Dealloying-Derived Nanoporous Cu6Sn5 Alloy as Stable Anode Materials for Lithium-Ion Batteries
Abstract
:1. Introduction
2. Experimental
2.1. Synthesis of Nanoporous Cu6Sn5 Alloy and Cu6Sn5/Sn Composite
2.2. Microstructural Characterization
2.3. Electrochemical Measurement
3. Results and Discussions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, D.; Liu, Z.J.; Li, X.; Xie, W.; Wang, Q.; Liu, Q.; Fu, Y.; He, D. Group IVA element (Si, Ge, Sn)-based alloying/dealloying anodes as negative electrodes for full-cell lithium-ion batteries. Small 2017, 13, 1702000. [Google Scholar] [CrossRef]
- Qiu, Z.; Zhang, Y.; Liu, Z.; Gao, Y.; Liu, J.; Zeng, Q. Stabilizing Ni-rich LiNi0.92Co0.06Al0.02O2 cathodes by boracic polyanion and tungsten cation Co-doping for high-energy lithium-ion batteries. ChemElectroChem 2020, 7, 3811–3817. [Google Scholar] [CrossRef]
- Deng, K.; Zeng, Q.; Wang, D.; Liu, Z.; Wang, G.; Qiu, Z.; Zhang, Y.; Xiao, M.; Meng, Y. Nonflammable organic electrolytes for high-safety lithium-ion batteries. Energy Storage Mater. 2020, 32, 425–447. [Google Scholar] [CrossRef]
- Zhang, C.; Xie, Z.; Yang, W.; Liang, Y.; Meng, D.; He, X.; Liang, P.; Zhang, Z. NiCo2O4/biomass-derived carbon composites as anode for high-performance lithium ion batteries. J. Power Sources 2020, 451, 227761. [Google Scholar] [CrossRef]
- Shi, Y.; Song, M.; Zhang, Y.; Zhang, C.; Gao, H.; Niu, J.; Ma, W.; Qin, J.; Zhang, Z. A self-healing CuGa2 anode for high-performance Li ion batteries. J. Power Sources 2019, 437, 226889. [Google Scholar] [CrossRef]
- Ast, J.; Ghidelli, M.; Durst, K.; Göken, M.; Sebastiani, M.; Korsunsky, A. A review of experimental approaches to fracture toughness evaluation at the micro-scale. Mater. Des. 2019, 173, 107762. [Google Scholar] [CrossRef]
- Wu, X.L.; Guo, Y.G.; Wan, L.J. Rational design of anode materials based on Group IVA elements (Si, Ge, and Sn) for lithium-ion batteries. Chem. Asian J. 2013, 8, 1948–1958. [Google Scholar] [CrossRef] [PubMed]
- Bruce, P.G.; Scrosati, B.; Tarascon, J.M. Nanomaterials for rechargeable lithium batteries. Angew. Chem. Int. Ed. 2008, 47, 2930–2946. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Gu, L.; Lang, X.; Zhu, C.; Fujita, T.; Chen, M.; Maier, J. Li storage in 3D nanoporous Au-supported nanocrystalline tin. Adv. Mater. 2011, 23, 2443–2447. [Google Scholar] [CrossRef] [PubMed]
- Tarascon, J.M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Chen, X.; Kim, J.; Zheng, Q.; Ning, H.; Sun, P.; Huang, X.; Liu, J.; Niu, J.; Braun, P.V. High volumetric capacity three-dimensionally sphere-caged secondary battery anodes. Nano Lett. 2016, 16, 4501–4507. [Google Scholar] [CrossRef]
- Xu, Y.; Zhu, Y.; Liu, Y.; Wang, C. Electrochemical performance of porous carbon/tin composite anodes for sodium-ion and lithium-ion batteries. Adv. Energy Mater. 2013, 3, 128–133. [Google Scholar] [CrossRef]
- Datta, M.K.; Epur, R.; Saha, P.; Kadakia, K.; Park, S.K.; Kumta, P.N. Tin and graphite based nanocomposites: Potential anode for sodium ion batteries. J. Power Sources 2013, 225, 316–322. [Google Scholar] [CrossRef]
- Luo, B.; Wang, B.; Liang, M.; Ning, J.; Li, X.; Zhi, L. Reduced graphene oxide-mediated growth of uniform tin-core/carbon-sheath coaxial nanocables with enhanced lithium ion storage properties. Adv. Mater. 2012, 24, 1405–1409. [Google Scholar] [CrossRef]
- Huang, Y.; Wu, D.; Han, S.; Li, S.; Xiao, L.; Zhang, F.; Feng, X. Assembly of tin oxide/graphene nanosheets into 3D hierarchical frameworks for high-performance lithium storage. ChemSusChem 2013, 6, 1510–1515. [Google Scholar] [CrossRef]
- Luo, B.; Wang, B.; Li, X.; Jia, Y.; Liang, M.; Zhi, L. Graphene-confined Sn nanosheets with enhanced lithium storage capability. Adv. Mater. 2012, 24, 3538–3543. [Google Scholar] [CrossRef]
- Liu, J.; Wen, Y.; van Aken, P.A.; Maier, J.; Yu, Y. Facile synthesis of highly porous Ni-Sn intermetallic microcages with excellent electrochemical performance for lithium and sodium storage. Nano Lett. 2014, 14, 6387–6392. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Han, W.; Chen, J.; Graetz, J. Single-crystal intermetallic M−Sn (M = Fe, Cu, Co, Ni) nanospheres as negative electrodes for lithium-ion batteries. ACS Appl. Mater. Interfaces 2010, 2, 1548–1551. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Maier, J.; Yu, Y. Sn-based nanoparticles encapsulated in a porous 3D graphene network: Advanced anodes for high-rate and long life Li-ion batteries. Adv. Funct. Mater. 2015, 25, 3488–3496. [Google Scholar] [CrossRef]
- Su, L.; Fu, J.; Zhang, P.; Wang, L.; Wang, Y.; Ren, M. Uniform core–shell Cu6Sn5@C nanospheres with controllable synthesis and excellent lithium storage performances. RSC Adv. 2017, 7, 28399–28406. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Liu, L.; Liu, J.; Cheng, T.; Kong, A.; Qiao, Y.; Shan, Y. Ultrafine Cu6Sn5 nanoalloys supported on nitrogen and sulfur-doped carbons as robust electrode materials for oxygen reduction and Li-ion battery. J. Alloys Compd. 2020, 824, 153958. [Google Scholar] [CrossRef]
- Xing, Y.; Wang, S.; Fang, B.; Feng, Y.; Zhang, S. Three-dimensional nanoporous Cu6Sn5/Cu composite from dealloying as anode for lithium ion batteries. Microporous Mesoporous Mater. 2018, 261, 237–243. [Google Scholar] [CrossRef]
- Xiang, P.; Liu, W.; Chen, X.; Zhang, S.; Shi, S. Facile one-step preparation of 3D nanoporous Cu/Cu6Sn5 microparticles as anode material for lithium-ion batteries with superior lithium storage properties. Metall. Mater. Trans. A 2020, 51, 5965–5973. [Google Scholar] [CrossRef]
- Tan, X.F.; McDonald, S.D.; Gu, Q.; Hu, Y.; Wang, L.; Matsumura, S.; Nishimura, T.; Nogita, K. Characterisation of lithium-ion battery anodes fabricated via in-situ Cu6Sn5 growth on a copper current collector. J. Power Sources 2019, 415, 50–61. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, R.; Yu, W.; Yang, Y.; Wang, Z.; Zhang, C.; Bando, Y.; Golberg, D.; Wang, X.; Ding, Y. Three-dimensional electrode with conductive Cu framework for stable and fast Li-ion storage. Energy Storage Mater. 2018, 11, 83–90. [Google Scholar] [CrossRef] [Green Version]
- Yu, L.; Miao, C.; Nie, S.; Wen, M.; Wang, J.; Tan, Y.; Xiao, W. Feasible preparation of Cu6Sn5 alloy thin-film anode materials for lithium-ion batteries from waste printed circuit boards by electrodeposition. Solid State Ionics 2021, 364, 115625. [Google Scholar] [CrossRef]
- Sarakonsri, T.; Apirattanawan, T.; Tungprasurt, S.; Tunkasiri, T. Solution route synthesis of dendrite Cu6Sn5 powders, anode material for lithium-ion batteries. J. Mater. Sci. 2006, 41, 4749–4754. [Google Scholar] [CrossRef]
- Zhang, C.; Xie, Z.; He, X.; Liang, P.; Zeng, Q.; Zhang, Z. Fabrication and characterization of nanoporous Cu-Sn intermetallics via dealloying of ternary Mg-Cu-Sn alloys. CrystEngComm 2018, 20, 6900–6908. [Google Scholar] [CrossRef]
- Tan, X.F.; McDonald, S.D.; Gu, Q.; Wang, L.; Matsumura, S.; Nogita, K. The effects of Ni on inhibiting the separation of Cu during the lithiation of Cu6Sn5 lithium-ion battery anodes. J. Power Sources 2019, 440, 227085. [Google Scholar] [CrossRef]
- Fan, X.-Y.; Zhuang, Q.-C.; Wei, G.-Z.; Huang, L.; Dong, Q.-F.; Sun, S.-G. One-step electrodeposition synthesis and electrochemical properties of Cu6Sn5 alloy anodes for lithium-ion batteries. J. Appl. Electrochem. 2009, 39, 1323–1330. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Yang, L.; Fang, S.; Hirano, S.-i.; Tachibana, K. Three-dimensional core–shell Cu@Cu6Sn5 nanowires as the anode material for lithium ion batteries. J. Power Sources 2012, 199, 341–345. [Google Scholar] [CrossRef]
- Feng, Y.; Zhang, S.; Xing, Y.; Liu, W. Preparation and characterization of nanoporous Cu6Sn5/Cu composite by chemical dealloying of Al–Cu–Sn ternary alloy. J. Mater. Sci. 2012, 47, 5911–5917. [Google Scholar] [CrossRef]
- Gao, H.; Ma, W.; Yang, W.; Wang, J.; Niu, J.; Luo, F.; Peng, Z.; Zhang, Z. Sodium storage mechanisms of bismuth in sodium ion batteries: An operando X-ray diffraction study. J. Power Sources 2018, 379, 1–9. [Google Scholar] [CrossRef]
- Gao, H.; Niu, J.; Zhang, C.; Peng, Z.; Zhang, Z. A dealloying synthetic strategy for nanoporous bismuth-antimony anodes for sodium ion batteries. ACS Nano 2018, 12, 3568–3577. [Google Scholar] [CrossRef]
- Song, T.; Yan, M.; Gao, Y.; Atrens, A.; Qian, M. Concurrence of de-alloying and re-alloying in a ternary Al67Cu18Sn15 alloy and the fabrication of 3D nanoporous Cu–Sn composite structures. RSC Adv. 2015, 5, 9574–9580. [Google Scholar] [CrossRef]
- Sing, K.S.W.; Everett, D.H.; Haul, R.A.W.; Moscou, L.; Pierotti, R.A.; Rouquerol, J.; Siemieniewska, T. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 1985, 57, 603–619. [Google Scholar] [CrossRef]
- Ghidelli, M.; Sebastiani, M.; Collet, C.; Guillemet, R. Determination of the elastic moduli and residual stresses of freestanding Au-TiW bilayer thin films by nanoindentation. Mater. Des. 2016, 106, 436–445. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, C.; Wang, Z.; Cui, Y.; Niu, X.; Chen, M.; Liang, P.; Liu, J.; Liu, R.; Li, J.; He, X. Dealloying-Derived Nanoporous Cu6Sn5 Alloy as Stable Anode Materials for Lithium-Ion Batteries. Materials 2021, 14, 4348. https://doi.org/10.3390/ma14154348
Zhang C, Wang Z, Cui Y, Niu X, Chen M, Liang P, Liu J, Liu R, Li J, He X. Dealloying-Derived Nanoporous Cu6Sn5 Alloy as Stable Anode Materials for Lithium-Ion Batteries. Materials. 2021; 14(15):4348. https://doi.org/10.3390/ma14154348
Chicago/Turabian StyleZhang, Chi, Zheng Wang, Yu Cui, Xuyao Niu, Mei Chen, Ping Liang, Junhao Liu, Runjun Liu, Jingcong Li, and Xin He. 2021. "Dealloying-Derived Nanoporous Cu6Sn5 Alloy as Stable Anode Materials for Lithium-Ion Batteries" Materials 14, no. 15: 4348. https://doi.org/10.3390/ma14154348
APA StyleZhang, C., Wang, Z., Cui, Y., Niu, X., Chen, M., Liang, P., Liu, J., Liu, R., Li, J., & He, X. (2021). Dealloying-Derived Nanoporous Cu6Sn5 Alloy as Stable Anode Materials for Lithium-Ion Batteries. Materials, 14(15), 4348. https://doi.org/10.3390/ma14154348