Enhancement of Y5−xPrxSb3−yMy (M = Sn, Pb) Electrodes for Lithium- and Sodium-Ion Batteries by Structure Disordering and CNTs Additives
Abstract
:1. Introduction
2. Material and Methods
2.1. Synthesis and Phase Analysis
2.2. Structure Refinement
2.3. Electrochemical Investigations
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vaughey, J.T.; Thackeray, M.M.; Shin, D.; Wolverton, C. Studies of LaSn3 as a Negative Electrode for Lithium-Ion Batteries. J. Electrochem. Soc. 2009, 156, 536–540. [Google Scholar] [CrossRef]
- Balinska, A.; Kordan, V.; Misztal, R.; Pavlyuk, V. Electrochemical and thermal insertion of lithium and magnesium into Zr5Sn3. J. Solid State Electrochem. 2015, 19, 2481–2490. [Google Scholar] [CrossRef]
- Pavlyuk, V.; Stetskiv, A.; Rozdzynska-Kielbik, B. The isothermal section of the phase diagram of Li–La–Ge ternary system at 400° C. Intermetallics 2013, 43, 29–37. [Google Scholar] [CrossRef]
- Stetskiv, A.; Kordan, V.; Tarasiuk, I.; Zelinska, O.; Pavlyuk, V. Structural peculiarities and electrochemical properties of R5M3 (R = La, Gd; M = Ge, Sn) doped by lithium. Chem. Met. Alloys 2014, 7, 106–111. [Google Scholar] [CrossRef]
- Rieger, W.; Nowotny, H.; Benesovsky, F. Phasen mit oktaedrischen Bauelementen des Übergangsmetalls. Monatsh Chem. 1965, 96, 232–241. [Google Scholar] [CrossRef]
- Stetskiv, A.; Tarasiuk, I.; Misztal, R.; Pavlyuk, V. Pentaterbium lithium tristannide, Tb5LiSn3. Acta Cryst. E 2011, 67, i61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yeh, J.W.; Chen, S.K.; Lin, S.J.; Gan, J.Y.; Chin, T.S.; Shun, T.T.; Tsau, C.H.; Chang, S.Y. Nanostructured high- entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 2004, 6, 299–303. [Google Scholar] [CrossRef]
- George, E.P.; Raabe, D.; Ritchie, R.O. High-entropy alloys. Nat. Rev. Mater. 2019, 4, 515–534. [Google Scholar] [CrossRef]
- Pavlyuk, V.V.; Opainych, I.M.; Bodak, O.I.; Pałasińska, T.; Rożdżyńska, B.; Bala, H. Interaction of the component in the La-Ni-Zn System. Pol. J. Chem. 1997, 71, 309–313. [Google Scholar]
- Pavlyuk, V.; Marciniak, B.; Rozycka-Sokolowska, E. The isothermal section of the phase diagram of Ce-Mg-Zn ternary system at 470 K. Intermetallics 2012, 20, 8–15. [Google Scholar] [CrossRef]
- Pavlyuk, V.; Solokha, P.; Zelinska, O.; Paul-Boncour, V.; Nowik-Zając, A. Ce20Mg19Zn81– a new structure type with a giant cubic cell. Acta Cryst. C 2008, 64, i50–i52. [Google Scholar] [CrossRef]
- Chumak, I.; Dmytriv, G.; Pavlyuk, V.; Oswald, S.; Eckert, J.; Trill, H.; Eckert, H.; Pauly, H.; Ehrenberg, H. Li(Al1–zZnz) alloys as anode materials for rechargeable Li-ion batteries. J. Mater. Res. 2010, 25, 1492–1499. [Google Scholar] [CrossRef]
- Sarkar, A.; Velasco, L.; Wang, D.; Wang, Q.; Talasila, G.; de Biasi, L.; Kübel, K.; Brezesinski, T.; Bhattacharya, S.S.; Hahn, Y.; et al. High entropy oxides for reversible energy storage. Nat. Commun. 2018, 9, 3400. [Google Scholar] [CrossRef] [Green Version]
- Pavlyuk, V.; Balinska, A.; Rozdzynska-Kielbk, B.; Pavlyuk, N.; Dmytriv, G.; Stetskiv, A.; Indris, S.; Schwarz, B.; Ehrenberg, H. New maximally disordered-high entropy intermetallic phases (MD-HEIP) of the Gd1-xLaxSn2-ySbyMz (M= Li, Na, Mg): Synthesis, structure and some properties. J. Alloys Compd. 2020, 838, 155643. [Google Scholar] [CrossRef]
- Landi, B.J.; Ganter, M.J.; Cress, C.D.; DiLeo, R.A.; Raffaelle, R.P. Carbon nanotubes for lithium ion batteries. Energy Environ. Sci. 2009, 2, 638–654. [Google Scholar] [CrossRef]
- Frackowiak, E.; Beguin, F. Electrochemical Storage of Energy in Carbon Nanotubes and Nanostructured Carbons. Carbon 2002, 40, 1775–1787. [Google Scholar] [CrossRef]
- Chen, W.X.; Lee, J.Y.; Liu, Z. The nanocomposites of carbon nanotube with Sb and SnSb0.5 as Li-ion battery anodes. Carbon 2003, 41, 959–966. [Google Scholar] [CrossRef]
- Yang, S.; Song, H.; Chen, X.; Okotrub, A.V.; Bulusheva, L.G. Electrochemical performance of arc-produced carbon nanotubes as anode material for lithium-ion batteries. Electrochem. Acta 2007, 52, 5286–5293. [Google Scholar] [CrossRef]
- Lin, K.; Xu, Y.; He, G.; Wang, X. The kinetic and thermodynamic analysis of Li ion in multi-walled carbon nanotubes. Mater. Chem. Phys. 2006, 99, 190–196. [Google Scholar] [CrossRef]
- Chawla, N.; Chamaani, A.; Safa, M.; El-Zahab, B. Palladium-Filled Carbon Nanotubes Cathode for Improved Electrolyte Stability and Cyclability Performance of Li-O2 Batteries. J. Electrochem. Soc. 2017, 164, A6303–A6307. [Google Scholar] [CrossRef]
- Zhu, Y.G.; Wang, Y.; Han, Z.J.; Shi, Y.; Wong, J.I.; Huang, Z.X.; Ostrikov, K.K.; Yang, H.Y. Catalyst engineering for lithium ion batteries: The catalytic role of Ge in enhancing the electrochemical performance of SnO2(GeO2)0.13/G anodes. Nanoscale 2014, 6, 15020–15028. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Carvajal, J. Recent advances in magnetic structure determination by neutron powder diffraction. Physica B 1993, 192, 55–69. [Google Scholar] [CrossRef]
- CrysAlis PRO. Yarnton. Oxfordshire. UK Ltd. Agilent Technologies. England. Version 1.171.32.18. Available online: https://www.agilent.com/cs/library/usermanuals/public/CrysAlis_Pro_User_Manual.pdf (accessed on 18 October 2011).
- Sheldrick, G.M. SHELXS, Program for the Solution of Crystal Structures; University of Goettingen: Goettingen, Germany, 1997. [Google Scholar]
- Sheldrick, G.M. SHELXL-97, Program for Crystal Structure Refinement; University of Goettingen: Goettingen, Germany, 1997. [Google Scholar]
- Crystallographic Data (CIF and Structure Factors) for the Structures Reported in This Paper Has Been Deposited with the Cambridge Crystallographic Data Centre, No. CCDC-2062904 (for Y5−xPrxSb3−yMyLiz) and CCDC-2062905 (for Y5−xPrxSb3−yMyNaz). Available online: http://www.ccdc.cam.ac.uk/data_request/cif (accessed on 13 February 2021).
- Aronsson, B. A note on the compositions and crystal structures of MnB2, Mn3Si, Mn5Si3 and FeSi2. Acta Chem. Scand. 1960, 14, 1414–1418. [Google Scholar] [CrossRef] [Green Version]
- Kozlov, A.Y.; Pavlyuk, V.V. Investigation of the interaction of the components in the Y-Si-Sb system at 670 K. J. Alloys Compd. 2004, 370, 192–197. [Google Scholar] [CrossRef]
|
|
|
| |
|
|
|
| |
|
|
|
| |
|
|
|
| |
|
|
|
| |
|
|
|
| |
|
|
|
| |
|
|
|
| |
|
|
|
| |
|
|
| ||
|
|
|
| |
|
|
|
| |
|
|
|
| |
|
|
| ||
|
|
|
| |
|
|
|
| |
|
|
|
| |
|
|
|
| |
|
|
|
|
|
84. Phase | 85. Y5−xPrxSb3−ySnyLi | 86. Y5−xPrxSb3−ySnyNa |
87. Formula | 88. Y4.5Pr0.5Sb2.5Sn0.5Li | 89. Y4.5Pr0.5Sb2.5Sn0.5Na |
90. Structure type | 91. Hf5CuSn3 | 92. Hf5CuSn3 |
93. Formula weight (g/mol) | 94. 841.22 | 95. 857.27 |
96. Space group | 97. P63/mcm | 98. P63/mcm |
99. Pearson symbol | 100. hP18 | 101. hP18 |
102. Crystal dimensions (mm3) | 103. 0.04 × 0.05 × 0.09 | 104. 0.03 × 0.04 × 0.08 |
105. Unit cell dimensions: | 106. | 107. |
108. a, Å | 109. 9.0614(1) | 110. 9.0978(1) |
111. c, Å | 112. 6.6192(1) | 113. 6.6599(1) |
114. V, Å3 | 115. 470.68(1) | 116. 477.39(1) |
117. Calculated density (Dcalc, g·sm−3) | 118. 5.935 | 119. 5.964 |
120. Absorption coefficient (µ, mm−1) | 121. 38.203 | 122. 37.714 |
123. Scan mode | 124. Ω | 125. ω |
126. Theta range for data collection (deg.) | 127. 2.60–26.69 | 128. 2.59–26.31 |
129. F(000) | 130. 721 | 131. 737 |
132. Range in h k l | 133. −11 ≤ h ≤ 11,134. −11 ≤ k ≤ 11,135. −7 ≤ l ≤ 7 | 136. −11 ≤ h ≤ 11,137. −11 ≤ k ≤ 11,138. −7 ≤ l ≤ 7 |
139. Total no. reflections | 140. 1544 | 141. 1522 |
142. Reflections with I > 2σ(I) | 143. 190 (Rsigma = 0.0114) | 144. 189(Rsigma = 0.0180) |
145. Data/parameters | 146. 190/12 | 147. 189/13 |
148. Goodness-of-fit on F2 | 149. 1.144 | 150. 1.169 |
151. Final R indices [I > 2σ(I)] | 152. R1 = 0.0341 | 153. R1 = 0.0476 |
154. | wR2 = 0.0936 | 155. wR2 = 0.1296 |
156. Largest diff. peak/hole (e/Å3) | 157. 2.204/−1.901 | 158. 2.622/−1.981 |
159. Atom | 160. Site | 161. x/a | 162. y/b | 163. z/c | 164. Uiso */Ueq | 165. Occ. (<1) |
166. Y5−xPrxSb3−ySnyLi | ||||||
167. Y1 | 168. 6g | 169. 0.2696(2) | 170. 0.2696(2) | 171. 1/4 | 172. 0.0233(6) | 173. 0.80 |
174. Pr1 | 175. 6g | 176. 0.2696(2) | 177. 0.2696(2) | 178. 1/4 | 179. 0.0233(6) | 180. 0.20 |
181. Y2 | 182. 4d | 183. 2/3 | 184. 1/3 | 185. 0 | 186. 0.0180(6) | 187. 0.88 |
188. Pr2 | 189. 4d | 190. 2/3 | 191. 1/3 | 192. 0 | 193. 0.0180(6) | 194. 0.12 |
195. Sb1 | 196. 6g | 197. 0.63128(12) | 198. 0.63128(12) | 199. 1/4 | 200. 0.0084(5) | 201. 0.80 |
202. Sn1 | 203. 6g | 204. 0.63128(12) | 205. 0.63128(12) | 206. 1/4 | 207. 0.0084(5) | 208. 0.20 |
209. Li1 | 210. 2b | 211. 0 | 212. 0 | 213. 0 | 214. 0.002 * | 215. 1.00 |
216. | U11 | 217. U22 | 218. U33 | 219. U12 | 220. U13 | 221. U23 |
222. Y1 | 223. 0.0224(7) | 224. 0.0224(7) | 225. 0.0256(11) | 226. 0.0116(8) | 227. 0 | 228. 0 |
229. Pr1 | 230. 0.0224(7) | 231. 0.0224(7) | 232. 0.0256(11) | 233. 0.0116(8) | 234. 0 | 235. 0 |
236. Y2 | 237. 0.0171(7) | 238. 0.0171(7) | 239. 0.0196(13) | 240. 0.0086(3) | 241. 0 | 242. 0 |
243. Pr2 | 244. 0.0171(7) | 245. 0.0171(7) | 246. 0.0196(13) | 247. 0.0086(3) | 248. 0 | 249. 0 |
250. Sb1 | 251. 0.0078(5) | 252. 0.0078(5) | 253. 0.0110(7) | 254. 0.0049(5) | 255. 0 | 256. 0 |
257. Sn1 | 258. 0.0078(5) | 259. 0.0078(5) | 260. 0.0110(7) | 261. 0.0049(5) | 262. 0 | 263. 0 |
264. Y5−xPrxSb3−ySnyNa | ||||||
265. Y1 | 266. 6g | 267. 0.2704(3) | 268. 0.2704(3) | 269. 1/4 | 270. 0.0261(9) | 271. 0.80 |
272. Pr1 | 273. 6g | 274. 0.2704(3) | 275. 0.2704(3) | 276. 1/4 | 277. 0.0261(9) | 278. 0.20 |
279. Y2 | 280. 4d | 281. 2/3 | 282. 1/3 | 283. 0 | 284. 0.0261(10) | 285. 0.76 |
286. Pr2 | 287. 4d | 288. 2/3 | 289. 1/3 | 290. 0 | 291. 0.0261(10) | 292. 0.24 |
293. Sb1 | 294. 6g | 295. 0.63151(18) | 296. 0.63151(18) | 297. 1/4 | 298. 0.0113(8) | 299. 0.80 |
300. Sn1 | 301. 6g | 302. 0.63151(18) | 303. 0.63151(18) | 304. 1/4 | 305. 0.0113(8) | 306. 0.20 |
307. Na1 | 308. 2b | 309. 0 | 310. 0 | 311. 0 | 312. 0.008 * | 313. 0.98 |
314. | U11 | 315. U22 | 316. U33 | 317. U12 | 318. U13 | 319. U23 |
320. Y1 | 321. 0.0267(12) | 322. 0.0267(12) | 323. 0.0280(16) | 324. 0.0152(12) | 325. 0 | 326. 0 |
327. Pr1 | 328. 0.0267(12) | 329. 0.0267(12) | 330. 0.0280(16) | 331. 0.0152(12) | 332. 0 | 333. 0 |
334. Y2 | 335. 0.0241(11) | 336. 0.0241(11) | 337. 0.031(2) | 338. 0.0121(6) | 339. 0 | 340. 0 |
341. Pr2 | 342. 0.0241(11) | 343. 0.0241(11) | 344. 0.031(2) | 345. 0.0121(6) | 346. 0 | 347. 0 |
348. Sb1 | 349. 0.0102(9) | 350. 0.0102(9) | 351. 0.0140(11) | 352. 0.0053(7) | 353. 0 | 354. 0 |
355. PB1 | 356. 0.0102(9) | 357. 0.0102(9) | 358. 0.0140(11) | 359. 0.0053(7) | 360. 0 | 361. 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pavlyuk, V.; Ciesielski, W.; Pavlyuk, N.; Kulawik, D.; Balińska, A.; Kluziak, K. Enhancement of Y5−xPrxSb3−yMy (M = Sn, Pb) Electrodes for Lithium- and Sodium-Ion Batteries by Structure Disordering and CNTs Additives. Materials 2021, 14, 4331. https://doi.org/10.3390/ma14154331
Pavlyuk V, Ciesielski W, Pavlyuk N, Kulawik D, Balińska A, Kluziak K. Enhancement of Y5−xPrxSb3−yMy (M = Sn, Pb) Electrodes for Lithium- and Sodium-Ion Batteries by Structure Disordering and CNTs Additives. Materials. 2021; 14(15):4331. https://doi.org/10.3390/ma14154331
Chicago/Turabian StylePavlyuk, Volodymyr, Wojciech Ciesielski, Nazar Pavlyuk, Damian Kulawik, Agnieszka Balińska, and Karolina Kluziak. 2021. "Enhancement of Y5−xPrxSb3−yMy (M = Sn, Pb) Electrodes for Lithium- and Sodium-Ion Batteries by Structure Disordering and CNTs Additives" Materials 14, no. 15: 4331. https://doi.org/10.3390/ma14154331
APA StylePavlyuk, V., Ciesielski, W., Pavlyuk, N., Kulawik, D., Balińska, A., & Kluziak, K. (2021). Enhancement of Y5−xPrxSb3−yMy (M = Sn, Pb) Electrodes for Lithium- and Sodium-Ion Batteries by Structure Disordering and CNTs Additives. Materials, 14(15), 4331. https://doi.org/10.3390/ma14154331