; Nijmeijer, K.; De Vos, W.M. Multifunctional polyelectrolyte multilayers as nanofiltration membranes and as sacrificial layers for easy membrane cleaning. J. Colloid Interface Sci. 2015, 446, 365–372. [Google Scholar] [CrossRef]
- Liu, L.; Kang, H.; Wang, W.; Xu, Z.; Mai, W.; Li, J.; Lv, H.; Zhao, L.; Qian, X. Layer-by-layer self-assembly of polycation/GO/OCNTs nanofiltration membrane with enhanced stability and flux. J. Mater. Sci. 2018, 53, 10879–10890. [Google Scholar] [CrossRef]
- Remmen, K.; Schäfer, R.; Hedwig, S.; Wintgens, T.; Wessling, M.; Lenz, M. Layer-by-layer membrane modification allows scandium recovery by nanofiltration. Environ. Sci. Water Res. Technol. 2019, 5, 1683–1688. [Google Scholar] [CrossRef]
- Malaisamy, R.; Talla-Nwafo, A.; Jones, K.L. Polyelectrolyte modification of nanofiltration membrane for selective removal of monovalent anions. Sep. Purif. Technol. 2011, 77, 367–374. [Google Scholar] [CrossRef]
- Su, B.; Wang, T.; Wang, Z.; Gao, X.; Gao, C. Preparation and performance of dynamic layer-by-layer PDADMAC/PSS nanofiltration membrane. J. Membr. Sci. 2012, 423–424, 324–331. [Google Scholar] [CrossRef]
- Baburaj, M.S.; Aravindakumar, C.T.; Sreedhanya, S.; Thomas, A.P.; Aravind, U.K. Treatment of model textile effluents with PAA/CHI and PAA/PEI composite membranes. Desalination 2012, 288, 72–79. [Google Scholar] [CrossRef]
- Abtahi, S.M.; Ilyas, S.; Joannis Cassan, C.; Albasi, C.; de Vos, W.M. Micropollutants removal from secondary-treated municipal wastewater using weak polyelectrolyte multilayer based nanofiltration membranes. J. Membr. Sci. 2018, 548, 654–666. [Google Scholar] [CrossRef] [Green Version]
- Werber, J.R.; Osuji, C.O.; Elimelech, M. Materials for next-generation desalination and water purification membranes. Nat. Rev. Mater. 2016, 1. [Google Scholar] [CrossRef]
- Lajimi, R.H.; Abdallah, A.B.; Ferjani, E.; Roudesli, M.S.; Deratani, A. Change of the performance properties of nanofiltration cellulose acetate membranes by surface adsorption of polyelectrolyte multilayers. Desalination 2004, 163, 193–202. [Google Scholar] [CrossRef]
- Toutianoush, A.; Jin, W.; Deligöz, H.; Tieke, B. Polyelectrolyte multilayer membranes for desalination of aqueous salt solutions and seawater under reverse osmosis conditions. Appl. Surf. Sci. 2005, 246, 437–443. [Google Scholar] [CrossRef]
- Suwaileh, W.; Johnson, D.; Khodabakhshi, S.; Hilal, N. Development of forward osmosis membranes modified by cross-linked layer by layer assembly for brackish water desalination. J. Membr. Sci. 2019, 583, 267–277. [Google Scholar] [CrossRef]
- Bucatariu, F.; Ghiorghita, C.A.; Schwarz, D.; Boita, T.; Mihai, M. Layer-by-layer polyelectrolyte architectures with ultra-fast and high loading/release properties for copper ions. Colloids Surf. A Physicochem. Eng. Asp. 2019, 579, 123704. [Google Scholar] [CrossRef]
- Bucatariu, F.; Ghiorghita, C.A.; Zaharia, M.M.; Schwarz, S.; Simon, F.; Mihai, M. Removal and Separation of Heavy Metal Ions from Multicomponent Simulated Waters Using Silica/Polyethyleneimine Composite Microparticles. ACS Appl. Mater. Interfaces 2020, 12, 37585–37596. [Google Scholar] [CrossRef] [PubMed]
- Ghiorghita, C.A.; Bucatariu, F.; Dragan, E.S. Novel Silica/Polyelectrolyte multilayer core-shell composite microparticles with selectivity for anionic dyes. Cellul. Chem. Technol. 2018, 52, 663–672. [Google Scholar]
- Ding, Y.; Zhao, Y.; Tao, X.; Zheng, Y.Z.; Chen, J.F. Assembled alginate/chitosan micro-shells for removal of organic pollutants. Polymer 2009, 50, 2841–2846. [Google Scholar] [CrossRef]
- Dragan, E.S.; Apopei Loghin, D.F. Enhanced sorption of methylene blue from aqueous solutions by semi-IPN composite cryogels with anionically modified potato starch entrapped in PAAm matrix. Chem. Eng. J. 2013, 234, 211–222. [Google Scholar] [CrossRef]
Active Compound | Therapeutic Class | Incorporation Method | Polyelectrolytes Used | Reference |
---|---|---|---|---|
Diclofenac, Indomethacin | Analgesic | PE-AC interaction | PEI–PAA | [97] |
Ibuprofen | Analgesic | PE-AC interaction | CS–dextran sulphate CS–carboxymetylcelullose | [127] |
Rifampicin | Antibiotic | Incorporation into hollow capsules | PVP–PMA | [128] |
Tetracycline | Antibiotic | PE-AC interaction | PAA–poly(L-lysine) | [129] |
Gentamicin | Antibiotic | PE-AC interaction | PSS–PAH | [130] |
Benzydamine | Anti-inflammatory agent | PE-AC interaction | CS–casein–poly(lactic acid) | [131] |
Artemisin | Chemotherapeutic agent | PE-AC interaction | CS–gelatin–ALG | [132] |
Paclitaxel Fluorouracil | Chemotherapeutic agent | PE-AC interaction | CS–dextran sulphate | [133] |
Mitoxantrone | Chemotherapeutic agent | Incorporation into hollow capsules and PE-AC interaction | PLL–PEG–block-poly(L-aspartic acid)–liposomal nanoparticles | [134] |
Doxorubicin | Chemotherapeutic agent | Incorporation into hollow capsules | CS–HA | [135] |
Insulin | Hormone | PE-AC interaction | Poly(malic acid)–CS | [136] |
Microorganism | Polyelectrolytes Used | Reference |
---|---|---|
Escherichia coli | CS–heparin–PET | [160] |
CS–lignosulphonate | [161] | |
CS–HA | [159] | |
Staphylococcus aureus | CS–alginate | [159] |
CS–HA | [159] | |
PEI–PAA | [162] | |
Candida albicans | CS–alginate | [159] |
CS–HA | [159] | |
Pseudomonas fluorescens | PEI–PAA | [162] |
Active Molecule | Polyelectrolytes Used | Substrate Analyzed | Reference |
---|---|---|---|
Phytase | PAH | Phytic acid | [173] |
Glucose oxidase | CS | Glucose | [174] |
Monoamine oxidase B | PEI | Dopamine | [124] |
Horseradish peroxidase | PAH | Hydrogen peroxide | [175] |
Urease | Polyaniline/CS/carboxymethylpullulan | Urea | [176] |
Uricase | PEI PDADMAC | Uric acid | [177] |
β-glucanase Glucose oxidase | CS | β-glucan | [178] |
Choline oxidase | PEI PDADMAC | Choline | [179] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petrila, L.-M.; Bucatariu, F.; Mihai, M.; Teodosiu, C. Polyelectrolyte Multilayers: An Overview on Fabrication, Properties, and Biomedical and Environmental Applications. Materials 2021, 14, 4152. https://doi.org/10.3390/ma14154152
Petrila L-M, Bucatariu F, Mihai M, Teodosiu C. Polyelectrolyte Multilayers: An Overview on Fabrication, Properties, and Biomedical and Environmental Applications. Materials. 2021; 14(15):4152. https://doi.org/10.3390/ma14154152
Chicago/Turabian StylePetrila, Larisa-Maria, Florin Bucatariu, Marcela Mihai, and Carmen Teodosiu. 2021. "Polyelectrolyte Multilayers: An Overview on Fabrication, Properties, and Biomedical and Environmental Applications" Materials 14, no. 15: 4152. https://doi.org/10.3390/ma14154152
APA StylePetrila, L. -M., Bucatariu, F., Mihai, M., & Teodosiu, C. (2021). Polyelectrolyte Multilayers: An Overview on Fabrication, Properties, and Biomedical and Environmental Applications. Materials, 14(15), 4152. https://doi.org/10.3390/ma14154152