Bainitic Ferrite Plate Thickness Evolution in Two Nanostructured Steels
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Plate Thickness Evolution as Transformation Progresses
3.2. Characterization of Bainitic Transformation and F and P Treatments; Microstructure and Transformation Characterization
3.3. Rationalization of the Dynamic Character of the System; Understanding the Evolution of Bainitic Ferrite Plate Thickness as Transformation Progress
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bhadeshia, H.K.D.H. Bainite in Steels. Theory and Practice, 3rd ed.; CRC Press: London, UK, 2019; ISBN 9781315096674. [Google Scholar]
- Daigne, J.; Guttmann, M.; Naylor, J. The influence of lath boundaries and carbide distribution on the yield strength of 0.4% C tempered martensitic steels. Mater. Sci. Eng. 1982, 56, 1–10. [Google Scholar] [CrossRef]
- Bhadeshia, H.K.D.H. Nanostructured bainite. Proc. R. Soc. A Math. Phys. Eng. Sci. 2009, 466, 3–18. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Mateo, C.; Caballero, F.; Bhadeshia, H.K.D.H. Development of Hard Bainite. ISIJ Int. 2003, 43, 1238–1243. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Mateo, C.; Caballero, F. Ultra-high-strength Bainitic Steels. ISIJ Int. 2005, 45, 1736–1740. [Google Scholar] [CrossRef] [Green Version]
- Avishan, B.; Yazdani, S.; Nedjad, S.H. Toughness variations in nanostructured bainitic steels. Mater. Sci. Eng. A 2012, 548, 106–111. [Google Scholar] [CrossRef]
- Avishan, B.; Garcia-Mateo, C.; Morales-Rivas, L.; Yazdani, S.; Caballero, F.G. Strengthening and mechanical stability mechanisms in nanostructured bainite. J. Mater. Sci. 2013, 48, 6121–6132. [Google Scholar] [CrossRef] [Green Version]
- Cornide, J.; Garcia-Mateo, C.; Capdevila, C.; Caballero, F. An assessment of the contributing factors to the nanoscale structural refinement of advanced bainitic steels. J. Alloys Compd. 2013, 577, S43–S47. [Google Scholar] [CrossRef]
- Singh, S.; Bhadeshia, H. Estimation of bainite plate-thickness in low-alloy steels. Mater. Sci. Eng. A 1998, 245, 72–79. [Google Scholar] [CrossRef]
- Yang, Z.; Chu, C.; Jiang, F.; Qin, Y.; Long, X.; Wang, S.; Chen, D.; Zhang, F. Accelerating nano-bainite transformation based on a new constructed microstructural predicting model. Mater. Sci. Eng. A 2019, 748, 16–20. [Google Scholar] [CrossRef]
- van Bohemen, S. Exploring the correlation between the austenite yield strength and the bainite lath thickness. Mater. Sci. Eng. A 2018, 731, 119–123. [Google Scholar] [CrossRef]
- He, S.; He, B.; Zhu, K.; Huang, M. On the correlation among dislocation density, lath thickness and yield stress of bainite. Acta Mater. 2017, 135, 382–389. [Google Scholar] [CrossRef]
- Shah, M.; Das, S.K. An Artificial Neural Network Model to Predict the Bainite Plate Thickness of Nanostructured Bainitic Steels Using an Efficient Network-Learning Algorithm. J. Mater. Eng. Perform. 2018, 27, 5845–5855. [Google Scholar] [CrossRef]
- Sourmail, T.; Smanio, V. Low temperature kinetics of bainite formation in high carbon steels. Acta Mater. 2013, 61, 2639–2648. [Google Scholar] [CrossRef]
- Payson, P.; Savage, C.H. Martensite reactions in alloy steels. Trans. Am. Soc. Mater. 1944, 33, 261–280. [Google Scholar]
- Steven, W.; Haynes, A.G. The Temperature of Formation of Martensite and Bainite in Low-Alloy Steels. J. Iron Steel Inst. 1956, 183, 349–359. [Google Scholar]
- García De Andrés, C.; Caballero, F.G.; Capdevila, C.; Álvarez, L.F. Application of dilatometric analysis to the study of solid-solid phase transformations in steels. Mater. Charact. 2002, 48, 101–111. [Google Scholar] [CrossRef] [Green Version]
- Sourmail, T.; Smanio, V. Determination ofMstemperature: Methods, meaning and influence of ‘slow start’ phenomenon. Mater. Sci. Technol. 2013, 29, 883–888. [Google Scholar] [CrossRef]
- Eres-Castellanos, A.; Morales-Rivas, L.; Latz, A.; Caballero, F.; Garcia-Mateo, C. Effect of ausforming on the anisotropy of low temperature bainitic transformation. Mater. Charact. 2018, 145, 371–380. [Google Scholar] [CrossRef]
- Garcia-Mateo, C.; Caballero, F.G. Nanocrystalline Bainitic Steels for Industrial Applications. In Nanotechnology for Energy Sustainability; Van de Voorde, M., Raj, B., Mahajan, Y., Eds.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2017; pp. 707–724. ISBN 9783527696109. [Google Scholar]
- Jatczak, C.F. Retained Austenite and Its Measurement by X-ray Diffraction; SAE International: Warrendale, PA, USA, 1980. [Google Scholar] [CrossRef]
- Järvinen, M. Texture Effect in X-ray Analysis of Retained Austenite in Steels. Textures Microstruct. 1996, 26, 93–101. [Google Scholar] [CrossRef] [Green Version]
- Young, R.A. The Rietveld Method; Oxford University Press: Oxford, UK, 1995; ISBN 9780198559122. [Google Scholar]
- Balzar, D.; Audebrand, N.; Daymond, M.; Fitch, A.; Hewat, A.; Langford, J.I.; Le Bail, A.; Louër, D.; Masson, O.; McCowan, C.N.; et al. Size–strain line-broadening analysis of the ceria round-robin sample. J. Appl. Crystallogr. 2004, 37, 911–924. [Google Scholar] [CrossRef]
- Dyson, D.J.; Holmes, B. Effect of Alloying Additions on the Lattice Parameter of Austenite. J. Iron Steel Inst. 1970, 208, 469–474. [Google Scholar]
- Garcia-Mateo, C.; Jiménez, J.A.; Lopez-Ezquerra, B.; Rementeria, R.; Morales-Rivas, L.; Kuntz, M.; Caballero, F. Analyzing the scale of the bainitic ferrite plates by XRD, SEM and TEM. Mater. Charact. 2016, 122, 83–89. [Google Scholar] [CrossRef]
- Peet, M.; Bhadeshia, H.K.D.H. MAP_STEEL_MUCG83.
- Chang, L.; Bhadeshia, H.K.D.H. Metallographic observations of bainite transformation mechanism. Mater. Sci. Technol. 1995, 11, 105–108. [Google Scholar] [CrossRef]
- Eres-Castellanos, A.; Toda-Caraballo, I.; Latz, A.; Caballero, F.G.; Garcia-Mateo, C. An integrated-model for austenite yield strength considering the influence of temperature and strain rate in lean steels. Mater. Des. 2020, 188, 108435. [Google Scholar] [CrossRef]
- Garcia-Mateo, C.; Caballero, F.; Sourmail, T.; Smanio, V.; de Andres, C.G. Industrialised nanocrystalline bainitic steels. Design approach. Int. J. Mater. Res. 2014, 105, 725–734. [Google Scholar] [CrossRef] [Green Version]
- Caballero, F.G.; Garcia-Mateo, C. The Processing of Nanocrystalline Steels by Solid Reaction; Woodhead Publishing: Sawston, UK, 2011; ISBN 9781845696702. [Google Scholar]
- Garcia-Mateo, C.; Sourmail, T.; Caballero, F.; Smanio, V.; Kuntz, M.; Ziegler, C.; Leiro, A.; Vuorinen, E.; Elvira, R.; Teeri, T. Nanostructured steel industrialisation: Plausible reality. Mater. Sci. Technol. 2013, 30, 1071–1078. [Google Scholar] [CrossRef] [Green Version]
- Rementeria, R.; Jiménez, J.A.; Allain, S.; Geandier, G.; Poplawsky, J.; Guo, W.; Urones-Garrote, E.; Garcia-Mateo, C.; Caballero, F. Quantitative assessment of carbon allocation anomalies in low temperature bainite. Acta Mater. 2017, 133, 333–345. [Google Scholar] [CrossRef]
- Toji, Y.; Matsuda, H.; Herbig, M.; Choi, P.-P.; Raabe, D. Atomic-scale analysis of carbon partitioning between martensite and austenite by atom probe tomography and correlative transmission electron microscopy. Acta Mater. 2014, 65, 215–228. [Google Scholar] [CrossRef]
- Hayakawa, M.; Oka, M. On the change in the austenite lattice parameter due to the martensitic transformation in an Fe-32Ni alloy. Acta Met. 1983, 31, 955–959. [Google Scholar] [CrossRef]
- Golovchiner, K.Y. Changes in The Austenite Lattice Parameter During the Martensitic Transformation in Steel. Phys. Met. Metallogr. 1974, 37, 126–130. [Google Scholar]
- van Bohemen, S. Bainite growth retardation due to mechanical stabilisation of austenite. Materialia 2019, 7, 100384. [Google Scholar] [CrossRef]
Alloy | Composition (wt.%) | T (°C) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
C | Si | Mn | Cr | Mo | Cu | Ac1 | Ac3/Acm | Ms | Ms [15] | Bs [16] | |
1C2Si | 0.99 | 2.4 | 0.75 | 0.98 | 0.02 | 0.19 | 815 | 844 | 112 | 106 | 425 |
04C3Si | 0.43 | 3.05 | 0.71 | 0.97 | 0.21 | 0.14 | 845 | 915 | 287 | 276 | 566 |
TIso | Dil. | XRD (RT) | Dil. (Iso) | RT | Iso | Dil. | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DoT (%) | (±3) | (±0.12) | (±3) | (±0.03) | Equation (1) | Equation (3) | Ref. [15] | Equation (4) | Ms (°C) | (±10) [26] | HV10 | ||
250 °C | P | 24 | 40 | 0.78 | 60 | – | 16 | 44 | 1.1 | 0.95 | 83 | 654 ± 4 | |
56 * | 63 | 0.88 | 37 | 0.19 | 34 | – | – | 0.88 | – | 567 ± 1 | |||
76 * | 55 | 0.96 | 45 | 0.18 | 48 | – | – | 0.96 | – | 575 ± 3 | |||
F | 100 * | 37 | 1.42 | 63 | 0.19 | = | -- | -- | 1.42 | -- | 635 ± 2 | ||
300 °C | P | 41 | 53 | 0.90 | 47 | – | 23 | 24 | 1.13 | 0.97 | 73 | 46 | 604 ± 2 |
58 | 54 | 1.01 | 46 | – | 33 | 13 | 1.19 | 1.04 | 53 | 52 | 577 ± 5 | ||
74 * | 55 | 1.12 | 45 | 0.19 | 42 | – | – | 1.12 | – | 64 | 516 ± 1 | ||
F | 100 * | 44 | 1.39 | 56 | 0.20 | = | – | – | 1.39 | – | 67 | 515 ± 7 | |
350 °C | P | 32 | 41 | 1.10 | 59 | – | 13 | 46 | 1.01 | 1.05 | 110 | 97 | 690 ± 5 |
45 | 43 | 1.16 | 57 | – | 20 | 37 | 1.05 | 1.11 | 98 | 104 | 611 ± 5 | ||
85 | 58 | 1.30 | 42 | – | 36 | 6 | 1.19 | 1.29 | 52 | 114 | 475 ± 6 | ||
F | 100 * | 58 | 1.26 | 42 | 0.16 | = | – | – | 1.26 | – | 128 | 383 ± 1 |
TIso | Dil. | XRD (RT) | Dil. (Iso) | RT | Iso | Dil. | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DoT (%) | (±3) | (±0.12) | (±3) | (±0.03) | Equation (1) | Equation (3) | Ref. [15] | Equation (4) | Ms (°C) | (±10) [26] | HV10 | ||
300 °C | P | 44 | 10 | 0.37 | 90 | – | 37 | 53 | 0.52 | 0.5 | 254 | 42 | 674 ± 1 |
52 | 9 | 0.28 | 91 | – | 44 | 47 | 0.64 | 0.6 | 213 | 46 | 660 ± 3 | ||
64 | 15 | 0.56 | 85 | – | 55 | 30 | 0.88 | 0.7 | 140 | 47 | 616 ± 2 | ||
F | 100 * | 15 | 0.95 | 85 | 0.19 | = | – | – | 0.95 | – | 51 | 578 ± 4 | |
350 °C | P | 19 | 5 | 0.63 | 95 | – | 15 | 80 | 0.45 | 0.46 | 276 | 47 | 702 ± 5 |
60 | 10 | 0.95 | 90 | – | 48 | 42 | 0.56 | 0.64 | 242 | 51 | 609 ± 9 | ||
76 | 15 | 1.04 | 85 | – | 60 | 25 | 0.68 | 0.82 | 205 | 53 | 533 ± 3 | ||
F | 100 * | 20 | 1.07 | 80 | 0.16 | = | – | – | 1.07 | – | 79 | 502 ± 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruiz-Jimenez, V.; Jimenez, J.A.; Caballero, F.G.; Garcia-Mateo, C. Bainitic Ferrite Plate Thickness Evolution in Two Nanostructured Steels. Materials 2021, 14, 4347. https://doi.org/10.3390/ma14154347
Ruiz-Jimenez V, Jimenez JA, Caballero FG, Garcia-Mateo C. Bainitic Ferrite Plate Thickness Evolution in Two Nanostructured Steels. Materials. 2021; 14(15):4347. https://doi.org/10.3390/ma14154347
Chicago/Turabian StyleRuiz-Jimenez, Victor, Jose A. Jimenez, Francisca G. Caballero, and Carlos Garcia-Mateo. 2021. "Bainitic Ferrite Plate Thickness Evolution in Two Nanostructured Steels" Materials 14, no. 15: 4347. https://doi.org/10.3390/ma14154347
APA StyleRuiz-Jimenez, V., Jimenez, J. A., Caballero, F. G., & Garcia-Mateo, C. (2021). Bainitic Ferrite Plate Thickness Evolution in Two Nanostructured Steels. Materials, 14(15), 4347. https://doi.org/10.3390/ma14154347