Removal Performance and Mechanism of Benzo(b)Fluorathene Using MnO2 Nanoflower/Graphene Oxide Composites
Abstract
:1. Introduction
2. Results
2.1. Structural and Morphology Characterization of MnO2 NF/GO Composites
2.2. Chemical Characteristics of MnO2 NF/GO Composites
2.3. Effect of Contact Time and Adsorption Kinetics
2.4. Adsorption Isotherm
2.5. BbFA Adsorption Mechanism
3. Methods
3.1. Materials
3.2. Fabrication of MnO2 NF/GO Composites
3.3. Characterization Methods
3.4. Adsorption Experiments
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, J.; Li, F.; Liu, Q. PAHs behavior in surface water and groundwater of the Yellow River estuary: Evidence from isotopes and hydrochemistry. Chemosphere 2017, 178, 143–153. [Google Scholar] [CrossRef]
- Dat, N.-D.; Chang, M.B. Review on characteristics of PAHs in atmosphere, anthropogenic sources and control technologies. Sci. Total Environ. 2017, 609, 682–693. [Google Scholar] [CrossRef]
- Han, J.; Liang, Y.; Zhao, B.; Wang, Y.; Xing, F.; Qin, L. Polycyclic aromatic hydrocarbon (PAHs) geographical distribution in China and their source, risk assessment analysis. Environ. Pollut. 2019, 251, 312–327. [Google Scholar] [CrossRef]
- Meng, Y.; Liu, X.; Lu, S.; Zhang, T.; Jin, B.; Wang, Q.; Tang, Z.; Liu, Y.; Guo, X.; Zhou, J. A review on occurrence and risk of polycyclic aromatic hydrocarbons (PAHs) in lakes of China. Sci. Total Environ. 2019, 651, 2497–2506. [Google Scholar] [CrossRef]
- Bandowe, B.A.M.; Meusel, H. Nitrated polycyclic aromatic hydrocarbons (nitro-PAHs) in the environment—A review. Sci. Total Environ. 2017, 581, 237–257. [Google Scholar] [CrossRef]
- Hale, S.E.; Elmquist, M.; Braendli, R.; Hartnik, T.; Jako, L.; Henriksen, T.; Werner, D.; Comelissen, G. Activated carbon amendment to sequester PAHs in contaminated soil: A lysimeter field trial. Chemosphere 2012, 87, 177–184. [Google Scholar] [CrossRef]
- Zhou, W.; Wang, X.; Chen, C.; Zhu, L. Removal of polycyclic aromatic hydrocarbons from surfactant solutions by selective sorption with organo-bentonite. Chem. Eng. J. 2013, 233, 251–257. [Google Scholar] [CrossRef]
- Li, C.H.; Wong, Y.S.; Wang, H.Y.; Tam, N.F.Y. Anaerobic biodegradation of PAHs in mangrove sediment with amendment of NaHCO3. J. Environ. Sci. 2015, 4, 148–156. [Google Scholar] [CrossRef]
- Sun, K.; Liu, J.; Gao, Y.; Jin, L.; Gu, Y.; Wang, W. Isolation, plant colonization potential, and phenanthrene degradation performance of the endophytic bacterium Pseudomonas sp. Ph6-gfp. Sci. Rep. 2014, 4, 5462. [Google Scholar] [CrossRef] [Green Version]
- Yin, W.; Guo, Z.; Zhao, C.; Xu, J. Removal of Cr(VI) from aqueous media by biochar derived from mixture biomass precursors of Acorus calamus Linn. and feather waste. J. Anal. Appl. Pyrolysis 2019, 140, 86–92. [Google Scholar] [CrossRef]
- Yin, W.; Zhao, C.; Xu, J. Enhanced adsorption of Cd (II) from aqueous solution by a shrimp bran modified Typha orientalis biochar. Environ. Sci. Pollut. Res. 2019, 26, 37092–37100. [Google Scholar] [CrossRef] [PubMed]
- Kumar, J.A.; Amarnath, D.J.; Sathish, S.; Jabasingh, S.A.; Saravanan, A.; Hemavathy, R.; Anand, K.V.; Yaashikaa, P. Enhanced PAHs removal using pyrolysis-assisted potassium hydroxide induced palm shell activated carbon: Batch and column investigation. J. Mol. Liq. 2019, 279, 77–87. [Google Scholar] [CrossRef]
- Bhadra, B.N.; Song, J.Y.; Lee, S.-K.; Hwang, Y.K.; Jhung, S.H. Adsorptive removal of aromatic hydrocarbons from water over metal azolate framework-6-derived carbons. J. Hazard. Mater. 2018, 344, 1069–1077. [Google Scholar] [CrossRef]
- Zhong, Y.; Wang, S.; He, Y.; Song, G. Synthesis of Magnetic/Graphene Oxide Composite and Application for High-Performance Removal of Polycyclic Aromatic Hydrocarbons from Contaminated Water. Nano Life 2015, 5, 1542006. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, W.; Ruan, G.; Li, X.; Cong, Y.; Du, F.; Li, J. Reduced graphene oxide-hybridized polymeric high-internal phase emulsions for highly efficient removal of polycyclic aromatic hydrocarbons from water matrix. Langmuir 2018, 34, 3661–3668. [Google Scholar] [CrossRef]
- Yan, H.; Wu, H.; Li, K.; Wang, Y.; Tao, X.; Yang, H.; Li, A.; Cheng, R. Influence of the surface structure of graphene oxide on the adsorption of aromatic organic compounds from water. ACS Appl. Mater. Interfaces 2015, 7, 6690–6697. [Google Scholar] [CrossRef]
- Sun, Y.; Yang, S.; Zhao, G.; Wang, Q.; Wang, X. Adsorption of Polycyclic Aromatic Hydrocarbons on Graphene Oxides and Reduced Graphene Oxides. Chem. Asian J. 2013, 8, 2755–2761. [Google Scholar] [CrossRef]
- Zhang, W.; Zheng, J.; Zheng, P.; Tsang, D.; Qiu, R. The roles of humic substances in the interactions of phenanthrene and heavy metals on the bentonite surface. J. Soils Sediments 2015, 15, 1463–1472. [Google Scholar] [CrossRef]
- Liang, X.; Zhu, L.; Zhuang, S. Sorption of polycyclic aromatic hydrocarbons to soils enhanced by heavy metals: Perspective of molecular interactions. J. Soil Sediments 2016, 16, 1509–1518. [Google Scholar] [CrossRef]
- Takahashi, A.; Yang, R.T. New adsorbents for purification: Selective removal of aromatics. Aiche J. 2002, 48, 1457–1468. [Google Scholar] [CrossRef]
- Lin, M.; Chen, Z. A facile one-step synthesized epsilon-MnO2 nanoflowers for effective removal of lead ions from wastewater. Chemosphere 2020, 250, 126329. [Google Scholar] [CrossRef]
- Ouyang, H.; Lu, Q.; Wang, W.; Song, Y.; Tu, X.; Zhu, C.; Smith, J.N.; Du, D.; Fu, Z.; Lin, Y. Dual-readout immunochromatographic assay by utilizing MnO2 nanoflowers as the unique colorimetric/chemiluminescent probe. Anal. Chem. 2018, 90, 5147–5152. [Google Scholar] [CrossRef]
- Ma, X.; Zhang, L.; Xia, M.; Li, S.; Zhang, X.; Zhang, Y. Mimicking the active sites of organophosphorus hydrolase on the backbone of graphene oxide to destroy nerve agent simulants. ACS Appl. Mater. Interfaces 2017, 9, 21089–21093. [Google Scholar] [CrossRef]
- Lopez, A.; Zhao, Y.; Huang, Z.; Guo, Y.; Guan, S.; Jia, Y.; Liu, J. Poly-Cytosine Deoxyribonucleic Acid Strongly Anchoring on Graphene Oxide Due to Flexible Backbone Phosphate Interactions. Adv. Mater. Interfaces 2021, 8, 2001798. [Google Scholar] [CrossRef]
- Ding, H.X.; Tao, X.M.; Kang-Le, L.V.; Zhang, N. Distribution Characteristics and Risk Analysis of PAHs and PCBs in Soils of Lanzhou. Adm. Tech. Environ. Monit. 2018, 30, 25–29. [Google Scholar]
- Sadak, O.; Wang, W.; Guan, J.; Sundramoorthy, A.K.; Gunasekaran, S. MnO2 nanoflowers deposited on graphene paper as electrode materials for supercapacitors. ACS Appl. Nano Mater. 2019, 2, 4386–4394. [Google Scholar] [CrossRef]
- Park, W.-Y.; Wada, T.; Joo, S.-H.; Han, J.; Kato, H. Novel hierarchical nanoporous graphene nanoplatelets with excellent rate capabilities produced via self-templating liquid metal dealloying. Mater. Today Commun. 2020, 24, 101120. [Google Scholar] [CrossRef]
- Al-Gaashani, R.; Najjar, A.; Zakaria, Y.; Mansour, S.; Atieh, M. XPS and structural studies of high quality graphene oxide and reduced graphene oxide prepared by different chemical oxidation methods. Ceram. Int. 2019, 45, 14439–14448. [Google Scholar] [CrossRef]
- Sing, K.S.; Williams, R.T. Physisorption hysteresis loops and the characterization of nanoporous materials. Adsorpt. Sci. Technol. 2004, 22, 773–782. [Google Scholar] [CrossRef]
- Stranick, M.A. MnO2 by XPS. Surf. Sci. Spectra 1999, 6, 31–38. [Google Scholar] [CrossRef]
- Stobinski, L.; Lesiak, B.; Malolepszy, A.; Mazurkiewicz, M.; Mierzwa, B.; Zemek, J.; Jiricek, P.; Bieloshapka, I. Graphene oxide and reduced graphene oxide studied by the XRD, TEM and electron spectroscopy methods. J. Electron Spectrosc. Relat. Phenom. 2014, 195, 145–154. [Google Scholar] [CrossRef]
- Xu, H.; Hu, X.; Yang, H.; Sun, Y.; Hu, C.; Huang, Y. Flexible asymmetric micro-supercapacitors based on Bi2O3 and MnO2 nanoflowers: Larger areal mass promises higher energy density. Adv. Energy Mater. 2015, 5, 1401882. [Google Scholar] [CrossRef]
- Simonin, J.-P. On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics. Chem. Eng. J. 2016, 300, 254–263. [Google Scholar] [CrossRef] [Green Version]
- Guo, Z.; Zhang, X.; Kang, Y.; Zhang, J. Biomass-derived carbon sorbents for Cd (II) removal: Activation and adsorption mechanism. ACS Sustain. Chem. Eng. 2017, 5, 4103–4109. [Google Scholar] [CrossRef]
- Marczewski, A.W. Analysis of kinetic Langmuir model. Part I: Integrated kinetic Langmuir equation (IKL): A new complete analytical solution of the Langmuir rate equation. Langmuir 2010, 26, 15229–15238. [Google Scholar] [CrossRef]
- Saadi, R.; Saadi, Z.; Fazaeli, R.; Fard, N.E. Monolayer and Multilayer Adsorption Isotherm Models for Sorption from Aqueous Media. Korean J. Chem. Eng. 2015, 32, 787–799. [Google Scholar] [CrossRef]
Identification | MnO2 NF | MnO2 NF/GO |
---|---|---|
SBET [a] (m2/g) | 87.78 | 694.30 |
Smic [b] (m2/g) | 11.40 | 182.19 |
Sext [c] (m2/g) | 76.38 | 512.11 |
Vtot [d] (cm3/g) | 0.3584 | 0.9606 |
Vmic [e] (cm3/g) | 0.0046 | 0.0778 |
Vmes [f] (cm3/g) | 0.3538 | 0.8828 |
Kinetic Models | Constants | MnO2 NF | MnO2 NF/GO |
---|---|---|---|
Pseudo-first-order parameters | Qe,cal (mg/g) | 5.272 | 40.62 |
K1 (1/min) | 0.042 | 0.053 | |
R2 | 0.9522 | 0.9721 | |
Pseudo-second-order parameters | Qe,cal (mg/g) | 9.9 | 74.07 |
K2 (g/mg/min 10−4) | 299 | 48.73 | |
R2 | 0.998 | 0.9986 |
Isotherm Models | Constants | MnO2 NF | MnO2 NF/GO |
---|---|---|---|
Langmuir | KL (L/mg) | 5.364 | 74.07 |
Qm (mg/g) | 10.13 | 1.824 | |
R2 | 0.9973 | 0.9964 | |
Freundlich | KF (mg/g·(L/mg)·1/n) | 8.701 | 49.11 |
1/n | 0.0582 | 0.1878 | |
R2 | 0.9647 | 0.9976 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, Q.; Lu, S.; Yin, W.; Kang, Y.; Yang, N.; Hou, Y.; Guo, Z. Removal Performance and Mechanism of Benzo(b)Fluorathene Using MnO2 Nanoflower/Graphene Oxide Composites. Materials 2021, 14, 4402. https://doi.org/10.3390/ma14164402
Cao Q, Lu S, Yin W, Kang Y, Yang N, Hou Y, Guo Z. Removal Performance and Mechanism of Benzo(b)Fluorathene Using MnO2 Nanoflower/Graphene Oxide Composites. Materials. 2021; 14(16):4402. https://doi.org/10.3390/ma14164402
Chicago/Turabian StyleCao, Qingqing, Siqi Lu, Wenjun Yin, Yan Kang, Naihao Yang, Yudong Hou, and Zizhang Guo. 2021. "Removal Performance and Mechanism of Benzo(b)Fluorathene Using MnO2 Nanoflower/Graphene Oxide Composites" Materials 14, no. 16: 4402. https://doi.org/10.3390/ma14164402
APA StyleCao, Q., Lu, S., Yin, W., Kang, Y., Yang, N., Hou, Y., & Guo, Z. (2021). Removal Performance and Mechanism of Benzo(b)Fluorathene Using MnO2 Nanoflower/Graphene Oxide Composites. Materials, 14(16), 4402. https://doi.org/10.3390/ma14164402