The Effect of Polyethylene Glycol Addition on Wettability and Optical Properties of GO/TiO2 Thin Film
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparations of GO/TiO2 Thin Film
2.3. Characterizations
3. Results and Discussion
3.1. Phase Composition
3.2. Microstructure Analysis
3.3. Surface Roughness and Topography Analysis
3.4. Optical Properties
3.5. Wettability
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abdelamir, A.I.; Al-Bermany, E.; Hashim, F.S. Enhance the Optical Properties of the Synthesis PEG/Graphene- Based Nanocomposite films using GO nanosheets. J. Phys. Conf. Ser. 2019, 1294, 022029. [Google Scholar] [CrossRef]
- Bakardjieva, S.; Štengl, V.; Szatmary, L.; Subrt, J.; Lukac, J.; Murafa, N.; Nižňanský, D.; Cizek, K.; Jirkovsky, J.; Petrova, N. Transformation of brookite-type TiO2 nanocrystals to rutile: Correlation between microstructure and photoactivity. J. Mater. Chem. 2006, 16, 1709–1716. [Google Scholar] [CrossRef]
- Bakri, A.S.; Sahdan, M.Z.; Adriyanto, F.; Raship, N.A.; Said, N.D.M.; Abdullah, S.A.; Rahim, M.S. Effect of annealing temperature of titanium dioxide thin films on structural and electrical properties. AIP Conf. Proc. 2017, 1788, 030030. [Google Scholar] [CrossRef] [Green Version]
- Calderon-Moreno, J.; Preda, S.; Predoana, L.; Zaharescu, M.; Anastasescu, M.; Nicolescu, M.; Stoica, M.; Stroescu, H.; Gartner, M.; Buiu, O.; et al. Effect of polyethylene glycol on porous transparent TiO2 films prepared by sol–gel method. Ceram. Int. 2014, 40, 2209–2220. [Google Scholar] [CrossRef]
- Halin, D.S.C.; Razak, K.A.; Sukeri, N.S.M.; Azani, A.; Abdullah, M.M.A.B.; Salleh, M.A.A.M.; Mahmed, N.; Ramli, M.M.; Azhari, A.; Chobpattana, V. The Effect of Polyethylene Glycol (PEG) on TiO2 Thin Films via Sol-Gel Method. IOP Conf. Ser. Mater. Sci. Eng. 2020, 743, 012007. [Google Scholar] [CrossRef]
- Demirci, S.; Dikici, T.; Yurddaskal, M.; Gültekin, S.; Toparli, M.; Celik, E. Synthesis and characterization of Ag doped TiO2 heterojunction films and their photocatalytic performances. Appl. Surf. Sci. 2016, 390, 591–601. [Google Scholar] [CrossRef]
- Dong, H.; Zeng, G.; Tang, L.; Fan, C.; Zhang, C.; He, X.; He, Y. An overview on limitations of TiO2-based particles for photocatalytic degradation of organic pollutants and the corresponding countermeasures. Water Res. 2015, 79, 128–146. [Google Scholar] [CrossRef]
- Fischer, K.; Gawel, A.; Rosen, D.; Krause, M.; Latif, A.A.; Griebel, J.; Prager, A.; Schulze, A.; Fischer, K.; Gawel, A.; et al. Low-Temperature Synthesis of Anatase/Rutile/Brookite TiO2 Nanoparticles on a Polymer Membrane for Photocatalysis. Catalysts 2017, 7, 209. [Google Scholar] [CrossRef]
- Forbes, P. Self-Cleaning Materials. Sci. Am. 2008, 299, 88–95. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, M.C.; Pereira, J.C.; Matos, J.C.; Vasconcelos, H.C. Photonic Band Gap and Bactericide Performance of Amorphous Sol-Gel Titania: An Alternative to Crystalline TiO2. Molecules 2018, 23, 1677. [Google Scholar] [CrossRef] [Green Version]
- Guan, K. Relationship between photocatalytic activity, hydrophilicity and self-cleaning effect of TiO2/SiO2 films. Surf. Coat. Technol. 2005, 191, 155–160. [Google Scholar] [CrossRef]
- Halin, D.S.C.; Abdullah, M.M.A.B.; Mahmed, N.; Malek, S.N.A.A.; Vizureanu, P.; Azhari, A.W. Synthesis and Characterization of TiO2/SiO2 Thin Film via Sol-Gel Method. IOP Conf. Ser. Mater. Sci. Eng. 2017, 209, 12002. [Google Scholar] [CrossRef] [Green Version]
- Halin, D.S.C.; Mahmed, N.; Salleh, M.A.A.M.; Sakeri, A.M.; Razak, K.A. Synthesis and Characterization of Ag/TiO2 Thin Film via Sol-Gel Method. Solid State Phenom. 2018, 273, 140–145. [Google Scholar] [CrossRef]
- Halin, D.S.C.; Razak, K.A.; Salleh, M.A.A.M.; Ramli, M.I.I.; Abdullah, M.M.A.B.; Azhari, A.W.; Nogita, K.; Yasuda, H.; Nabiałek, M.; Wysłocki, J.J. Microstructure Evolution of Ag/TiO2 Thin Film. Magnetochemistry 2021, 7, 14. [Google Scholar] [CrossRef]
- Huang, W.; Lei, M.; Huang, H.; Chen, J.; Chen, H. Effect of polyethylene glycol on hydrophilic TiO2 films: Porosity-driven superhydrophilicity. Surf. Coat. Technol. 2010, 204, 3954–3961. [Google Scholar] [CrossRef]
- Karimi, Z.; Karimi, L.; Shokrollahi, H. Nano-magnetic particles used in biomedicine: Core and coating materials. Mater. Sci. Eng. C 2013, 33, 2465–2475. [Google Scholar] [CrossRef] [PubMed]
- Low, J.; Cheng, B.; Yu, J. Surface modification and enhanced photocatalytic CO2 reduction performance of TiO2: A review. Appl. Surf. Sci. 2017, 392, 658–686. [Google Scholar] [CrossRef]
- Melcher, J.; Barth, N.; Schilde, C.; Kwade, A.; Bahnemann, D.B.D. Influence of TiO2 agglomerate and aggregate sizes on photocatalytic activity. J. Mater. Sci. 2016, 52, 1047–1056. [Google Scholar] [CrossRef]
- Moma, J.; Baloyi, J. Modified Titanium Dioxide for Photocatalytic Modified Titanium Dioxide for Photocatalytic Applications; Intech Open: London, UK, 2018; pp. 37–56. [Google Scholar] [CrossRef] [Green Version]
- Nawawi, W.I.; Zaharudin, R.; Ishak, M.A.M.; Ismail, K.; Zuliahani, A. The Preparation and Characterization of Immobilized TiO2/PEG by Using DSAT as a Support Binder. Appl. Sci. 2016, 7, 24. [Google Scholar] [CrossRef] [Green Version]
- Ni, Y.; Wang, W.; Huang, W.; Lu, C.; Xu, Z. Graphene strongly wrapped TiO2 for high-reactive photocatalyst: A new sight for significant application of graphene. J. Colloid Interface Sci. 2014, 428, 162–169. [Google Scholar] [CrossRef] [PubMed]
- Nia, M.H.; Rezaei-tavirani, M.; Nikoofar, A.R.; Masoumi, H.; Nasr, R.; Hasanzadeh, H.; Jadidi, M.; Shadnush, M. Stabilizing and Dispersing Methods of TiO2 Nanoparticles in Biological Studies. J. Paramed. Sci. 2015, 6, 96–105. [Google Scholar] [CrossRef]
- Nurhamizah, A.; Zulkifli, M.; Juoi, J.M. Effect of Additives on the Characteristic of Ag-TiO2 Coating Deposited on Specially Made Unglazed Ceramic Tile. Key Eng. Mater. 2016, 694, 160–164. [Google Scholar] [CrossRef]
- Pellegrino, F.; Pellutiè, L.; Sordello, F.; Minero, C.; Ortel, E.; Hodoroaba, V.-D.; Maurino, V. Influence of agglomeration and aggregation on the photocatalytic activity of TiO2 nanoparticles. Appl. Catal. B Environ. 2017, 216, 80–87. [Google Scholar] [CrossRef]
- Ramírez-Santos, A.; Acevedo-Peña, P.; Córdoba, E.M. Enhanced photocatalytic activity of TiO2 films by modification with polyethylene glycol. Quim. Nova 2012, 35, 1931–1935. [Google Scholar] [CrossRef] [Green Version]
- Šegota, S.; Ćurković, L.; Ljubas, D.; Svetličić, V.; Houra, I.F.; Tomašić, N. Synthesis, characterization and photocatalytic properties of sol–gel TiO2 films. Ceram. Int. 2011, 37, 1153–1160. [Google Scholar] [CrossRef]
- Saleh, A.F.; Jaffar, A.M.; Samoom, N.A.; Mahmmod, M.W. Iraqi Ministry of Sciences and Technology. Effect Adding PVA Polymer on Structural and Optical Properties of TiO2 Thin Films. J. Al-Nahrain Univ. Sci. 2017, 17, 116–121. [Google Scholar] [CrossRef]
- Sangchay, W. The Self-cleaning and Photocatalytic Properties of TiO2 Doped with SnO2 Thin Films Preparation by Sol-gel Method. Energy Procedia 2016, 89, 170–176. [Google Scholar] [CrossRef] [Green Version]
- Shan, A.Y.; Ghazi, T.I.M.; Rashid, S.A. Immobilisation of titanium dioxide onto supporting materials in heterogeneous photocatalysis: A review. Appl. Catal. A Gen. 2010, 389, 1–8. [Google Scholar] [CrossRef]
- Sun, S.; Song, P.; Cui, J.; Liang, S. Amorphous TiO2 nanostructures: Synthesis, fundamental properties and photocatalytic applications. Catal. Sci. Technol. 2019, 9, 4198–4215. [Google Scholar] [CrossRef]
- Taherniya, A.; Raoufi, D. The annealing temperature dependence of anatase TiO2 thin films prepared by the electron-beam evaporation method. Semicond. Sci. Technol. 2016, 31, 125012. [Google Scholar] [CrossRef]
- Timoumi, A.; Alamri, S.N.; Alamri, H. The development of TiO2-graphene oxide nano composite thin films for solar cells. Results Phys. 2018, 11, 46–51. [Google Scholar] [CrossRef]
- Tong, W.; Zhang, Y.; Yu, L.; Lv, F.; Liu, L.; Zhang, Q.; An, Q. Amorphous TiO2-coated reduced graphene oxide hybrid nanostructures for polymer composites with low dielectric loss. Chem. Phys. Lett. 2015, 638, 43–46. [Google Scholar] [CrossRef]
- Valeev, R.G.; Deev, A.N.; Surnin, D.V.; Kriventsov, V.V.; Karban, O.V.; Vetoshkin, V.M.; Pivovarova, O.I. The structure study of amorphous nanocrystalline nanocomposite films of germanium by AFM and EXAFS methods. Surf. Interface Anal. 2008, 40, 547–551. [Google Scholar] [CrossRef]
- Vallejo, W.; Rueda, A.; Díaz-Uribe, C.; Grande, C.; Quintana, P. Photocatalytic activity of graphene oxide–TiO2 thin films sensitized by natural dyes extracted from Bactris guineensis. R. Soc. Open Sci. 2019, 6, 181824. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoon, Y.; Kye, H.; Yang, W.S.; Kang, J.-W. Comparing Graphene Oxide and Reduced Graphene Oxide as Blending Materials for Polysulfone and Polyvinylidene Difluoride Membranes. Appl. Sci. 2020, 10, 2015. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.; Yu, J.; Tang, H.Y.; Zhang, L. Effect of surface microstructure on the photoinduced hydrophilicity of porous TiO2 thin films. J. Mater. Chem. 2001, 12, 81–85. [Google Scholar] [CrossRef]
Samples | Film Thickness (nm) | Roughness Mean Square (RMS) |
---|---|---|
GO/TiO2 | 1740.32 | 3.16 × 102 |
20 PEG | 427.03 | 1.21 × 102 |
40 PEG | 638.42 | 1.53 × 102 |
60 PEG | 734.60 | 1.60 × 102 |
80 PEG | 893.67 | 2.63 × 102 |
100 PEG | 793.51 | 2.28 × 102 |
Samples | Cut-Off Wavelength (nm) | Band Gap Energy (Eg) |
---|---|---|
TiO2 | 389 | 3.31 |
GO/TiO2 | 415 | 3.17 |
20 PEG | 427 | 3.08 |
40 PEG | 440 | 2.98 |
60 PEG | 455 | 2.87 |
80 PEG | 470 | 2.82 |
100 PEG | 460 | 2.86 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Azani, A.; Halin, D.S.C.; Razak, K.A.; Abdullah, M.M.A.B.; Nabiałek, M.; Ramli, M.M.; Abdul Razak, M.F.S.; Sandu, A.V.; Sochacki, W.; Skrzypczak, T. The Effect of Polyethylene Glycol Addition on Wettability and Optical Properties of GO/TiO2 Thin Film. Materials 2021, 14, 4564. https://doi.org/10.3390/ma14164564
Azani A, Halin DSC, Razak KA, Abdullah MMAB, Nabiałek M, Ramli MM, Abdul Razak MFS, Sandu AV, Sochacki W, Skrzypczak T. The Effect of Polyethylene Glycol Addition on Wettability and Optical Properties of GO/TiO2 Thin Film. Materials. 2021; 14(16):4564. https://doi.org/10.3390/ma14164564
Chicago/Turabian StyleAzani, Azliza, Dewi Suriyani Che Halin, Kamrosni Abdul Razak, Mohd Mustafa Al Bakri Abdullah, Marcin Nabiałek, Muhammad Mahyiddin Ramli, Mohd Fairul Sharin Abdul Razak, Andrei Victor Sandu, Wojciech Sochacki, and Tomasz Skrzypczak. 2021. "The Effect of Polyethylene Glycol Addition on Wettability and Optical Properties of GO/TiO2 Thin Film" Materials 14, no. 16: 4564. https://doi.org/10.3390/ma14164564
APA StyleAzani, A., Halin, D. S. C., Razak, K. A., Abdullah, M. M. A. B., Nabiałek, M., Ramli, M. M., Abdul Razak, M. F. S., Sandu, A. V., Sochacki, W., & Skrzypczak, T. (2021). The Effect of Polyethylene Glycol Addition on Wettability and Optical Properties of GO/TiO2 Thin Film. Materials, 14(16), 4564. https://doi.org/10.3390/ma14164564