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Abstract: The oxidation behavior of an equimolar Cr-Mn-Fe-Co high-entropy alloy (HEA) processed
by 3D laser printing was investigated at 700 ◦C and 900 ◦C. The oxidation kinetics of the alloy
followed the parabolic rate law, and the oxidation rate constant increased with the rising of the
temperature. Inward diffusion of oxygen and outward diffusion of cations took place during the
high-temperature oxidation process. A spinel-type oxide was formed on the surface, and the thickness
of the oxide layer increased with the rising of experimental temperature or time. The exfoliation of
the oxide layer took place when the test was operated at 900 ◦C over 12 h. During oxidation tests, the
matrix was propped open by oxides and was segmented into small pieces. The formation of loose
structures had great effects on the high-temperature oxidation resistance of the HEA.

Keywords: metals and alloys; 3D printing; oxidation

1. Introduction

After originally proposed by Yeh et al. [1], high-entropy alloys (HEA) have attracted
increasing attention due to their excellent mechanical properties [2,3], and corrosion
resistance [4,5], etc. Gludovatz et al. [6] reported a deformation mechanism for Cr-Mn-
Fe-Co-Ni HEA transiting from planar-slip dislocation activity to nanotwinning as the
temperature decreased from room temperature to cryogenic temperature, with cryogenic
temperature offering better mechanical properties. Otto et al. [7] systemically investigated
the relationship between temperatures (between −196 and 800 ◦C), microstructures and the
tensile properties of a Cr-Mn-Fe-Co-Ni HEA. The alloy showed a significant improvement
in yield strength, fracture elongation and ultimate tensile strength with the decreasing
temperature. What’s more, some deformation-induced twins were observed as the tensile
test was interrupted after more than 20% strain when the test temperature was lower
from 20 ◦C to −196 ◦C. Yong et al. [8] proposed that the separation of nanoscale phase
could significantly promote the yield strength of Mn-Fe-Co-Ni-Cu alloy. Keil et al. [9]
systematically researched the equiatomic composition for mechanical properties optimum
of (Cr-Mn-Fe-Co)x-Ni1-x and quantitatively investigated the saturation grain size, hardness
and strain rate sensitivity with the variation of Ni element composition.

High-temperature resistant materials have been widely used in the nuclear industry,
civil industry, military industry, etc. However, there were little researches focused on
the oxidation behavior of HEA. Kai et al. [10] investigated the oxidation behavior of an
equimolar Cr-Mn-Fe-Co-Ni HEA at 950 ◦C in various oxygen-containing atmospheres
with PO2 = 10, 1.0 × 103, 2.1 × 104 and 1.0 × 105 Pa, respectively. They found that the
oxidation kinetics of the alloy followed a single-stage parabolic rate curve with raising
oxygen pressure. While the generated triplex scales consisted of an exclusive Mn3O4 outer
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layer, a hetero phasic intermediate layer of Mn3O4, (Mn, Cr)3O4, and Cr2O3, and an exclu-
sive Cr2O3 inner layer. Gorr et al. [11] studied the microstructure and high-temperature
oxidation behavior of Mo-W-Al-Cr-Ti HEA which was processed by casting and heat treat-
ment. The results revealed that the mass gain obeyed a parabolic rate law when this alloy
was exposed to air at 1000 ◦C for 40 h, indicating that the oxide scale grew by solid-state
diffusion. Pouraliakbar et al. [12] attempted to produce novel high-temperature materials
by increasing the content of AlTiZr and CuFeMo in the multicomponent alloying system
(CoCrNi)1−x−y(AlTiZr)x(CuFeMo)y. Yong et al. [13] researched the high-temperature stabil-
ity of Cu-rich filaments and discovered that the dual fcc phase alloy (e.g., Cr-Fe-Co-Cu-Ni
and Cr-Fe-Co-Cu1.71-Ni HEA) owed excellent strengths even after annealing at 1000 ◦C.
This was owing to the low internal strain energy which was resulted from continuous
recrystallization during deformation processing. As mentioned in the previous literature,
there are numerous high-temperature oxidation resistance applications between 700 ◦C to
900 ◦C. Thus a thorough grasp of the high-temperature oxidation in the temperature range
is necessary.

HEAs have potential applications at high temperatures ranging from 700 ◦C to 900 ◦C.
In this study, the high-temperature oxidation mechanism of a Cr-Mn-Fe-Co HEA produced
by 3D laser printing was investigated.

2. Materials and Methods

Initially, Cr, Mn, Fe and Co metal powders were fully mixed in equal moles. In
addition, the equimolar Cr-Mn-Fe-Co HEA with a size of 20 × 60 × 12 mm3 was produced
by a numerical control system (3D-ZM, Dalian, China) with a laser scanning speed of
600 mm/min and laser power of 1000 W. Six cubes with the size of 6 × 6 × 6 mm3 were cut
from the initial alloy utilizing wire electrical discharge machine. Each surface was polished
on SiC papers up to 1600 grit, cleaned by alcohol in an ultrasonic machine and dried in
high pressure air.

The oxidation experiment was operated in a non-vacuum heating furnace. It was
heated in the synthetic air (79% N2 and 21% O2) to the temperatures of 700 ◦C and 900 ◦C
up to 48 h. After 48 h, the specimens were cooled down to room temperature in the furnace
under laboratory air. Analytical balance was used to accurately measure the weight of
samples. An X-ray diffractometer (D8 ADVANCE, BRUKER, Leipzig, Germany) equipped
with Cu kα (λ = 1.5406 Å), scan step size of 0.02 deg. and a scan rate of 1 deg.min-1 was
utilized to identify phases for the physic-chemical characterization. A scanning electron
microscopy (SEM) equipped with an energy dispersive spectrometer (EDS) on the platform
of MIRA 3 LMU (TESCAN, Brno, The Czech Republic) was used to identify the images
and the element distribution. In the EDS experiments, the accelerating voltage was 15 kV,
and the distance between two measuring points was 0.35 µm.

3. Results and Discussion
3.1. Oxidation Properties of Cr-Mn-Fe-Co HEA

Figure 1 shows the EDS results of the initial composition of the alloy. Each element is
evenly distributed in matrix and the content of Co, Cr, Fe, and Mn were 24.67%, 24.25%,
25.72%, and 25.37%, respectively, which has been shown in Table 1.
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Figure 1. EDS results of the initial HEA.

Table 1. Chemical composition of the HEA.

Composition (wt.%) Co Cr Fe Mn

The initial HEA 24.67 24.25 25.72 25.37

The mass gain data were obtained from separated samples for each data point.
Figure 2 shows the mass gain of the HEA at 700 ◦C and 900 ◦C over a period of 48 h.
The mass gain (If there is oxide exfoliation, it was took into account.) increased at a given
oxidation period as the oxidizing temperature raised. Furthermore, the mass gain rate of
the alloy at a certain temperature was gradually decreased with the increasing of oxidation
time. Mass gain after 48 h oxidation tests was 0.012 and 0.074 g/cm2 for 700 ◦C and
900 ◦C, respectively. The oxidation kinetics of the alloy followed the parabolic rate law at
both two temperatures as illustrated in oxidation curves (Figure 2a). The parabolic rate

constant Kp can be obtained by Kp = (∆m)2

A2×t , where, ∆m represents mass gain, A represents
sample area, t represents oxidation time. The parabolic rate constant Kp of 2.79 mg2/cm4/h
at 700 ◦C sharply increased to 114 mg2/cm4/h at 900 ◦C after 48 h. Compared to the
oxidation behavior of equimolar Cr-Mn-Fe-Co-Ni HEA [14], its parabolic rate constant
of 0.13 mg2/cm4/h at 900 ◦C verified the significant effect of Ni element, on the sluggish
diffusion of alloy’s high-temperature oxidation resistance. Chromium, acting as a getter
for oxygen in the alloy during the initial stage, can lower the oxygen solubility in the alloy
and reduce the internal oxidation speed of other elements [15]. With relative high content
of chromium element, the relative low rate constants were obtained [16]. However, the rate
constant increased rapidly compared to the Cr-Mn-Fe-Co-Ni alloy through the increase
in the chromium element. Firstly, the oxides of Mn presented in the areas where cracks
appeared and the relative high content of Mn may result in cracked oxides. In addition,
Ni element can significantly increase the oxidation resistance at high temperature through
reducing the volatility of Cr2O3 by forming a solid solution in the oxides [14]. The relative
discussion has been added in the paper.

Figure 3a shows the XRD results of initial Cr-Mn-Fe-Co HEA, which is a single FCC
solid solution phase [17]. Figure 3b,c present XRD analysis of Cr-Mn-Fe-Co HEA after
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isothermal oxidation experiments at 700 ◦C and 900 ◦C. After oxidizing at 900 ◦C over
12 h, the oxide layer on the surface was exfoliated. Apart from FeO and MnO identified
on the surface oxidized at 700 ◦C for 12 h, some MnCr2O4 was also detected when the
alloy was oxidized at 700 ◦C for 24 h, while Fe2O3 and FeMn2O4 appeared when the
oxidation duration was prolonged to 48 h. Furthermore, MnFe2O4, MnFeO2 and Cr2O3
were observed on the surface when the specimens were oxidized at 900 ◦C. The thickness
of oxide layers increased with the increase in the oxidation time, indicated by the increase
in the peak intensity.
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3.2. High-Temperature Surface Oxidation Mechanism of Cr-Mn-Fe-Co HEA

Figure 4 shows the surfaces micrographs of the HEA before and after the high-
temperature oxidation test. Compared to the initial surface and the surfaces oxidized
at 700 ◦C for 48 h, the surface after oxidation at 900 ◦C showed clear cracks, holes and
obvious spallation of oxide layer (Figure 4a–c). The oxidation on a certain surface was ob-
viously different on different regions, which resulted from the different speeds of oxidation
penetration through grains and grain boundaries and the element diffusion. The spinel
shape oxides were observed on all surfaces after oxidation tests, which was similar to the
high-temperature oxidation corrosion behavior of Cr-Mn-Fe-Co-Ni HEA preferring grain
boundary area [14]. Compared to the magnified images of the specimens after oxidation
at 700 ◦C in Figure 4d,e,h,l,m, the surface after oxidized at 900 ◦C (Figure 4f,g,j,k,n,o)
presented numerous pores and cracks and the oxidation layer peeled off. After the peeling,
the surface of the specimen oxidized at 900 ◦C for 48 h represented numerous pores and
cracks again. As a result, the maximum roughness increased from 24.4 µm to 46.8 µm with
the test time increasing from 12 h to 48 h, while it was reasonable for a curtained trend of
the maximum roughness measured at 900 ◦C.
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Figure 4. Surfaces micrographs of Cr-Mn-Fe-Co HEA at different temperatures and various times.

Figure 5 shows the vertical cross-sections images of the oxides. The oxide thickness
increased with the oxidation time and temperatures. When tested at 700 ◦C, some oxides
and voids were observed on the surface of HEA as well as internal oxidation. Numerous
cracks were formed when the oxidation time extended to 24 h. Dense oxides formed when
the tests were operated at 900 ◦C and spallation of the oxide scales was observed, caused
by interaction between different oxides, defects and matrix. The details of specimens after
oxidation at 900 ◦C for 24 h were magnified in Figure 5i–k. The middle and bottom parts
of the oxide layer consisted of oxides (FeO and MnO) and metal matrix simultaneously.
The upper part of oxidation layer (MnFe2O4, MnFeO2 and Cr2O3) was composed of oxides
and a large number of holes, which may result in easier diffusion of oxygen to the matrix
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and reduce the resistance of oxidation corrosion at high temperature. Furthermore, the
chemical composition of the oxide in Figure 5f was analyzed and the results were shown in
Figure 5l,m. An oxygen content of 57.74% (atomic) was detected at spectrum 2 (Figure 5l),
verified to be oxides. While it had a small amount of oxygen element (atomic, 5.69%) at
spectrum 4 (Figure 5m). The matrix was propped open by oxides and segmented into small
pieces as shown in Figure 5i–k, resulting in materials failure.
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The element distribution after oxidation is shown in Figure 6. Some voids were
observed, which were Kirkendall pores, resulting from different diffusion of Cr, Mn, Fe
and Co. An unstable Cr-rich, Mn-rich and Fe-rich oxide layer, respectively inferred to
(Mn, Cr)3O4, Cr2Mn3O8 and (Mn, Fe)2O4 formed during the test. They were easy to fall
off from the matrix after oxidation at 900 ◦C. Cr, Mn and Fe had higher diffusion rates
than Co, resulting in the development of Co-poor region and Co-rich region, as shown in
Figure 6f. Fe and Co produced an oxidation layer in MnFe2O4, MnFeO2 and Cr2O3 at high
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temperature, leading to a reduction in the oxidation resistance of Cr-Mn-Fe-Co HEA. After
oxidation at 900 ◦C, few oxides pegs were observed resulting in a weakened connection
between oxides and the substrate.
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Figure 6. EDS results of Cr-Mn-Fe-Co HEA after isothermal oxidation tests at 900 ◦C for 48 h.

The instantaneous rate constant Kp decreased with the incremental oxidation time.
Activation energy (Ea) was calculated from the Kp values and the corresponding test temper-
atures. It gave the value of Ea = 212kJ/mol. The value ranged between 250 and 290 kJ/mol
of chromia (Cr2O3) formation alloys during the oxidation as previously reported in the
literature [18,19]. It was in good agreement with the observation in Figures 4 and 5. A
chromatic scale, a diffusion barrier, appeared in the scale. However, compared to the
Cr-Mn-Fe-Co-Ni HEA, the absence of Ni element greatly reduced the hindrance of cation
diffusion and led to a good oxidation behavior.

4. Conclusions

The oxidation behavior of Cr-Mn-Fe-Co HEA produced by 3D laser printing was
investigated at 700 ◦C and 900 ◦C up to 48 h. The main conclusions are as follows:

(1) The initial alloy was verified as FCC random solid solution. The mass gain in
the oxidation process for 48 h was measured to be 0.02 and 0.15 g/cm2 at 700 ◦C and
900 ◦C, respectively.

(2) MnFe2O4, MnFeO2 and Cr2O3 were detected by the XRD analysis on the specimen
surface. Some surface cracks were observed, especially for those oxidized at 900 ◦C.
The spallation of oxide layer took place when the alloy was tested at 900 ◦C. The high-
temperature oxidation resistance of the alloy sharply decreased when the test temperature
increased from 700 ◦C to 900 ◦C, leading to the wide application under 700 ◦C.
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