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Abstract: By using a methane and hydrogen process gas mixture in an appropriate hot-filament CVD
process without further dopant, high electrical conductivity of over 100 S/cm has been achieved
in nanocrystalline diamond films deposited on silicon single-crystalline substrates. Furthermore,
it was found that an oxygen reactive-ion etching process (O-RIE) can improve the diamond film
surface’s electron affinity, thus reducing the specific contact resistance. The reduction of the specific
contact resistance by a factor of up to 16 was realized by the oxygen ion etching process, down to
6× 10−6 Ωcm2. We provide a qualitative explanation for the mechanism behind the contact resistance
reduction in terms of the electron affinity of the diamond surface. With the aid of XPS, AFM, and
surface wetting measurements, we confirmed that a higher surface electron affinity is responsible for
the lower specific contact resistance of the oxygen-terminated nanocrystalline diamond films.

Keywords: nanocrystalline diamond; hot-filament CVD; contact resistance; reactive-ion etching

1. Introduction

Diamond has outstanding mechanical properties, together with chemical inertness
and high thermal conductivity [1]. The success of different chemical vapor deposition
(CVD) techniques for synthesizing diamond has greatly expanded its laboratory study
and industrial application [2]. For example, the hot-filament chemical vapor deposition
(HFCVD) technique is widely used for deposition on three-dimensional objects and can
easily be scaled to large coating areas [1]. The microwave plasma chemical vapor deposition
(MPCVD) technique is more suitable for coating of optical products, thanks to its low
contamination from electrodes [3].

By tailoring the electronic structure through chemical doping or nanostructure for-
mation, it becomes an attractive material for electronic devices and sensors. Examples
include high-voltage diamond diodes with intrinsic and boron-doped layers [4], dia-
mond power devices with delta-doped FETs [5], piezoresistive sensors [6], hybrid silicon-
nanorystalline diamond membrane pressure sensors [7], and nanodiamond actors for
thermally generated cavitation [8], based on conductive n-type (ultra-)nanocrystalline
diamond (UNCD). Despite impressive figures of merit on theoretical electrical device
performance, the diamond-based electron device technology is limited by the difficulties
related with diamond doping [9] or their various surface (ohmic or rectifying) contacts’
fabrication [10].

Due to the extremely strong covalent bonding of carbon atoms (sp3 bonds) in dia-
mond crystals, dopants have a high ionization energy, resulting in low activation at room
temperature [1]. Diamond films with ultra-nano grain size can also exhibit n-type elec-
trical conductivity due to their unique grain boundary structure [11–13]. On the other
hand, several simulations have revealed that, in diamond, part of the excess energy of
the grain boundary is relaxed by changing the hybridization of the carbon atoms [14,15].
This leads to re-bonding into more sp2 bonded carbon structures and disordered grain
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boundaries [14,15]. That in turn enhances the electrical conductivity when the diamond
grain size is in the nanometer scale [13].

Furthermore, ohmic contacts with low contact resistance are difficult to form to
diamond due to its wide bandgap and its interface barrier height with contacts [16,17].
Effective ohmic contacts were obtained only by forming a high concentration surface
layer via in-situ doping or by a suitable annealing treatment [10]. Nevertheless, earlier
theoretical [18] and experimental [19,20] attempts showed that surface states were an
unavoidable result of the termination of their lattice, hence affecting the interface barrier
and resistance [16].

A high conductivity with reduced ohmic contact resistance allows devices on diamond
films to perform with improved sensitivity and energy efficiency. This opens the way for
the development of new devices based on nanoelectronics. For instance, reducing the
contact resistance between metal contacts and piezoresistive UNCD sensors enables an
increased sensor sensitivity [6,7]. The low contact resistance also means less power loss
for thermal cavitation actuators based on highly conductive diamond films [8]. Moreover,
this combination was also working as an electrode substrate in a biosensor [21] and will
be used in the future as a practical multilayer capacitor for a wear sensor, consisting of
sequential non-conductive and conductive diamond film layers.

In this paper, we present an investigation of the synthesis of non-conductive and
conductive nanocrystalline undoped diamond films onto Si wafers with controllable spe-
cific electrical conductivity (σf, S/cm) in the range of 9.86 × 10−6 to 133.45 S/cm, and
additionally, we show how to minimize the specific contact resistance (ρc, Ωcm2) between
conductive diamond films and different metals, using different metallization and oxygen
ion etching processes.

With an increase of the methane (CH4) composition in the CH4/H2 precursor gas
mixture, a strong increase in the diamond films’ specific electrical conductivity occurred.
On the other hand, the specific contact resistance of diamond films was reduced by a factor
of 5–16, by an optimized contact material selection and after an oxygen reactive-ion etching
(O-RIE) process on the film’s surface.

2. Materials and Methods

Nanocrystalline diamond films (NCD) and electrically high-conductive (ultra-)nanocry-
stalline diamond films (UNCD) were deposited onto 4” Si wafers with a controlled thickness
of typically 1 µm, using the HFCVD process, after the Si wafers were seeded by ultrasoni-
cation inside a nanocrystalline diamond solution, which resulted in a seeding density of
1011 cm−2 and an average seed size of 3–5 nm.

Tungsten was used as filament material, and the filaments were resistively heated to
around 2000 ◦C. Methane (CH4), together with hydrogen (H2), was used as a process gas
mixture. The ratio of the methane to hydrogen gas flow was varied between 3%, 4%, 5%,
and 6%, corresponding to samples I, II, III, and IV.

Before the seeding and deposition process, the Si wafers’ surfaces were oxidized by
heating them in a furnace under atmospheric conditions in order to build up an insulating
SiO2 layer (~100–200 nm thickness) and to prevent the influence of the Si wafer’s electrical
conductivity on the measurement of the diamond films’ electrical conductivity.

The surface morphology and roughness of diamond films were captured and mea-
sured by SEM (scanning electron microscopy) and AFM (atomic force microscopy), re-
spectively. X-ray diffraction (XRD) measurements in a standard Bragg–Brentano geometry
using a Cu Kα X-ray source were used, on the one hand to prove the existence of crystalline
diamond grains in the film, and on the other hand, for approximating the diamond film’s
average grain size, using Scherrer’s equation and considering the FWHM (full width at
half maximum) of the diamond (111)-peak by 2θ = 43.9◦.

Raman measurements were obtained using a diode-pumped solid-state laser (DPSSL)
with a wavelength of 532 nm, as Raman spectroscopy is highly sensitive to amorphous and
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graphitic carbon materials due to the resonance of laser excitation energy, so as to obtain
information about the bonding structural properties of the grain boundary region.

Microstructures for electric characterization were fabricated by micro-technology
methods. In order to pattern the conductive nanocrystalline diamond layer, a structured
aluminum mask was deposited in a lift-off process by means of photolithography and ther-
mal evaporation. The patterning of the UNCD layers was performed by an oxygen plasma
etching process. Besides 4-point-measurements, Van-der-Pauw (VDP, 300 µm × 320 µm in-
side 4 contact pads) and Linear-Transmission-Line-Methods (LTLM, contact pads distance,
respectively, 10 µm, 20 µm, 30 µm, and 50 µm from l1 to l4) micro-structures were prepared
by a photolithography process in a clean room (Figure 1), for measurement and evaluation
of the specific electrical conductivity of NCD and UNCD. In addition, LTLM structures
were used, especially for those two UNCD samples (specific electrical conductivity by
12.93 S/cm, Sample III), whose surfaces were pre-treated with an oxygen ion etching
process with different plasma power values.
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Figure 1. VDP (left) and LTLM (right) micro-structures prepared photolithographically.

In the micro-technology of electronic diamond devices, gold is preferentially used as a
main part of the metallization, when connecting active UNCD elements or when building
contact pads, due to its chemical inertness and good electrical conductivity. However, gold
is not a carbide-forming element and hence does not present a good mechanical bond with
and adhesion to diamond. Gold was nonetheless used as contact metal, together with the
carbide-forming metals tantalum (Ta) and molybdenum (Mo) for the UNCD film. The
oxidation of the two carbide-forming contact materials was prevented by the subsequent
coating with a thin Au layer. This layer was sputtered onto the contact material in the same
magnetron sputtering device, without exposure of the sample to air in between. Since Ta
showed a generally smaller specific contact resistance, it was chosen for further experiments
where the UNCD film surface was pre-treated with different O-RIE processes. Table 1
shows an overview of the samples for the contact resistance measurements. Furthermore,
we performed XPS (X-ray photoelectron spectroscopy, using Al-Kα irradiation source,
1486 eV) measurements on the diamond films’ surfaces to gain insights into the reasons for
a reduced contact resistance after O-RIE.
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Table 1. Sample group based on different metallization and O-RIE parameters.

Sample III-a III-b III-c III-d III-e III-f III-g

contact metal Au Ta Mo Au Ta Au Ta
thickness 200 nm 100 nm 100 nm 200 nm 100 nm 200 nm 100 nm

cover metal - Au Au - Au - Au
thickness 200 nm 200 nm 200 nm 200 nm

O-RIE, 100 W No No No Yes Yes No No

O-RIE, 200 W No No No No No Yes Yes

3. Results and Discussion

Taking sample III as an example, both its SEM and AFM images (Figure 2) show a
smooth and homogeneous surface morphology. The SEM image indicates that the film
consisted of small diamond grains with an average size below 20 nm. This is further
confirmed by XRD (Figure 3, top-left and bottom). The average grain size of the diamond
films decreased from about 15 nm (sample I) to around 5 nm (sample IV), when the
methane ratio increased from 3% to 6%. The average surface roughness (Rrms, root mean
square roughness) obtained from the AFM measurements was in a similar range for all
four samples. The roughness ranged from 20–35 nm, since all those samples (I, II, III,
IV) consisted of nanograins smaller than 20 nm, resulting from a growth process with
a significant re-nucleation rate [22]. Together with the reduction of their grain size, the
specific electrical conductivity of those four samples drastically increased from 9.86 × 10−6

S/cm of (sample I) to 133.45 S/cm (sample IV) (Figure 3, top-right), as was evaluated by
4-point-measurements.
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Figure 2. SEM and AFM images of diamond film sample III with a methane ratio of 5% in the
process gas.

This shows that an increase of the methane/hydrogen gas flow ratio during growth
leads to the reduction of the diamond film’s grain size and an increase in electrical conduc-
tivity, when the process pressure and filament current are kept the same.

This is explained by an increase of grain boundary volume with a higher content of
defective sp2 carbon sites that leads to the delocalization of π-electrons [13,22,23]. Insight
into the chemical structure of the grain boundaries can be obtained by Raman measure-
ments (Figure 4, bottom), especially the analysis of the peaks at 1332 cm−1 (bulk dia-
mond), 1350 cm−1 (disordered graphitic band, D-peak), and 1580 cm−1 (graphite band,
G-peak) [24,25]. An increasing content of defective sp2 carbon sites in the films can be de-
duced from a shift of the D- and G-peaks to higher peak position values, and more notably,
the appearance of a D-peak, which is associated with disordered graphitic structures and
the semi-metallic character of the electronic structure of graphite [25].
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In sample I, the bulk diamond peak at 1332 cm−1 can still be seen on top of the broad
D-band peak. This shows a dominant fraction of sp3 bonds due to the relatively large
crystalline nanodiamond grains. In contrast to that, sample IV shows only a broad intensive
peak at 1350 cm−1, corresponding to a much smaller grain size and higher fraction of sp2

bonds, due to the higher grain boundary volume. Thus, the evaluation of the intensity of D-
band I(D) is accomplished by an integrated fitting with separate fitting curves at 1332 cm−1

and 1350 cm−1. Figure 4 (top-left) demonstrates the correlation between the increasing
intensity ratio of D-peak and G-peak, namely I(D)/I(G), with the inverse diamond grain
size. Furthermore, this ratio was also assigned to evaluate the La (in-plane correlation
length within an ordered graphite layer) [25], and the degree of order of the clustered
aromatic sp2 phase in graphitic materials [24], thus was found to accompany the higher
specific electrical conductivity [12,26], as Figure 4 (top-right) shows.

The measured contact resistance of samples subgroup III-a to III-c (based on LTLM
and VDP micro-structures) provide the overall information that carbide-forming metals,
as well as the single direct Au-contact, are suitable ohmic contact materials, since linear
I-V characteristics were collected within a voltage from −5V to +5V (Figure 5, left, taking
sample III-b as an example). Because of the enhanced electrical conductivity of the diamond
film, due to the reduced average grain size and the increased sp2 bonding fraction in the
grain boundaries [13], this is distinctly different from the conventional doping process for
a crystalline semiconductor, whose charge carriers are contributed by ionization of donor
or acceptor. The contact between metallization materials and diamond films is therefore
called a metal–semimetal contact [27].
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Figure 5 (right) shows the exemplary analysis of the Ta/Au contact metallization. The
linear fitting of total resistance (Rt), which consists of Rsh (film resistance) and Rc (metal
contact resistance), against the distance L among the four metallic pads (based on the LTLM
micro-structure) is shown in Figure 5. The intercept of the fitted line with the x-axis refers
to the transfer length Lt, which is the length under the metal contact, where the current in
the film is reduced by 1/e, and the intercept with the y-axis reveals the contact resistance Rc.
Table 2 gives an overview of the obtained contact resistivity for different metals. The results
given in Table 2 indicate that Ta/Au as a combined metallization material shows a relatively
small specific contact resistance among samples III-a to III-c, which also can be noted in
Figure 6, after plotting the results regarding the three different measurement positions.
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Table 2. Measurement results of specific electrical contact resistance and specific electrical conductiv-
ity of diamond film, based on different micro-structures and metallization metals.

Sample Subgroups ρc, Ω×cm2 (LTLM) σf, S/cm (LTLM) σf, S/cm (VDP)

Au (III-a) (9.47 ± 3.09)× 10−5 10.67 ± 0.72 11.56 ± 0.67

Ta/Au (III-b) (3.07 ± 0.88)× 10−5 12.79 ± 0.49 13.81 ± 0.39

Mo/Au (III-c) (7.89 ± 1.14)× 10−5 11.29 ± 0.22 11.75 ± 0.04

Au (III-d) (2.05 ± 0.09)× 10−5 8.77 ± 0.09 9.08 ± 0.06

Ta/Au (III-e) (2.19 ± 0.56)× 10−5 8.14 ± 0.11 8.38 ± 0.02

Au (III-f) (1.43 ± 0.11)× 10−5 9.49 ± 0.02 10.01 ± 0.02

Ta/Au (III-g) (6.98 ± 1.15)× 10−6 9.16 ± 0.07 9.59 ± 0.05
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The samples’ surfaces of subgroup III-a to III-c were in the as-grown state, having
an H-termination after HFCVD deposition in a hydrogen-rich atmosphere. We hence
assume that the surface state and electron affinity (χ) of those three samples were the same.
The high electron density of about 2.9 × 1019(cm−3) [23] observed in these kinds of films
lets us assume that the density of surface states is not able to pin the fermi level at the
surface. Thus, the barrier height (qφBn) of a metal–semiconductor contact is determined
entirely by the difference of the metal work function (φM) and the electron affinity of the
semiconductor (χ) [28]. The barrier height can be formulated as in [28]:

qφBn = q(φM − χ)− q∆φ (1)

where q∆φ is the image force barrier lowering. An increasing metal work function
increases the specific contact resistance. In this experiment, the contact resistances on
UNCD for Ta, Mo, and Au, whose φM are respectively ~ 4.19 eV (Ta), 4.36–4.95 eV (Mo),
and 5.10–5.47 eV (Au) [29], are shown by square plots in Figure 6.

In the cases where an oxygen plasma-etching process was applied prior to the contact
deposition, sample subgroups (III-d to III-g) indicated a drastically decreased contact
resistance (circular and triangular plots in Figure 6, note the y-axis with logarithmic scal-
ing). For Au as contact material, an obvious reduction was obtained, namely a decrease
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from 7.26 × 10−5–1.30 × 10−4 Ωcm2 (sample III-a) to 1.36 × 10−5–1.56 × 10−5 Ωcm2 (sam-
ple III-f), with a factor of 5–8, which can only be attributed to the oxygen ion plasma
treatment. Furthermore, an overall reduction by a factor of 12–16 can be recognized
for Ta as a carbide-forming interlayer between Au and the diamond film (down to
6.03 × 10−6–8.25 × 10−6 Ωcm2 in sample III-g).

However, an O-RIE process with different working powers resulted in quite different
specific resistance reductions, whereby the samples III-f and III-g with higher power pre-
sented more significant changes. For a better understanding of the reason why the contact
resistance decreased after those diamond film’s surfaces were pre-treated in oxygen ion
plasma, especially under higher power oxygen plasma, further evaluation was completed
with the aid of AFM, XPS, and surface wetting measurements.

AFM gave information about the entire contact surface area, regarding the different
surfaces’ roughness. The measurements were all performed on the same measurement
size (10 × 10 µm2), as shown in Figure 7. However, the ratios between the area measured
by the AFM and the resulting surface area did not show a large difference—respectively,
100/106 µm2/µm2 (sample without O-RIE), 100/108.5 µm2/µm2 (sample with 100 W O-
RIE), and 100/108.9 µm2/µm2 (sample with 200 W O-RIE)—which means the surface
roughness (Rrms respectively 32.2 nm, 40.8 nm, and 40.3 nm) is not the main reason for
a significant reduction in the contact resistance on a logarithmic scale. A more plausible
reason for the reduction in contact resistance is the different surface termination after
O-RIE, which can be proved by different surface XPS spectra (Figure 8) and different water
wetting angles on sample surfaces in macroscopy (Figure 9).

Materials 2021, 14, x FOR PEER REVIEW 8 of 12 
 

 

qϕ୬ = qሺϕ െ  𝛘ሻ െ qΔϕ (1) 

where qΔϕ is the image force barrier lowering. An increasing metal work function in-
creases the specific contact resistance. In this experiment, the contact resistances on UNCD 
for Ta, Mo, and Au, whose ϕ are respectively ~ 4.19 eV (Ta), 4.36–4.95 eV (Mo), and 
5.10–5.47 eV (Au) [29], are shown by square plots in Figure 6. 

In the cases where an oxygen plasma-etching process was applied prior to the contact 
deposition, sample subgroups (Ⅲ-d to Ⅲ-g) indicated a drastically decreased contact re-
sistance (circular and triangular plots in Figure 6, note the y-axis with logarithmic scaling). 
For Au as contact material, an obvious reduction was obtained, namely a decrease from 7.26 × 10ିହ– 1.30 × 10ିସ Ωcm2 (sample Ⅲ-a) to 1.36 × 10ିହ–1.56 × 10ିହ Ωcm2 (sample 
Ⅲ-f), with a factor of 5–8, which can only be attributed to the oxygen ion plasma treatment. 
Furthermore, an overall reduction by a factor of 12–16 can be recognized for Ta as a car-
bide-forming interlayer between Au and the diamond film (down to 6.03 × 10ି –8.25 × 10ି Ωcm2 in sample Ⅲ-g). 

However, an O-RIE process with different working powers resulted in quite different 
specific resistance reductions, whereby the samples Ⅲ-f and Ⅲ-g with higher power pre-
sented more significant changes. For a better understanding of the reason why the contact 
resistance decreased after those diamond film’s surfaces were pre-treated in oxygen ion 
plasma, especially under higher power oxygen plasma, further evaluation was completed 
with the aid of AFM, XPS, and surface wetting measurements. 

AFM gave information about the entire contact surface area, regarding the different 
surfaces’ roughness. The measurements were all performed on the same measurement 
size (10 × 10 µmଶ), as shown in Figure 7. However, the ratios between the area measured 
by the AFM and the resulting surface area did not show a large difference—respectively, 
100/106 µmଶ/µmଶ (sample without O-RIE), 100/108.5 µmଶ/µmଶ (sample with 100 W O-
RIE), and 100/108.9 µmଶ/µmଶ  (sample with 200 W O-RIE)—which means the surface 
roughness (Rrms respectively 32.2 nm, 40.8 nm, and 40.3 nm) is not the main reason for a 
significant reduction in the contact resistance on a logarithmic scale. A more plausible 
reason for the reduction in contact resistance is the different surface termination after O-
RIE, which can be proved by different surface XPS spectra (Figure 8) and different water 
wetting angles on sample surfaces in macroscopy (Figure 9). 

 
Figure 7. SEM and AFM measurements of sample surfaces, respectively, without O-RIE (left), with 
100 W O-RIE (middle), and 200 W O-RIE (right) processes. 

According to the XPS survey scan spectra, both of the samples that were etched with 
O-RIE processes (Figure 8, middle and right) exhibited a significant Oଵୱ intensity (~531 
eV) and Oమయమయ intensity (~ 978 eV), whereas the sample without O-RIE (Figure 8, left) 
pre-treatment did not present a strong peak, even though a small peak was captured, 
probably due to some water adsorbed on the sample surface. The intensity ratio between 
the Oଵୱ peak (~531 eV) and the Cଵୱ peaks (~284.8 eV) of those three samples are respec-

Figure 7. SEM and AFM measurements of sample surfaces, respectively, without O-RIE (left), with
100 W O-RIE (middle), and 200 W O-RIE (right) processes.

Materials 2021, 14, x FOR PEER REVIEW 9 of 12 
 

 

tively, 0.12, 0.65, and 0.52 (from left to right in Figure 8). This is also matching to the con-
tact angle measurement results in Figure 9, which indicates a transfer from a hydrophobic 
surface to a hydrophilic surface, after an O-RIE process on diamond film, and furthermore 
an enhancement of surface energy according to Young’s equation [30]. Different plasma 
process durations for uniform remaining UNCD film thickness were also tested on iden-
tical diamond films, leading to comparable results of contact resistances to those pre-
sented earlier. However, the relative higher intensity ratio between the Oଵୱ peak and the Cଵୱ peaks of the sample pre-treated with lower oxygen plasma power (100 W) was caused 
by a longer O-RIE process duration. This can be explained by a higher level of surface 
defects, such as a combination of -CHx, =CHx with C-O-O-C, -COH or C-O-V (vacancy) 
[31], but not clear surface reconstructions by the formation of ether-configuration (C-O) 
and ketone-configuration (C=O) oxygen-carbon atoms bonds. Those effective reconstruc-
tions contribute particularly sensitive to the diamond surface electron affinity change 
from the negative range (H-terminated) to the positive range (O-terminated) [32,33]. 

 
Figure 8. XPS survey scan spectra, respectively, for sample surfaces without O-RIE (left), with 100 
W O-RIE (middle), and 200 W O-RIE (right) processes. 

 
Figure 9. Contact angle measurements, respectively, for sample surfaces without O-RIE (left), with 
100 W O-RIE (middle), and 200 W O-RIE (right) processes. 

A more detailed analysis of the Cଵୱ peaks indicates that the spectrum of sample sur-
face pre-treated with 200 W power plasma (Figure 10, right) shows, first of all, the largest 
intensity ratio by 0.21, between Cଵୱ (C-O state, ~284.8 eV) and Cଵୱ (C-C state, ~ 286 eV), 
and furthermore, a clear splitting of the complete spectrum into three fitted sub-peaks, 
respectively, for Cଵୱ (C-C state, ~ 284.8 eV), Cଵୱ (C-O state, ~ 286 eV), and Cଵୱ (C=O state, 
~ 289 eV) [34]. In comparison, the XPS spectrum of sample surface pre-treated with 100 W 
plasma (Figure 10, middle) did not present a clear fitting with sub-peaks of C-O state and 
C=O state inside the Cଵୱ area, but only a mixed wide peak ~ 287.2 eV for both of them; the 
XPS spectrum of sample surface without oxygen plasma pre-treatment (Figure 10, left) 
only indicates a weak intensity ratio of Cଵୱ in C-O state to Cଵୱ in C-C state by ~ 0.08 and 
no more captured intensity about the Cଵୱ in C=O state, which is metastable, compared 
with the C-O state, but with higher electron affinity [32,33]. Based on this, it is more clear 
to say that the samples’ surface pre-treated with the 200 W O-RIE process has an addi-
tional higher surface electron affinity (χ), as described in Equation (1), and thus shows 
further reduction of the total barrier height (qϕ୬) between contact metals and the film 
material and therefore a more noticeable reduction in total contact resistance (Ⅲ-f and Ⅲ-
g with triangular plots in Figure 6). In comparison to this, the samples’ surfaces pre-
treated with lower plasma power did not show a clear forming of C-O or C=O state, which 
means no clear and stable surface state change; thus, in turn, there was no similar contact 

Figure 8. XPS survey scan spectra, respectively, for sample surfaces without O-RIE (left), with 100 W
O-RIE (middle), and 200 W O-RIE (right) processes.



Materials 2021, 14, 4484 9 of 12

Materials 2021, 14, x FOR PEER REVIEW 9 of 12 
 

 

tively, 0.12, 0.65, and 0.52 (from left to right in Figure 8). This is also matching to the con-
tact angle measurement results in Figure 9, which indicates a transfer from a hydrophobic 
surface to a hydrophilic surface, after an O-RIE process on diamond film, and furthermore 
an enhancement of surface energy according to Young’s equation [30]. Different plasma 
process durations for uniform remaining UNCD film thickness were also tested on iden-
tical diamond films, leading to comparable results of contact resistances to those pre-
sented earlier. However, the relative higher intensity ratio between the Oଵୱ peak and the Cଵୱ peaks of the sample pre-treated with lower oxygen plasma power (100 W) was caused 
by a longer O-RIE process duration. This can be explained by a higher level of surface 
defects, such as a combination of -CHx, =CHx with C-O-O-C, -COH or C-O-V (vacancy) 
[31], but not clear surface reconstructions by the formation of ether-configuration (C-O) 
and ketone-configuration (C=O) oxygen-carbon atoms bonds. Those effective reconstruc-
tions contribute particularly sensitive to the diamond surface electron affinity change 
from the negative range (H-terminated) to the positive range (O-terminated) [32,33]. 

 
Figure 8. XPS survey scan spectra, respectively, for sample surfaces without O-RIE (left), with 100 
W O-RIE (middle), and 200 W O-RIE (right) processes. 

 
Figure 9. Contact angle measurements, respectively, for sample surfaces without O-RIE (left), with 
100 W O-RIE (middle), and 200 W O-RIE (right) processes. 

A more detailed analysis of the Cଵୱ peaks indicates that the spectrum of sample sur-
face pre-treated with 200 W power plasma (Figure 10, right) shows, first of all, the largest 
intensity ratio by 0.21, between Cଵୱ (C-O state, ~284.8 eV) and Cଵୱ (C-C state, ~ 286 eV), 
and furthermore, a clear splitting of the complete spectrum into three fitted sub-peaks, 
respectively, for Cଵୱ (C-C state, ~ 284.8 eV), Cଵୱ (C-O state, ~ 286 eV), and Cଵୱ (C=O state, 
~ 289 eV) [34]. In comparison, the XPS spectrum of sample surface pre-treated with 100 W 
plasma (Figure 10, middle) did not present a clear fitting with sub-peaks of C-O state and 
C=O state inside the Cଵୱ area, but only a mixed wide peak ~ 287.2 eV for both of them; the 
XPS spectrum of sample surface without oxygen plasma pre-treatment (Figure 10, left) 
only indicates a weak intensity ratio of Cଵୱ in C-O state to Cଵୱ in C-C state by ~ 0.08 and 
no more captured intensity about the Cଵୱ in C=O state, which is metastable, compared 
with the C-O state, but with higher electron affinity [32,33]. Based on this, it is more clear 
to say that the samples’ surface pre-treated with the 200 W O-RIE process has an addi-
tional higher surface electron affinity (χ), as described in Equation (1), and thus shows 
further reduction of the total barrier height (qϕ୬) between contact metals and the film 
material and therefore a more noticeable reduction in total contact resistance (Ⅲ-f and Ⅲ-
g with triangular plots in Figure 6). In comparison to this, the samples’ surfaces pre-
treated with lower plasma power did not show a clear forming of C-O or C=O state, which 
means no clear and stable surface state change; thus, in turn, there was no similar contact 

Figure 9. Contact angle measurements, respectively, for sample surfaces without O-RIE (left), with
100 W O-RIE (middle), and 200 W O-RIE (right) processes.

According to the XPS survey scan spectra, both of the samples that were etched
with O-RIE processes (Figure 8, middle and right) exhibited a significant O1s intensity
(~531 eV) and OKL23L23 intensity (~ 978 eV), whereas the sample without O-RIE (Figure 8,
left) pre-treatment did not present a strong peak, even though a small peak was captured,
probably due to some water adsorbed on the sample surface. The intensity ratio between
the O1s peak (~531 eV) and the C1s peaks (~284.8 eV) of those three samples are respectively,
0.12, 0.65, and 0.52 (from left to right in Figure 8). This is also matching to the contact
angle measurement results in Figure 9, which indicates a transfer from a hydrophobic
surface to a hydrophilic surface, after an O-RIE process on diamond film, and furthermore
an enhancement of surface energy according to Young’s equation [30]. Different plasma
process durations for uniform remaining UNCD film thickness were also tested on identical
diamond films, leading to comparable results of contact resistances to those presented
earlier. However, the relative higher intensity ratio between the O1s peak and the C1s
peaks of the sample pre-treated with lower oxygen plasma power (100 W) was caused by a
longer O-RIE process duration. This can be explained by a higher level of surface defects,
such as a combination of -CHx, =CHx with C-O-O-C, -COH or C-O-V (vacancy) [31],
but not clear surface reconstructions by the formation of ether-configuration (C-O) and
ketone-configuration (C=O) oxygen-carbon atoms bonds. Those effective reconstructions
contribute particularly sensitive to the diamond surface electron affinity change from the
negative range (H-terminated) to the positive range (O-terminated) [32,33].

A more detailed analysis of the C1s peaks indicates that the spectrum of sample
surface pre-treated with 200 W power plasma (Figure 10, right) shows, first of all, the
largest intensity ratio by 0.21, between C1s (C-O state, ~284.8 eV) and C1s (C-C state,
~286 eV), and furthermore, a clear splitting of the complete spectrum into three fitted
sub-peaks, respectively, for C1s (C-C state, ~284.8 eV), C1s (C-O state, ~286 eV), and C1s
(C=O state, ~289 eV) [34]. In comparison, the XPS spectrum of sample surface pre-treated
with 100 W plasma (Figure 10, middle) did not present a clear fitting with sub-peaks of C-O
state and C=O state inside the C1s area, but only a mixed wide peak ~287.2 eV for both of
them; the XPS spectrum of sample surface without oxygen plasma pre-treatment (Figure 10,
left) only indicates a weak intensity ratio of C1s in C-O state to C1s in C-C state by ~0.08
and no more captured intensity about the C1s in C=O state, which is metastable, compared
with the C-O state, but with higher electron affinity [32,33]. Based on this, it is more clear
to say that the samples’ surface pre-treated with the 200 W O-RIE process has an additional
higher surface electron affinity (χ), as described in Equation (1), and thus shows further
reduction of the total barrier height (qφBn) between contact metals and the film material
and therefore a more noticeable reduction in total contact resistance (III-f and III-g with
triangular plots in Figure 6). In comparison to this, the samples’ surfaces pre-treated with
lower plasma power did not show a clear forming of C-O or C=O state, which means no
clear and stable surface state change; thus, in turn, there was no similar contact resistance
reduction tendency in Figure 6 (III-d and III-e with circular plots). In short, the oxygen-
terminated surfaces, especially the sample surface pre-treated with the maximal plasma
power of 200 W, which leads to noticeable C-O and C=O bonding states, demonstrates a
change of the surface electron affinity from the negative range (when hydrogen-terminated)
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to a positive range [33]. A consequence of an increase of sample surface electron affinity is
a decrease of the Schottky barrier and the electrical contact resistance.
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4. Conclusions

Controlled growth of non-conductive nanocrystalline diamond films (NCD) and
high-conductive (ultra-)nanocrystalline diamond films (UNCD) was implemented only by
varying the methane (CH4) composition in the total precursor gas mixture. An increased
methane gas flow leads to a decreasing grain size and an increase in grain boundary
volume. Furthermore, an increased methane content during growth also increases the
electrical conductivity of nanocrystalline diamond films, which is due to a higher amount
of ordered sp2-bonding fractions in the grain boundary area. The smallest specific contact
resistance that was achieved between metallization and conductive diamond film was
(6.03 × 10−6–8.25 × 10−6) Ωcm2, with Ta-Au as the metallization combination and the
diamond surface pre-treated with the 200 W O-RIE process for short time. In comparison,
the largest contribution to the reduction of contact resistance was made by the diamond
film surface pre-treatment with O-RIE, which resulted in a change of the film surface state,
namely the oxygen termination, and enhanced surface electron affinity. We showed that the
contact resistance of a conductive nanocrystalline diamond film can be reduced by a factor
of 16 by the right choice of contact material and by application of an O-RIE plasma etching
step. This allows an improved sensitivity for sensors based on electrically conductive
nanocrystalline diamond films, as well as an improved energy efficiency of nanocrystalline
diamond actuators in microelectronic device structures.
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