Ionic Liquids and Deep Eutectic Solvents for CO2 Conversion Technologies—A Review
Abstract
:1. Introduction
2. Carbon Dioxide Conversion in ILs
2.1. Conversion by Electroreduction
2.1.1. CO2 Electroreduction in Ionic Liquids
2.1.2. CO2 Electroreduction in Deep Eutectic Solvents (DESs)
2.2. Conversion by Electrotransformation
- avoids the use of hazardous reagents such as phosgene and cyanide
- simplifies the purification of the resultant products utilising single step chromatographic separations.
3. Techno-Commercial Challenges and Future Road Map
4. Future Perspective
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Song, C. Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing. Catal. Today 2006, 115, 2–32. [Google Scholar] [CrossRef]
- Hospital-Benito, D.; Lemus, J.; Moya, C.; Santiago, R.; Ferro, V.R.; Palomar, J. Techno-economic feasibility of ionic liquids-based CO2 chemical capture processes. Chem. Eng. J. 2021, 407, 127196. [Google Scholar] [CrossRef]
- Li, F.; MacFarlane, D.R.; Zhang, J. Recent advances in the nanoengineering of electrocatalysts for CO2 reduction. Nanoscale 2018, 10, 6235–6260. [Google Scholar] [CrossRef] [PubMed]
- Global Energy Review. Available online: https://www.iea.org/reports/global-energy-review-2020/renewables (accessed on 26 May 2021).
- Chen, C.; Khosrowabadi Kotyk, J.F.; Sheehan, S.W. Progress toward Commercial Application of Electrochemical Carbon Dioxide Reduction. Chem 2018, 4, 2571–2586. [Google Scholar] [CrossRef] [Green Version]
- Gomes, J.F.P. Carbon Dioxide Capture and Sequestration: An Integrated Overview of Available Technologies; Gomes, J.F.P., Ed.; Nova Science Pub Inc.: New York, NY, USA, 2013. [Google Scholar]
- Zhang, S.; Sun, J.; Zhang, X.; Xin, J.; Miao, Q.; Wang, J. Ionic liquid-based green processes for energy production. Chem. Soc. Rev. 2014, 43, 7838–7869. [Google Scholar] [CrossRef] [PubMed]
- Pollok, D.; Waldvogel, S.R. Electro-organic synthesis — a 21 st century technique. Chem. Sci. 2020, 11, 12386–12400. [Google Scholar] [CrossRef] [PubMed]
- Anastasiadou, D.; Hensen, E.J.M.; Figueiredo, M.C. Electrocatalytic synthesis of organic carbonates. Chem. Commun. 2020, 56, 13082–13092. [Google Scholar] [CrossRef]
- Vasilyev, D.V.; Dyson, P.J. The Role of Organic Promoters in the Electroreduction of Carbon Dioxide. ACS Catal. 2021, 11, 1392–1405. [Google Scholar] [CrossRef]
- Mehrkesh, A.; Karunanithi, A.T. Optimal design of ionic liquids for thermal energy storage. Comput. Chem. Eng. 2016, 93, 402–412. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Wang, S.; Li, L.; Sun, Y.; Xie, Y. Progress and Perspective for in Situ Studies of CO2 Reduction. J. Am. Chem. Soc. 2020, 142, 9567–9581. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Guerra, M.; Albo, J.; Alvarez-Guerra, E.; Irabien, A. Ionic liquids in the electrochemical valorisation of CO2. Energy Environ. Sci. 2015, 8, 2574–2599. [Google Scholar] [CrossRef] [Green Version]
- Garg, S.; Li, M.; Weber, A.Z.; Ge, L.; Li, L.; Rudolph, V.; Wang, G.; Rufford, T.E. Advances and challenges in electrochemical CO2 reduction processes: An engineering and design perspective looking beyond new catalyst materials. J. Mater. Chem. A 2020, 8, 1511–1544. [Google Scholar] [CrossRef]
- Cui, Y.; He, B.; Liu, X.; Sun, J. Ionic Liquids-Promoted Electrocatalytic Reduction of Carbon Dioxide. Ind. Eng. Chem. Res. 2020, 59, 20235–20252. [Google Scholar] [CrossRef]
- Yuan, D.D.; Yuan, B.B.; Song, H.; Niu, R.X.; Liu, Y.X. Electrochemical Fixation of Carbon Dioxide for Synthesis Dimethyl Carbonate in Ionic Liquid BMimBr. Adv. Mater. Res. 2014, 953–954, 1180–1183. [Google Scholar] [CrossRef]
- Vasilyev, D.V.; Rudnev, A.V.; Broekmann, P.; Dyson, P.J. A General and Facile Approach for the Electrochemical Reduction of Carbon Dioxide Inspired by Deep Eutectic Solvents. ChemSusChem 2019, 12, 1635–1639. [Google Scholar] [CrossRef]
- Tanner, E.E.L.; Batchelor-McAuley, C.; Compton, R.G. Carbon Dioxide Reduction in Room-Temperature Ionic Liquids: The Effect of the Choice of Electrode Material, Cation, and Anion. J. Phys. Chem. C 2016, 120, 26442–26447. [Google Scholar] [CrossRef]
- Sun, X.; Kang, X.; Zhu, Q.; Ma, J.; Yang, G.; Liu, Z.; Han, B. Very highly efficient reduction of CO2 to CH4 using metal-free N-doped carbon electrodes. Chem. Sci. 2016, 7, 2883–2887. [Google Scholar] [CrossRef] [Green Version]
- Zhao, S.-F.; Horne, M.; Bond, A.M.; Zhang, J. Electrocarboxylation of acetophenone in ionic liquids: The influence of proton availability on product distribution. Green Chem. 2014, 16, 2242–2251. [Google Scholar] [CrossRef]
- Fomin, A. Studies on the Electrodeposition of Aluminium from Different Air and Water Stable Ionic Liquids. Ph.D. Thesis, Clausthal University of Technology, Clausthal-Zellerfeld, Germany, 2010. Available online: https://d-nb.info/1008342475/34 (accessed on 28 April 2021).
- Barrosse-Antle, L.E.; Compton, R.G. Reduction of carbon dioxide in 1-butyl-3-methylimidazolium acetate. Chem. Commun. 2009, 3744. [Google Scholar] [CrossRef]
- Srivastava, R.; Nouseen, S.; Chattopadhyay, J.; Woi, P.M.; Son, D.N.; Bastakoti, B.P. Recent Advances in Electrochemical Water Splitting and Reduction of CO2 into Green Fuels on 2D Phosphorene-Based Catalyst. Energy Technol. 2021, 9, 1–19. [Google Scholar] [CrossRef]
- Yang, C.H.; Nosheen, F.; Zhang, Z.C. Recent progress in structural modulation of metal nanomaterials for electrocatalytic CO2 reduction. Rare Met. 2021, 40, 1412–1430. [Google Scholar] [CrossRef]
- König, M.; Vaes, J.; Klemm, E.; Pant, D. Solvents and Supporting Electrolytes in the Electrocatalytic Reduction of CO2. iScience 2019, 19, 135–160. [Google Scholar] [CrossRef] [PubMed]
- Weng, L.-C.; Bell, A.T.; Weber, A.Z. Towards membrane-electrode assembly systems for CO2 reduction: A modeling study. Energy Environ. Sci. 2019, 12, 1950–1968. [Google Scholar] [CrossRef] [Green Version]
- Kaneco, S.; Iiba, K.; Katsumata, H.; Suzuki, T.; Ohta, K. Electrochemical reduction of high pressure CO2 at a Cu electrode in cold methanol. Electrochim. Acta 2006, 51, 4880–4885. [Google Scholar] [CrossRef]
- Rosen, B.A.; Salehi-Khojin, A.; Thorson, M.R.; Zhu, W.; Whipple, D.T.; Kenis, P.J.A.; Masel, R.I. Ionic Liquid-Mediated Selective Conversion of COs2 to CO at Low Overpotentials. Science 2011, 334, 643–644. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.; Jiang, T.; Han, B.; Li, Z.; Zhang, J.; Liu, Z.; He, J.; Wu, W. Electrochemical reduction of supercritical carbon dioxide in ionic liquid 1-n-butyl-3-methylimidazolium hexafluorophosphate. J. Supercrit. Fluids 2004, 32, 287–291. [Google Scholar] [CrossRef]
- Rosen, B.A.; Haan, J.L.; Mukherjee, P.; Braunschweig, B.; Zhu, W.; Salehi-Khojin, A.; Dlott, D.D.; Masel, R.I. In Situ Spectroscopic Examination of a Low Overpotential Pathway for Carbon Dioxide Conversion to Carbon Monoxide. J. Phys. Chem. C 2012, 116, 15307–15312. [Google Scholar] [CrossRef]
- Asadi, M.; Kumar, B.; Behranginia, A.; Rosen, B.A.; Baskin, A.; Repnin, N.; Pisasale, D.; Phillips, P.; Zhu, W.; Haasch, R.; et al. Robust carbon dioxide reduction on molybdenum disulphide edges. Nat. Commun. 2014, 5, 4470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asadi, M.; Kim, K.; Liu, C.; Addepalli, A.V.; Abbasi, P.; Yasaei, P.; Phillips, P.; Behranginia, A.; Cerrato, J.M.; Haasch, R.; et al. Nanostructured transition metal dichalcogenide electrocatalysts for CO2 reduction in ionic liquid. Science 2016, 353, 467–470. [Google Scholar] [CrossRef] [Green Version]
- Kumar, B.; Asadi, M.; Pisasale, D.; Sinha-Ray, S.; Rosen, B.A.; Haasch, R.; Abiade, J.; Yarin, A.L.; Salehi-Khojin, A. Renewable and metal-free carbon nanofibre catalysts for carbon dioxide reduction. Nat. Commun. 2013, 4, 2819. [Google Scholar] [CrossRef]
- Boddien, A.; Loges, B.; Gärtner, F.; Torborg, C.; Fumino, K.; Junge, H.; Ludwig, R.; Beller, M. Iron-Catalyzed Hydrogen Production from Formic Acid. J. Am. Chem. Soc. 2010, 132, 8924–8934. [Google Scholar] [CrossRef]
- Chu, D.; Qin, G.; Yuan, X.; Xu, M.; Zheng, P.; Lu, J. Fixation of CO2 by Electrocatalytic Reduction and Electropolymerization in Ionic Liquid–H2O Solution. ChemSusChem 2008, 1, 205–209. [Google Scholar] [CrossRef]
- Rosen, B.A.; Zhu, W.; Kaul, G.; Salehi-Khojin, A.; Masel, R.I. Water Enhancement of CO2 Conversion on Silver in 1-Ethyl-3-Methylimidazolium Tetrafluoroborate. J. Electrochem. Soc. 2013, 160, H138–H141. [Google Scholar] [CrossRef]
- Salehi-Khojin, A.; Jhong, H.-R.M.; Rosen, B.A.; Zhu, W.; Ma, S.; Kenis, P.J.A.; Masel, R.I. Nanoparticle Silver Catalysts That Show Enhanced Activity for Carbon Dioxide Electrolysis. J. Phys. Chem. C 2013, 117, 1627–1632. [Google Scholar] [CrossRef]
- Feroci, M.; Chiarotto, I.; Ciprioti, S.V.; Inesi, A. On the reactivity and stability of electrogenerated N-heterocyclic carbene in parent 1-butyl-3-methyl-1H-imidazolium tetrafluoroborate: Formation and use of N-heterocyclic carbene-CO2 adduct as latent catalyst. Electrochim. Acta 2013, 109, 95–101. [Google Scholar] [CrossRef]
- Zhou, F.; Liu, S.; Yang, B.; Wang, P.; Alshammari, A.S.; Deng, Y. Highly selective electrocatalytic reduction of carbon dioxide to carbon monoxide on silver electrode with aqueous ionic liquids. Electrochem. Commun. 2014, 46, 103–106. [Google Scholar] [CrossRef]
- Quezada, D.; Honores, J.; García, M.; Armijo, F.; Isaacs, M. Electrocatalytic reduction of carbon dioxide on a cobalt tetrakis(4-aminophenyl)porphyrin modified electrode in BMImBF 4. New J. Chem. 2014, 38, 3606–3612. [Google Scholar] [CrossRef]
- Martindale, B.C.M.; Compton, R.G. Formic acid electro-synthesis from carbon dioxide in a room temperature ionic liquid. Chem. Commun. 2012, 48, 6487. [Google Scholar] [CrossRef] [PubMed]
- Vedharathinam, V.; Qi, Z.; Horwood, C.; Bourcier, B.; Stadermann, M.; Biener, J.; Biener, M. Using a 3D Porous Flow-Through Electrode Geometry for High-Rate Electrochemical Reduction of CO2 to CO in Ionic Liquid. ACS Catal. 2019, 9, 10605–10611. [Google Scholar] [CrossRef]
- Bruzon, D.A.; Tiongson, J.K.; Tapang, G.; Martinez, I.S. Electroreduction and solubility of CO2 in methoxy- and nitrile-functionalized imidazolium (FAP) ionic liquids. J. Appl. Electrochem. 2017, 47, 1251–1260. [Google Scholar] [CrossRef]
- García, G.; Aparicio, S.; Ullah, R.; Atilhan, M. Deep Eutectic Solvents: Physicochemical Properties and Gas Separation Applications. Energy Fuels 2015, 29, 2616–2644. [Google Scholar] [CrossRef]
- Verma, S.; Lu, X.; Ma, S.; Masel, R.I.; Kenis, P.J.A. The effect of electrolyte composition on the electroreduction of CO2 to CO on Ag based gas diffusion electrodes. Phys. Chem. Chem. Phys. 2016, 18, 7075–7084. [Google Scholar] [CrossRef]
- Bohlen, B.; Wastl, D.; Radomski, J.; Sieber, V.; Vieira, L. Electrochemical CO2 reduction to formate on indium catalysts prepared by electrodeposition in deep eutectic solvents. Electrochem. Commun. 2020, 110, 106597. [Google Scholar] [CrossRef]
- Garg, S.; Li, M.; Rufford, T.E.; Ge, L.; Rudolph, V.; Knibbe, R.; Konarova, M.; Wang, G.G.X. Catalyst–Electrolyte Interactions in Aqueous Reline Solutions for Highly Selective Electrochemical CO2 Reduction. ChemSusChem 2019, 304–311. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, N.; Wang, X.; Sun, P.; Chen, Y.; Rehman, F.; Xu, J.; Xu, X. Electrochemical CO2 reduction to CO facilitated by MDEA-based deep eutectic solvent in aqueous solution. Renew. Energy 2021, 177, 23–33. [Google Scholar] [CrossRef]
- Sakakura, T.; Choi, J.-C.; Yasuda, H. Transformation of Carbon Dioxide. Chem. Rev. 2007, 107, 2365–2387. [Google Scholar] [CrossRef] [PubMed]
- Tan, X.; Sun, X.; Han, B. Ionic Liquid-Based electrolytes for CO2 electroreduction and CO2 electroorganic transformation. Natl. Sci. Rev. 2021. [Google Scholar] [CrossRef]
- Kathiresan, M.; Velayutham, D. Ionic liquids as an electrolyte for the electro synthesis of organic compounds. Chem. Commun. 2015, 51, 17499–17516. [Google Scholar] [CrossRef]
- Cai, X.; Xie, B. Direct Carboxylative Reactions for the Transformation of Carbon Dioxide into Carboxylic Acids and Derivatives. Synthesis 2013, 45, 3305–3324. [Google Scholar] [CrossRef]
- North, M.; Pasquale, R.; Young, C. Synthesis of cyclic carbonates from epoxides and CO2. Green Chem. 2010, 12, 1514. [Google Scholar] [CrossRef]
- Yang, H.; Gu, Y.; Deng, Y.; Shi, F. Electrochemical activation of carbon dioxide in ionic liquid: Synthesis of cyclic carbonates at mild reaction conditions. Chem. Commun. 2002, 274–275. [Google Scholar] [CrossRef]
- Wu, L.-X.; Wang, H.; Xiao, Y.; Tu, Z.-Y.; Ding, B.-B.; Lu, J.-X. Synthesis of dialkyl carbonates from CO2 and alcohols via electrogenerated N-heterocyclic carbenes. Electrochem. Commun. 2012, 25, 116–118. [Google Scholar] [CrossRef]
- Zhang, L.; Niu, D.; Zhang, K.; Zhang, G.; Luo, Y.; Lu, J. Electrochemical activation of CO2 in ionic liquid (BMIMBF 4): Synthesis of organic carbonates under mild conditions. Green Chem. 2008, 10, 202–206. [Google Scholar] [CrossRef]
- Yuan, X.; Lu, B.; Liu, J.; You, X.; Zhao, J.; Cai, Q. Electrochemical Conversion of Methanol and Carbon Dioxide to Dimethyl Carbonate at Graphite-Pt Electrode System. J. Electrochem. Soc. 2012, 159, E183–E186. [Google Scholar] [CrossRef]
- Niu, D.; Zhang, J.; Zhang, K.; Xue, T.; Lu, J. Electrocatalytic Carboxylation of Benzyl Chloride at Silver Cathode in Ionic Liquid BMIMBF 4. Chin. J. Chem. 2009, 27, 1041–1044. [Google Scholar] [CrossRef]
- Hiejima, Y.; Hayashi, M.; Uda, A.; Oya, S.; Kondo, H.; Senboku, H.; Takahashi, K. Electrochemical carboxylation of α-chloroethylbenzene in ionic liquids compressed with carbon dioxide. Phys. Chem. Chem. Phys. 2010, 12, 1953. [Google Scholar] [CrossRef]
- Wang, X.Y.; Liu, S.Q.; Huang, K.L.; Feng, Q.J.; Ye, D.L.; Liu, B.; Liu, J.L.; Jin, G.H. Fixation of CO2 by electrocatalytic reduction to synthesis of dimethyl carbonate in ionic liquid using effective silver-coated nanoporous copper composites. Chin. Chem. Lett. 2010, 21, 987–990. [Google Scholar] [CrossRef]
- Feng, Q.; Huang, K.; Liu, S.; Wang, X. Electrocatalytic carboxylation of 2-amino-5-bromopyridine with CO2 in ionic liquid 1-butyl-3-methyllimidazoliumtetrafluoborate to 6-aminonicotinic acid. Electrochim. Acta 2010, 55, 5741–5745. [Google Scholar] [CrossRef]
- Feroci, M.; Orsini, M.; Rossi, L.; Sotgiu, G.; Inesi, A. Electrochemically Promoted C−N Bond Formation from Amines and CO2 in Ionic Liquid BMIm−BF 4: Synthesis of Carbamates. J. Org. Chem. 2007, 72, 200–203. [Google Scholar] [CrossRef]
- Lu, B.; Wang, X.; Li, Y.; Sun, J.; Zhao, J.; Cai, Q. Electrochemical conversion of CO2 into dimethyl carbonate in a functionalized ionic liquid. J. CO2 Util. 2013, 3–4, 98–101. [Google Scholar] [CrossRef]
- Garcia-Herrero, I.; Alvarez-Guerra, M.; Irabien, A. CO2 electro-valorization to dimethyl carbonate from methanol using potassium methoxide and the ionic liquid [bmim][Br] in a filter-press electrochemical cell. J. Chem. Technol. Biotechnol. 2015, 90, 1433–1438. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Herrero, I.; Alvarez-Guerra, M.; Irabien, A. Electrosynthesis of dimethyl carbonate from methanol and CO2 using potassium methoxide and the ionic liquid [bmim][Br] in a filter-press cell: A study of the influence of cell configuration. J. Chem. Technol. Biotechnol. 2016, 91, 507–513. [Google Scholar] [CrossRef] [Green Version]
- Feng, Q.; Huang, K.; Liu, S.; Yu, J.; Liu, F. Electrocatalytic carboxylation of aromatic ketones with carbon dioxide in ionic liquid 1-butyl-3-methylimidazoliumtetrafluoborate to α-hydroxy-carboxylic acid methyl ester. Electrochim. Acta 2011, 56, 5137–5141. [Google Scholar] [CrossRef]
- Tateno, H.; Nakabayashi, K.; Kashiwagi, T.; Senboku, H.; Atobe, M. Electrochemical fixation of CO2 to organohalides in room-temperature ionic liquids under supercritical CO2. Electrochim. Acta 2015, 161, 212–218. [Google Scholar] [CrossRef]
- Abbott, A.P.; Dalrymple, I.; Endres, F.; Macfarlane, D.R. Why use Ionic Liquids for Electrodeposition? In Electrodeposition from Ionic Liquids; Wiley-VCH: Weinheim, Germany, 2008; pp. 1–13. [Google Scholar]
- Smith, E.L.; Abbott, A.P.; Ryder, K.S. Deep Eutectic Solvents (DESs) and Their Applications. Chem. Rev. 2014, 114, 11060–11082. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbott, A.P.; Frisch, G.; Ryder, K.S. Electroplating Using Ionic Liquids. Annu. Rev. Mater. Res. 2013, 43, 335–358. [Google Scholar] [CrossRef]
- Prado, R.; Weber, C.C. Applications of Ionic Liquids. In Application, Purification, and Recovery of Ionic Liquids; Kuzmina, O., Hallett, J.P., Eds.; Elsevier BV: Amsterdam, The Netherlands, 2016; pp. 1–58. [Google Scholar] [CrossRef]
- Peter, I. Effect of ionic liquid environment on the corrosion resistance of al-based alloy. Key Eng. Mater. 2017, 750 KEM, 97–102. [Google Scholar] [CrossRef]
- Welton, T. Ionic liquids: A brief history. Biophys. Rev. 2018, 10, 691–706. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Sharifzadeh, M.; Mac Dowell, N.; Welton, T.; Shah, N.; Hallett, J.P. Inexpensive ionic liquids: [HSO 4] − -based solvent production at bulk scale. Green Chem. 2014, 16, 3098–3106. [Google Scholar] [CrossRef] [Green Version]
- Endres, F.; Doughlas, R.M.; Abbott, A.P. Electrodeposition from Ionic Liquids; Endres, F., Abbott, A., MacFarlane, D., Eds.; Wiley-VCH: Weinheim, Germany, 2017; ISBN 9783527682706. [Google Scholar]
- Kang, X.; Liu, C.; Zeng, S.; Zhao, Z.; Qian, J.; Zhao, Y. Prediction of Henry’s law constant of CO2 in ionic liquids based on SEP and Sσ-profile molecular descriptors. J. Mol. Liq. 2018, 262, 139–147. [Google Scholar] [CrossRef]
- Song, Z.; Shi, H.; Zhang, X.; Zhou, T. Prediction of CO2 solubility in ionic liquids using machine learning methods. Chem. Eng. Sci. 2020, 223, 115752. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, X.; Dong, H.; Zhao, Z.; Zhang, S.; Huang, Y. Carbon capture with ionic liquids: Overview and progress. Energy Environ. Sci. 2012, 5, 6668. [Google Scholar] [CrossRef]
- Crosthwaite, J.M.; Muldoon, M.J.; Dixon, J.K.; Anderson, J.L.; Brennecke, J.F. Phase transition and decomposition temperatures, heat capacities and viscosities of pyridinium ionic liquids. J. Chem. Thermodyn. 2005, 37, 559–568. [Google Scholar] [CrossRef]
- Yuan, D.; Yan, C.; Lu, B.; Wang, H.; Zhong, C.; Cai, Q. Electrochemical activation of carbon dioxide for synthesis of dimethyl carbonate in an ionic liquid. Electrochim. Acta 2009, 54, 2912–2915. [Google Scholar] [CrossRef]
- Oh, Y.; Hu, X. Ionic liquids enhance the electrochemical CO2 reduction catalyzed by MoO2. Chem. Commun. 2015, 51, 13698–13701. [Google Scholar] [CrossRef] [PubMed]
- Jouny, M.; Luc, W.; Jiao, F. General Techno-Economic Analysis of CO2 Electrolysis Systems. Ind. Eng. Chem. Res. 2018, 57, 2165–2177. [Google Scholar] [CrossRef]
- International Renewable Energy Agency. Available online: https://www.irena.org/publications/2020/Jun/Renewable-Power-Costs-in-2019 (accessed on 22 May 2021).
Ionic Liquid | Chemical Formula | Cation | Anion | Abbreviation | Ref. |
---|---|---|---|---|---|
1–butyl–3–methyl imidazolium bromide | [(C8H15N2Br)] | [(C4H9)(CH3)(C3H3N2)]+ | [Br]− | [BMIm][Br] | [16] |
1–butyl–3–methyl imidazolium chloride | [(C8H15N2Cl)] | [(C4H9)(CH3)(C3H3N2)]+ | [Cl]− | [BMIm][Cl] | [17] |
1–ethyl–3–methyl imidazolium bis(trifluoro methyl sulfonyl) imide | [(C8H11F6N3O4S2)] | [(C2H5)(CH3)(C3N2H4H)]+ | [CF3SO2CF3SO2N]− | [EMIm][Tf2N] | [18] |
1–propyl–1–methyl imidazolium bis(trifluoro methyl sulfonyl) imide | [(C9H13F6N3O4S2)] | [(C3H7)(CH3)(C3N2H4H)]+ | [CF3SO2CF3SO2N]− | [PMIm][Tf2N] | [18] |
1–butyl–3–methyl imidazolium bis(trifluoro methyl sulfonyl) imide | [(C10H15F6N3O4S2)] | [(C4H9)(CH3)(C3N2H4H)]+ | [CF3SO2CF3SO2N]− | [BMIm][Tf2N] | [19] |
1–butyl–3–methyl imidazolium hexa fluorophosphate | [(C8H15F6N2P)] | [(C4H9)(CH3)(C3N2H4H)]+ | [PF6]− | [BMIm][PF6] | [19] |
1–butyl–3–methyl imidazolium tetrafluoroborate | [(C8H15F4N2B)] | [(C4H9)(CH3)(C3N2H4H)]+ | [BF4]− | [BMIm][BF4] | [19] |
1–butyl–3–methyl imidazolium trifluoro methane sulfonate | [(C9H15F3N2O3S)] | [(C4H9)(CH3)(C3N2H4H)]+ | [CF3SO3]− | [BMIm][TfO] | [19] |
1–butyl–3–methylimidazolium tris(perfluoroethyl)trifluorophosphate | C14H15FN2P | [(C4H9)(CH3)(C3N2H4H)]+ | [(C2F5)3PF3]− | [BMIm][FAP] | [19] |
1–butyl–3–methylimidazolium dicyanamide | [(C10H15N5)] | [(C4H9)(CH3)(C3N2H4H)]+ | [C2N3] − | [BMIm][DCA] | [19] |
1–butyl–1–methyl pyrrolidine bis(trifluoro methyl sulfonyl) imide | [(C11H20F6N2O4S2)] | [(C4H9)(CH3)C4H9NH)]+ | [CF3SO2CF3SO2N]− | [BMPyl][Tf2N] | [20] |
1–ethyl–3–methyl imidazolium hexa fluorophosphate | [(C6H11F6N2P)] | [(C2H5)(CH3)(C3N2H4H)]+ | [PF6]− | [EMIm][PF6] | [21] |
1–ethyl–3–methyl imidazolium tetrafluoroborate | [(C6H11F4N2B)] | [(C2H5)(CH3)(C3N2H4H)]+ | [BF4]− | [EMIm][BF4] | [21] |
1–ethyl–3–methyl imidazolium trifluoro methane sulfonate | [(C7H11F3N2O3S)] | [(C2H5)(CH3)(C3N2H4H)]+ | [CF3SO3]− | [EMIm][TfO] | [21] |
1–butyl–3–methyl imidazolium acetate | [(C10H18N2O2)] | [(C4H9)(CH3)(C3N2H4H)]+ | [CH3COO]- | [BMIm][Ac] | [22] |
Electrolyte | Catalyst | Reactor Type | Major Products | Faradaic Efficiency (FE, %) 1 | Reference |
---|---|---|---|---|---|
[BMIm]BF4 | N-doped carbon (graphene-like) materials/carbon paper electrodes | H-Cell | CH4 | 93.50 | [19] |
[BMIm][Ac] | Platinum | Two electrode cell | Oxalate, CO, carbonate | - | [22] |
18 mol % [EMIm][BF4] in H2O | Silver nanoparticles | Flow cell | CO, H2 | 96 | [28] |
[BMim][PF6] | Copper plank | High pressure undivided cell | CO, H2, HCOOH (traces) | 90.20 | [29] |
4 mol % [EMIm][BF4] + 96 mol % H2O | Molybdenum disulphide | Custom made 2 compartment three electrode cell | CO | 98 | [31] |
[EMIm][BF4]/H2O (50 vol %/50 vol %) | WSe2 nanoflakes | 2 compartment 3- electrode electrochemical cell | C/O | 24 | [32] |
25 mol % [EMIm][BF4] + H2O (75 mol %) | Metal free carbon nanofibers | 3-electrode electrochemical cell | CO | 98 | [33] |
[EMIm][BF4]: H2O (1:1 v/v) | Nanostructured and nanosized Titania | H-cell | Low density poly ethylene (LDPE) | 14 | [35] |
10.5 mol % [EMIm][BF4] + 89.5 mol % H2O | Silver nanoparticles | Flow cell | CO | 100 | [36] |
[EMIm][BF4] | Silver nanoparticles | Flow cell | CO | - | [37] |
[BMIm][BF4] | Flat platinum spirals | 2-compartment homemade glass cell | NHC 2–CO2 adduct | - | [38] |
80 wt % [BMIm][Cl] + 20 wt % H2O | Silver | H-Cell | CO | >99 | [39] |
[BMIm][BF4] | Indium tin oxide | Undivided glass electrochemical cell | CO | 64.90 | [40] |
[EMIm][Tf2N} | Pre-anodized Pt electrode | Two electrode cell | HCOOH | - | [41] |
[BMPyr][Tf2N} | Pre-anodized Pt electrode | Two electrode cell | HCOOH | - | [41] |
[EMIm][BF4]/H2O (92/8 v/v %) | Silver nanoflowers | Flow cell | CO | 75 | [42] |
Electrolyte | Catalyst | Reactor Type | Major Products | Faradaic Efficiency (FE, %) | Reference |
---|---|---|---|---|---|
[ChCl]1[Urea] (1:2) | Silver | U-type divided cell | CO | 15.80 | [17] |
[ChCl][Urea] (1:2) + H2O (15 vol %) | Silver | U-type divided cell | CO | 59 | [17] |
[ChCl]–EG 1 (1:2) | Silver | U-type divided cell | CO | 78 | [17] |
[BMIm][Cl]:[EG] (1:2) | Silver | U-type divided cell | CO | 95.80 | [17] |
1M [ChCl] in EG | Silver | U-type divided cell | CO | 71.10 | [17] |
1M [ChCl] in PEG-200 | Silver | U-type divided cell | CO | 83.20 | [17] |
1M [BMIm][Cl] in PEG-200 | Silver | U-type divided cell | CO | 85.90 | [17] |
2M [ChCl]{Urea] (1:2) | Silver | Electrochemical flow reactor | CO | 94.10 | [45] |
[ChCl][Urea] (1:2) + H2O (50 vol %) | Silver | H-cell | CO | 96 | [47] |
[MEAHCl][MDEA] 2 | Silver | Three electrode cell | CO | 71 | [48] |
Product Family | Product | Electrolyte | Substrates | Cathode | Anode | Reactor Type | Reference |
---|---|---|---|---|---|---|---|
Dialkyl carbonate | Dimethyl carbonate | [BMIm][Br] | Methanol and propylene oxide | Platinum | Platinum | One compartment cell | [16] |
Carboxylate | 2–hydroxy–2–phenyl propionic acid | [BMM’Im] [BF4] | Acetophenone | Glassy carbon (cylindrical tube) | Magnesium | Undivided cell | [20] |
2–hydroxy–2–phenyl propionic acid | [BMPy] [Tf2N] | Acetophenone | Glassy carbon (cylindrical tube) | Magnesium | Undivided cell | ||
Cyclic carbonate | Styrene carbonate | [BMIm][BF4] | Styrene, glycol, methyl iodide (alkylating agent), potassium carbonate | Titanium | Platinum spiral | Two compartment cell divided by a cation exchange membrane | [55] |
Dialkyl carbonate | Dimethyl carbonate | [B’MIm][Cl] | Methanol | Graphite | Platinum | Undivided cell (four neck bottle) | [57] |
Carboxylate | Phenyl acetic acid | [BMIm][BF4] | Benzyl chloride | Silver cylinder | Magnesium | Undivided cell | [58] |
Carboxylate | 2–phenyl propionic acid | [DEME] [Tf2N] | α–chloroethyl benzene | Platinum plate | Magnesium | High pressure vessel | [59] |
Dialkyl carbonate | Dimethyl carbonate | [BMIm][BF4] | Methanol; methyl iodide (alkylating agent) | Silver-coated nanoporous copper | Platinum foil | Undivided cell | [60] |
Carbamate | 6–amino nicotinic acid | [BMIm][BF4] | 2–amino–5– bromopyridine | Silver | Magnesium rod | Undivided cell | [61] |
Carbamate | Organic carbamates | [BMIm][BF4] | Amines, O2, ethyl iodide (alkylating agent) | Copper | Platinum spiral | Two compartment 3-electrode cell | [62] |
Dialkyl carbonate | Dimethyl carbonate | [AMIm][Br] | Methanol | Graphite | Platinum | Undivided cell (four neck bottle) | [63] |
Dialkyl carbonate | Dimethyl carbonate | [BMIm][Br] | Potassium ethoxide | Platinum/ niobium plates | - | Divided electrochemical cell | [64] |
Dialkyl carbonate | Dimethyl carbonate | [BMIm][Br] | Potassium ethoxide | Graphite | - | Divided electrochemical cell | [65] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maniam, K.K.; Paul, S. Ionic Liquids and Deep Eutectic Solvents for CO2 Conversion Technologies—A Review. Materials 2021, 14, 4519. https://doi.org/10.3390/ma14164519
Maniam KK, Paul S. Ionic Liquids and Deep Eutectic Solvents for CO2 Conversion Technologies—A Review. Materials. 2021; 14(16):4519. https://doi.org/10.3390/ma14164519
Chicago/Turabian StyleManiam, Kranthi Kumar, and Shiladitya Paul. 2021. "Ionic Liquids and Deep Eutectic Solvents for CO2 Conversion Technologies—A Review" Materials 14, no. 16: 4519. https://doi.org/10.3390/ma14164519
APA StyleManiam, K. K., & Paul, S. (2021). Ionic Liquids and Deep Eutectic Solvents for CO2 Conversion Technologies—A Review. Materials, 14(16), 4519. https://doi.org/10.3390/ma14164519