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Abstract: Interest in luminescent materials has been continuously growing for several decades,
looking for the development of new systems with optimized optical properties. Nowadays, research
has been focused on the development of materials that satisfy specific market requirements in
optoelectronics, radioelectronics, aerospace, bio-sensing, pigment applications, etc. Despite the fact
that several efforts have made in the synthesis of organic luminescent materials, their poor stability
under light exposure limits their use. Hence, luminescent materials based on inorganic phosphors
are considered a mature topic. Within this subject, glass, glass-ceramics and ceramics have had great
technological relevance, depending on the final applications. Supposing that luminescent materials
are able to withstand high temperatures, have a high strength and, simultaneously, possess high
stability, ceramics may be considered promising candidates to demonstrate required performance. In
an ongoing effort to find a suitable synthesis method for their processing, some routes to develop
nanostructured luminescent materials are addressed in this review paper. Several ceramic families
that show luminescence have been intensively studied in the last few decades. Here, we demonstrate
the synthesis of particles based on aluminate using the methods of sol-gel or molten salts and the
production of thin films using screen printing assisted by a molten salt flux. The goal of this review
is to identify potential methods to tailor the micro-nanostructure and to tune both the emission and
excitation properties, focusing on emerging strategies that can be easily transferred to an industrial
scale. Major challenges, opportunities, and directions of future research are specified.

Keywords: ceramic luminescent materials; nanostructure; screen printing; molten salts; NIR emission;
down-conversion; nanofibers; sol-gel

1. Introduction

Recently, a large number of inorganic, organic, or inorganic-organic luminescent hy-
brid materials have been extensively explored for optical, opto-electronical, and biological
applications. Nowadays, a wide variety of luminescent materials are represented in the
forms of glass, glass-ceramics, and ceramics. Here, we are focusing on luminescent materi-
als composed of an inorganic matrix, usually known as a host, and activators or dopants,
which are included in the matrix to act as an emitter or a trap. In general, the dopants are
rare earth elements, and, to a lesser extent, transition metals, such as V3+, Cu2+, Mn2+, Ti4+,
Sn2+, Co2+, Bi3+ or Pb2+ [1]. Despite the increasing demand for rare earth-free luminescent
materials, the efficiency is still quite low [2].

Glasses are quite versatile and are mainly used for lasers, optical fibers and amplifiers
due to their high optical transparency. Usually, a low phonon matrix is selected to get rid
of non-radiative relaxation. Glass phosphors’ shortcomings are related to their inefficient
performance as compared to crystalline counterparts [3]. Moreover, as bulk active materials,
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their manufacturing is economical and less tedious, providing the freedom to obtain
different shapes, sizes, and homogeneity, avoiding optical losses.

On the other hand, glass-ceramics are constituted by crystallites that are uniformly
dispersed or embedded into an amorphous glass matrix. Their optical properties are
modulated by the nature of the crystallites that can be either on the micron or nano scale,
the glass matrix and the interfaces between the constituents [4,5]. The refractive index and
morphological differences between the crystal and glass components are considered as
the main reasons for scattering losses. This encourages the scientific community to closely
match the refractive index of the crystalline phase to the glass-matrix one. Design and
fabrication methods are challenging tasks. Despite significant advances in the theoretical
understanding of glass structures [6], predictive methods are still far from maturity.

Not only should the optical properties of luminescent materials be improved, the
materials themselves should fulfil other requirements, such as having a suitable hardness,
fracture toughness, and high temperature stability. For this reason, research in polycrys-
talline ceramic materials has been growing in parallel with the development of glass-based
materials. Luminescent materials that withstand high temperatures, harsh chemical en-
vironments, electromagnetic fields, and radiation are highly demanded. These requests
have led to the study of ceramic luminescent materials, which have customized spectral
properties and decay kinetics.

In general, luminescent materials, as well as ceramics, have been mostly manufactur-
ing in a powder form. For specific applications, luminescent particles are incorporated to
form thick or thin films. However, efficient emission of light is limited due to the strong
absorption and scattering of the particles. This, alongside the drawbacks regarding ther-
mal stability and aging degradation of the particles embedded in a polymer matrix, have
directly led to the development of films, where the volume effect greatly increases the
luminescent properties.

Several fabrication methods have been adapted to synthesize ceramic luminescent
materials based on conventional approaches, such as solid-state methods and, to a lesser
extent, others routes, such as the precipitation method, a sol-gel route [7,8], hydrothermal
synthesis [9], laser synthesis [10], and combustion synthesis [11–14]. Sol-gel derived
powders usually accept higher contents of dopants due to their solubility and achieve
a better dispersion in the matrix compared to other synthesis methods, in which the
quenching concentrations are lower.

Generally, ceramic luminescent materials can be classified based on their chemical
compositions. Within the oxide family, Al2O3 has mainly been studied due to its high
performance within engineering ceramics. Specifically, the α-alumina phase has been
selected due to its stability and wide availability. Both undoped and doped alumina
compounds show luminescence. Undoped alumina represents a high potential for use
in dosimeters [15] due to the high concentration of oxygen vacancies, which produces
F-centers and the photo and cathodoluminescence in the UV region derived from the F-
centers. Regarding doped alumina, Cr-doped Al2O3 powders have been the most studied;
the luminescence response has been found to be similar to ruby crystal, giving a framework
to replace single crystals by employing polycrystalline alumina with a reduced cost and
with a greater versatility of shapes and dimensions [16].

Garnets are also well-known as a host family for optical applications; these com-
pounds are based on the combination of a rare earth oxide and a metal oxide, the most
representative materials of this group are Y3Al5O12 (YAG) and Y3Ga5O12 (YGG). YAG
may be doped with Eu [17], Ce [18], or Nd [19,20] to enhance performance. It is important
to highlight that Nd-YAG is one of the most important laser crystals for generating a
1.06-µm NIR emission. The primary reason for the interest in aluminate-based luminescent
materials is its efficient luminescence response compared to other families, such as oxides.
The undistorted and distorted structures formed by rings of AlO4 tetrahedra and AlO6
octahedra provide lattice conditions for the ease incorporation of activators that provide
the luminescence properties to the end product. In addition, some inherent defects, such
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as vacancies and structure inversion contributing to the creation of anti-site defects, give
added value into their luminescence response.

Another remarkable family of luminescent materials is the sulfides. Among them,
calcium sulfides (CaS) doped with Eu2+, Tm3+, and Ce+, or with Bi3+, show emission in
red and blue lights [21,22]. Sulfide development has been in parallel with that of LEDs;
the first white LEDs were based on a blue LED joined with a sulfide phosphor. However,
sulfides are sensitive to moisture and thermal quenching. For this reason, the research on
aluminate-based phosphors has gained enormous attention. Generally speaking, metal
aluminates doped with RE demonstrate a suitable luminescence performance due to the
intrinsic properties of spinel or trydimite structures. This is the case for the alkaline earth
aluminate MAl2O4 (where M = Ca, Sr, Ba) and also alkaline earth hexa-aluminates related
to magnetoplumbite and β-alumina.

Until now, the number of types of phosphors has increased significantly, and there
are new modified hosts and dopants from transitions metals and rare earths that open up
a chart of phosphors. Depending on the emission, excitation, and end-product response,
a huge list of appropriate phosphors for each field is already available. In this review,
some phosphors based on alkaline earth aluminates and metal aluminates are reported.
Our work is focused on materials that display luminescence and persistence luminescence.
Mostly, RE have been used as activators, achieving emissions in the visible and NIR ranges.

Taking into consideration the current phosphor market, there are still some limitations
that hinder their use in practical applications. In the case of phosphors in a powdered form,
commercial phosphor particles in the micron size range, which have been mainly produced
using conventional solid-state reaction processes, have shortcomings related to their ag-
glomeration and irregular shapes and sizes. Nano-scale phosphors could be a promising
alternative due to the confinement effects; however, their low stability, together with com-
plex synthesis routes, restrict their use. As luminescence is affected by the morphology and
size of particles, many efforts have been made to synthesize well-defined morphologies
and sizes. To solve the problem of agglomeration, hydrothermal, microemulsion and
sol-gel methods have been successfully exploited; small particles at low temperatures can
be synthesized, but the formation of a single phase should be optimized [23]. Therefore,
combining improvements in efficiency and stability of phosphors is still required; the
scientific community is looking for new strategies to provide a framework for the design
of the next generation of phosphors based on nano-architectures, increasing performance
and, at the same time, wavelength tunability.

2. Designing Strategies for Aluminates-Based Luminescent Materials

Luminescent nanostructured materials have drawn the interest of the scientific com-
munity due to their optical and chemical properties, which show better a response in
comparison with their bulk counterparts. Their design size, morphology, and phase
content have led to a surge of new synthesis methods. Chemical routes, such as hydrother-
mal, co-precipitation, micro emulsion, solvothermal, combustion, sol-gel methods, and
microwave-assisted reactions, are usually used to produce nanomaterials, and are des-
ignated as bottom-up approaches. Ceramic powders with ultrafine grains and spherical
morphologies are commonly obtained via microemulsion, in which the growth of particles
is limited by micelles. Solvo-thermal or microwave assisted bottom-up processes allow to
control the size of phosphor particles through surfactant or chelating agents. Nevertheless,
the complicated fabrication procedures limit the practical applications of these nanomate-
rial solutions, which do not require sophisticated processing in order to have easy scale-up.
Through the use of top-down approaches, such as high- or low-energy milling processes,
nanophosphors can also be produced. However, the milling process deteriorates optical
properties due to the large numbers of defects on the surface and the lower crystallinity of
the obtained non-spherical phosphors.
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2.1. Luminescent Materials by Molten Salts Assisted Process

Looking for a synthesis method that can meet all requirements, a molten salts strategy
has been used for the synthesis of nanostructured luminescent materials to be transferred
to an industrial level. Not many phosphors have been obtained using a molten salt-assisted
route. The first works on phosphors made using molten salts date to the last decade;
Lei et al. [24] obtained sphere-like and rod-like Gd2MoO6:Eu3+ phosphors depending
the used flux (NaCl or KCl). The same authors obtained a red phosphor based on
ZnWO4:Eu3+ [25] using LiNO3, NaNO3, and KNO3 as a flux. Y2O3:Eu, Bi was synthesized
for the first time by Wu et al. [26]; the red emitter had an octahedral morphology that was
obtained using a KNO3–NaNO3 eutectic mixture. Cerium-activated Y3-xCexAl5O12 was
first synthesized using molten salts with NaNO2-KNO2 and NaCl-KCl [27]; the morphol-
ogy could be tuned from spherical-like to cubic shaped using different salts. Moreover,
YAG doped with cerium non-aggregated particles with a spherical morphology were ob-
tained using mixtures of Na2SO4-BaF2 as the molten salt [28]. The salt ratios modulated
the diameter of the spherical particles, which shows peak emission at 535 nm [28]. Other
quasi-spherical Y2O3:Eu3+ particles were obtained using Na2CO3, S, and NaCl salts. The
particles synthesized with molten salts allowed to improve the luminescence intensity
by 30% in comparison with particles obtained without salts [29]. Recently, red-emitting
MgAl2O4:Mn4+ single-crystal phosphors have been produced using LiCl as a molten
flux [30].

The idea behind molten salt synthesis is to promote mass transfer and transport using
a liquid media at the synthesis temperature. The nature of the salt greatly effects the
chemical reactivity of the precursor used; depending on the composition a relatively low
melting point can be achieved. Generally, nitrates, hydroxides, chlorides, and sulfates
are employed; individual ionic salts or their corresponding eutectic mixtures are selected,
and the advantage of mixtures are that they endow a low melting point and usually
a reduced viscosity. The morphology, size, and nature of the precursors used govern
the growth process of a template formation, a dissolution-precipitation process, or a
mixture of both. When both reactants are soluble in salt, the dissolution-precipitation
mechanism controls the growth. On the contrary, if one of the reactants is less soluble that
the other, the dissolution-diffusion mechanism (known as a template formation or template
growth) occurs; the soluble reactant is dissolved in the initial stage and then diffuses
onto the surface of the less-soluble precursor. Figure 1 shows the morphology of two
aluminates, magnesium and strontium aluminate phosphor materials prepared by molten
salts employing two different nanosized, alpha (α-Al2O3) and gamma (γ-Al2O3), aluminas
and MgO and SrCO3 particles in the micron range. Here, the dissolution-precipitation
tends to dominate the growth mechanism. As the aluminates formed tend to retain the
original nano γ or α-Al2O3 shape, the authors suggested the occurrence of a mix mechanism
(dissolution–diffusion–precipitation process), governed by the dissolution-precipitation
process. When γ-Al2O3 is used, Mg2+ or Sr2+ diffusion around the nano γ-Al2O3 is higher
in comparison to the alpha phase, and the end aluminate is notably large. Raw α-Al2O3
promotes template mechanism preserving the size of the precursor of the alpha alumina
more, while the raw γ-Al2O3 stimulates the dissolution-precipitation process. Despite
there the fact that there is a mixing mechanism in both cases, the prevailing mechanism
defines the end size of the aluminate.

The synthesis of magnesium aluminate MgAl2O4:Mn4+ was done using ionic salts,
such as LiCl, NaCl, and KCl. As the melting point of LiCl is low, this salt was the one that
accelerated synthesis, avoiding residual MgO. On the other hand, SrAl2O4:Eu, Dy was
synthesized using a NaCl-KCl eutectic mixture that has a melting point around 659 ◦C,
which is lower than the individual ionic salts, with melting points at 903 and 954 ◦C for
NaCl and KCl, respectively. To the best of our knowledge, our research group was the first
to develop persistent phosphors using the molten salts route [31].
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Figure 1. SEM micrographs of MgAl2O4:Mn phosphors heated at 950 ◦C for 6 h in 90N2-10H2

atmosphere using (a) nano α-Al2O3 and (b) nano γ-Al2O3. Reprinted with permission from [30].
Copyright 2020, American Chemical Society Publishing. FE-SEM micrographs of powders based on
SrAl2O4:Eu, Dy heated at 1000 ◦C for 2 h in 90N2-10H2 atmosphere, employing a salt/SrAl2O4 molar
ratio of 3:1 using (c) nano α-Al2O3 and (d) nano γ-Al2O3.

In our previous works [31–33], the correlation of the amount of salt and photolu-
minescence intensity was studied thoroughly. In the case of employing SrAl2O4:Eu, Dy
as precursor of nano α-Al2O3, an increase in the emission intensity was observed when
the salt/SrAl2O4 molar ratio increased from 1:1, 3:1, to 5:1. The emission increment is
attributed to the different percentages of monoclinic and hexagonal polymorphs, using
different salt ratios (Figure 2a). A similar behavior has been observed when YAG: Ce was
synthesized using NaCl-KCl (Figure 2b), it was found that the emission intensity showed a
rising tendency as the ratio of salt increased to 4:1; using a higher salts ratio, such as 5:1,
the intensity decreased slightly [34].

It is fundamental to emphasize that one of the requirements for the selected salt is
related to its easy elimination, either through evaporation during synthesis or by washing
in a further step. In most cases, during synthesis, the salt is eliminated because the
used temperature usually exceeds the melting point. In case of mixtures of salts, higher
temperatures should be used due to the possible vaporization of individual salts. Some
grains of individual salts can remain unreacted in the mixture, so leftovers or excess of
salts interact well with the phosphor material. If the temperatures of the process do not
promote the evaporation of the salts, a washing step is required. In principle, almost all
salts can be eliminated by washing out with water or other polar solvents [35]; nevertheless,
some phosphors are not resistant or their luminescence response decreases by exposure
to water. This shortcoming can be overcome by washing with other media. Here, both
approaches are addressed; the phosphors based on strontium aluminate were shed with
glycerin and those based on yttrium aluminate with water. Figure 3 shows the drop
in luminescence when a washing cycle is performed for phosphors based on strontium
aluminate, employing a salt ratio of 5:1 (eutectic mixture NaCl-KCl).
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Figure 3. (a) Photoluminescence emission spectra as a function of the salt/SrAl2O4 molar ratio of 1:1, 3:1 and 5:1 of
SrAl2O4:Eu, Dy phosphor synthesized at 1000 ◦C before and after washing. (b) The emission spectra of Dydoped yttrium
aluminum garnet using different Dy concentrations, after washing 12 times. Reprinted with permission from [36]. Copyright
2019, John Wiley and Sons.

The washing step was carried out using glycerin, avoiding a hydrolysis reaction,
due to the sensitivity of strontium aluminates to water. For salt ratios of 3:1 and 1:1,
the washing step can be skipped because there is no salt remaining in the end product.
Figure 3b shows the emission of Y3-xDyxAl5O12 (x = 0.05, 0.10, 0.15, 0.20, and 0.25) phos-
phors, employing NaCl-KCl molten salt (ratio of the initial reagents and the NaCl–KCl
mixture: 1:4). The YAG:Dy phosphor was fired at 1100 ◦C and washed with deionized
water at least 12 times [36]. Both washing approaches were successfully applied, suggesting
that the removal of the remaining salts was not an issue with the use of this synthesis route.

In addition, the molten salts approach provides conditions to obtain particles with a
high crystallinity, smooth surface, and texturation. Figure 4a–d exhibits TEM images of
zinc aluminate and magnesium aluminate particles; in both cases a semi-rectangular shape
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is observed. The particles of high-crystallinity are interconnected forming agglomerates of
less than 200 nm in size. Generally, a better crystallinity means a fewer number of defects
and a stronger luminescence, which are crucial aspects in phosphor performance.
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Figure 4. (a,b) Low- and high-magnification TEM characterization of particles based on SrAl2O4:Eu,
Dy synthesized at 900 ◦C. (c,d) TEM images of particles based on MgAl2O4:Mn4+. Reprinted with
permission from [30]. Copyright 2020, American Chemical Society Publishing.

A closer examination of the particle morphology indicates the presence of a rod-like
structures on the edge of the equiaxed particles, as shown in Figure 4b–d. In the case of
strontium aluminates, these rod-like structures can be attributed to Sr2Al3O6 particles,
promoted by local excess of SrCO3.

2.2. Promoting Template-Mechanism by Molten Salts Assisted Process

The synthesis of particles by molten salt synthesis is governed by two main mecha-
nisms: dissolution–precipitation and dissolution-diffusion. The synthesis of nanophos-
phors is commonly done using dissolution–precipitation, where the molten salt-assisted
process is conceived as a bottom-up approach. Conventionally, the employment of bottom
up approaches implies a lower luminescence intensity for nanophosphors obtained in
comparison with a micro-sized counterpart. Top-down approaches have similar tendencies
due to the defects generated on the surface. A synergy between micro and nano concepts
can be conceived when a nano-architecture is developed. In the case of phosphors, for the
specific applications, platelet-like shapes are interesting, because one of the dimensions is
below ≤2 µm. Using the molten salt strategy, it is possible to design a scalable process of
self-supported nanostructures onto microscale particles as fragments of a puzzle to improve
the performance of phosphorescent materials, paying special attention to rare earth scarcity.
This concept was developed in our previous work for strontium and calcium aluminates.
In particular for the case of SrAl2O4:Eu, Dy, a scheme that depicts the photoluminescence
features of particles as a function of the synthesis is shown in Figure 5. A similar picture
can be translated for other phosphors based on aluminates.
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Figure 5. Scheme of the % of photoluminescence intensity, taking as reference commercial powder as a function
of the morphology and particle size for SrAl2O4:Eu, Dy particles synthesized by top-down, bottom-up, and nano-
architecture approaches.

In the scheme (Figure 5), a comparison of SrAl2O4 particles obtained using top-down,
bottom-up, and molten salts strategies is shown. Using a conventional method, for example
solid state reaction, irregular particles with >20 µm particle sizes and >100 nm crystallite
sizes are obtained. These particles are considered as the commercial reference, and their
emission signaled a reference for photoluminescence intensity (we use 100% of PL sig-
nal). If a top-down strategy, such as milling, is carried out to decrease the particle size, it
is possible to obtain well-distributed small particle sizes, but the as-obtained phosphor
showed a much lower photoluminescence intensity and a shorter persistent time compared
to the corresponding reference material. Using low-energy dry milling (LDM), designated

as

Materials 2021, 14, x FOR PEER REVIEW 9 of 19 
 

 

 

Figure 5. Scheme of the % of photoluminescence intensity, taking as reference commercial powder as a function of the 

morphology and particle size for SrAl2O4 :Eu, Dy particles synthesized by top-down, bottom-up, and nano-architecture 

approaches. 

In the scheme (Figure 5), a comparison of SrAl2O4 particles obtained using top-down, 

bottom-up, and molten salts strategies is shown. Using a conventional method, for exam-

ple solid state reaction, irregular particles with >20 μm particle sizes and >100 nm crystal-

lite sizes are obtained. These particles are considered as the commercial reference, and 

their emission signaled a reference for photoluminescence intensity (we use 100% of PL 

signal). If a top-down strategy, such as milling, is carried out to decrease the particle size, 

it is possible to obtain well-distributed small particle sizes, but the as-obtained phosphor 

showed a much lower photoluminescence intensity and a shorter persistent time com-

pared to the corresponding reference material. Using low-energy dry milling (LDM), des-

ignated as  in Figure 5, the obtained average size is 2.8 μm. The advantage of this 

method is particle dispersion during the milling process. This process generates defects at 

the particle surface. Using high-energy dry milling (HDM designated as  in Figure 5), 

a broad particle size distribution was obtained due to the agglomeration state, and the 

process significantly damages the phosphor structure. Therefore, the solution could be the 

development of traditional approaches for the synthesis of nano-sized SrAl2O4:Eu2+, Dy3+ 

material, called bottom-up methods. One strategy is combustion synthesis, indicated as 

 in Figure 5, resulting in nanostructured flakes with sizes ~5–25 μm in diameter and ≤1 

μm in thickness. Therefore, a top-down strategy can be used; the material is milled using 

a dry milling process, marked as  in Figure 5, obtaining average particle sizes. How-

ever, the photoluminescence response decreases. The approaches of sol-gel, hydrother-

mal, and microemulsion synthesis have also been evaluated for powders with a lower 

photoluminescence intensity. Moreover, there are other disadvantages, including multi-

step procedures and post-thermal treatments, that increase processing costs. For this rea-

son, a nano-architecture strategy, specified as  in Figure 5, was developed to synthe-

size particles with a required performance. Following an overview of principles, which 

guide nanocrystal formation, the emerging design criteria are outlined for shape-con-

trolled nanocrystals prepared using molten salt synthesis, a synthetic strategy that pro-

vides control over crystal growth. Employing less-reactive Al2O3 and particles with a 

larger size, a well-defined morphology has been developed with the help of a template-

assisted technique, where nanostructures are self-supported in alumina’s core. Figure 6 

evidences that particles preserve the platelet-like morphology of the α-alumina micro-

particles. The template mechanism dominates the reaction path for both systemscalcium 

(Figure 6a) and strontium aluminate (Figure 6b). The dissolution of strontium and calcium 

2.1

in Figure 5, the obtained average size is 2.8 µm. The advantage of this method
is particle dispersion during the milling process. This process generates defects at the

particle surface. Using high-energy dry milling (HDM designated as
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in Figure 5),
a broad particle size distribution was obtained due to the agglomeration state, and the
process significantly damages the phosphor structure. Therefore, the solution could be
the development of traditional approaches for the synthesis of nano-sized SrAl2O4:Eu2+,
Dy3+ material, called bottom-up methods. One strategy is combustion synthesis, indicated

as
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in Figure 5, resulting in nanostructured flakes with sizes ~5–25 µm in diameter
and ≤1 µm in thickness. Therefore, a top-down strategy can be used; the material is

milled using a dry milling process, marked as
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2.1 in Figure 5, obtaining average particle
sizes. However, the photoluminescence response decreases. The approaches of sol-gel,
hydrothermal, and microemulsion synthesis have also been evaluated for powders with a
lower photoluminescence intensity. Moreover, there are other disadvantages, including
multistep procedures and post-thermal treatments, that increase processing costs. For

this reason, a nano-architecture strategy, specified as
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in Figure 5, was developed
to synthesize particles with a required performance. Following an overview of princi-
ples, which guide nanocrystal formation, the emerging design criteria are outlined for
shape-controlled nanocrystals prepared using molten salt synthesis, a synthetic strategy
that provides control over crystal growth. Employing less-reactive Al2O3 and particles
with a larger size, a well-defined morphology has been developed with the help of a
template-assisted technique, where nanostructures are self-supported in alumina’s core.
Figure 6 evidences that particles preserve the platelet-like morphology of the α-alumina
micro-particles. The template mechanism dominates the reaction path for both systemscal-
cium (Figure 6a) and strontium aluminate (Figure 6b). The dissolution of strontium and
calcium carbonate precursor takes precedence, and the molten salt flux transports them
to the surface of Al2O3. The average thickness of synthesized aluminate phosphor was
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2 µm. In addition to the morphology, the synthesized phosphors were characterized by a
core-shell structure, in which the shell was composed of nanostructured phosphor and the
core was unreacted alumina. The processing of these core-shell structures makes possible a
reduction in incorporated rare earths by half. Figure 6e depicts the scheme of the core-shell
structures obtained. The nanostructured microparticles possess the advantage of a highly
reflective core and a thickness of the shell that is sufficient to absorb the excitation photons
and maximize the phosphor efficiency.
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Figure 6. (a–d) Field-emission scanning electron microscopy (FE-SEM) micrographs of the synthesized particles based on
SrAl2O4:Eu, Dy and CaAl2O4:Eu, Nd. (e) Scheme of the surface and cross-section of the nanostructures obtained with a
platelet-like morphology.

Depending on the host matrix and the dopants incorporated, it is possible to tune
the emission wavelength. Figure 7 shows the emission ranging from blue to green for
the particles based on CaAl2O4:Eu, Nd and SrAl2O4:Eu, Dy, respectively, under 365 nm
excitation. The persistent luminescence is demonstrated in both systems; the insets of the
particles after being activated for 10 min in the dark shows that, after the excitation is cut
off, afterglow remains.

Previously, nanomaterials solutions based on the development of nano-architectures
supported by platelet and spherical-like shape morphologies have been described. The
framework stability and network-structured phosphors contribute to the development
of phosphors with a high optical performance. Nevertheless, fiber morphology has been
not addressed by the molten salt route. The next section is devoted to luminescent alu-
minate materials with nanofiber shapes. Nanofiber morphology may be a promising
direction for luminescent applications that focuses on large surface-to-volume ratios. More
straightforward approaches for fibers synthesis are solution-based strategies, such as the
sol-gel method.

2.3. Luminescent Materials Obtained by Sol-Gel Synthesis

Most ceramics fibers are manufactured using an electrospinning route. The main
advantage of this technique is the high aspect ratio of the obtained fibers; the method is
quite versatile and the morphology is tuned by the spinneret. However, it is difficult to
optimize the chemistry and it is not always easy to find the proper combination of ceramic
precursor, polymer, and solvent. Controlling the diameter and morphology is still not a
trivial task. Regarding alkaline earth aluminates, CaAl2O4:Eu2+, Nd3+ has been produced
using a modified electrospinning process [37], during which a carbon shell is developed as
a result of the PVP and organic solvent decomposition and carbonization. After annealing,
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this carbon shell is eliminated and fibers of 160 nm in diameter remain. The fibers exhibit
the emission at 445 nm under 345 nm excitation.
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Figure 7. Photoluminescence emission spectrum (λEXC = 365 nm) of SrAl2O4:Eu Dy and CaAl2O4:Eu
Nd platelet-like particles.

Recently, SrAl2O4: Eu/Yb nanofibers around 2 µm in length and 400 nm in diameter
were synthesized [38]. The fibers exhibited up and down conversion luminescence under
excitation at 478 and 365 nm, respectively. Usually, fibers produced by electrospinning or
modified sol-gel electrospinning processes are long fibers. Short fibers are also required,
so a direct synthesis process is highly desired. Long fibers can be cut, but this operation
always adds additional steps to the manufacturing process. Following, a similar reaction
mechanism to that which happens in molten salt synthesis, the impregnation generated
using a sol-gel process can be useful to obtain aluminates if the initial fibers can serve as a
source of alumina. Using this method, the dimensions of the final fibers will be modulated
depending the nature and morphology of the template precursor.

This approach has been developed for the synthesis of zinc aluminate materials. Ce-
ramic nanofibers based on ZnAl2O4:Ce, Nd with an average diameter of 50 nm have been
obtained using sol-gel synthesis. Figure 8 shows the morphology of ZnAl2O4: nanofibers
co-doped with Ce and Nd [39] (Figure 8a) and doped with only Cr [40] (Figure 8b) and
Nd [41] (Figure 8c) synthesized using sol-gel and electrospinning, respectively. The sur-
face of the nanofibers co-doped with Ce and Nd obtained using sol-gel after annealing
at 1200 ◦C is smooth; a similar morphology is demonstrated for fibers only doped with
Nd obtained by electrospinning. However, the surface of the nanofibers doped with Cr
obtained using a single-nozzle electrospinning process become rough after calcination at
1200 ◦C. In the case of sol-gel synthesis, shorter strands were produced due to impreg-
nation using the sonication process, as compared with the long fibers obtained by the
electrospinning method.

Figure 9 shows the emission and excitation spectra of the ZnAl2O4 nanofibers doped
with Nd and co-doped with Ce, fixing the Nd content to 0.02 (%mol) and with different
Ce contents ranging from 0.02 to 0.06 (%mol). The modulation of the concentration of
dopants also has an influence on the emission intensity. The presence of cerium boosts the
photoluminescence emission due to a down-conversion process through the Ce-Nd energy
transfer band.

The progress on these materials opens as well a section of the portfolio of biocom-
patible luminescent materials. Both ZnAl2O4: nanofibers doped with Nd and co-doped
with Ce and Nd exhibit NIR emissions in the optical window for cells and tissues, opening
their use in biological markers. For both systems, the cytotoxicity and viability of cells
were evaluated.
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Figure 8. Field-emission scanning electron microscopy (FE-SEM) micrographs of the synthesized nanofibers based on
(a) ZnAl2O4:Nd, Ce, (b) ZnAl2O4:Cr. Reprinted with permission from [40]. Copyright 2012, Royal Society of Chemistry
Publishing. And (c) ZnAl2O4:Nd. Reprinted with permission from [41]. Copyright 2013, American Scientific Publishers.
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Figure 9. Excitation and emission spectra of the synthesized nanofibers based on ZnAl2O4:Nd, Ce.

To determine cell viability, MTT assays are usually performed. In the case of the
ZnAl2O4: nanofibers doped with Nd and co-doped with Ce obtained using sol-gel synthe-
sis, HeLa cells were employed. On the other hand, for ZnAl2O4: fibers doped only with Nd
obtained by electrospinning, BMSCs were used as model human cells.
Figure 10a,b exhibits the optical density (OD) result of the absorption band located at
540 and 570 nm. The OD is higher than the blank (control sample) for all concentration
from for 1 and 100 µg/mL for the nanofibers co-doped. For the fibers only doped with
Nd obtained by electrospinning route, no big difference is observed for concentrations up
to 10 µg/cm2. However, with higher concentrations, 100 µg/cm2, the viability decreases
up to 75%. In any case, for both systems obtained by different synthesis routes, there is
no cytoxicity activity for the materials based on zinc aluminate doped with Nd and Ce.
These results demonstrate the potential of use these nanofibers for biological markers and
cell imaging.

The luminescent materials in the form of films have also attracted a great deal of
attention; for example, in the development of advanced LEDs or sensing materials. In the
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case of LEDs, the replacement of traditional encapsulation technology can help to acquire a
higher thermal stability and heat dissipation. The main advantage of luminescent films
is that they can become a straightforward part of a device format. The main drawback of
film synthesis is that synthetic efforts start to be more versatile. Here, we will describe,
as a selected example, the fabrication of luminescent films based on aluminates using a
cost-efficient and flexible strategy, i.e., modified screen printing assisted by molten salts.
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2.4. Designing Strategies for Ceramic Luminescent Films by Modified Screen Printing Assisted by
Molten Salts

There are two main strategies to fabricate luminescent films, indirect and direct
strategies. With the indirect strategies, luminescent particles are incorporated into a matrix
to form thick or thin films. Generally, a polymer matrix is employed; the main drawback is
related to thermal stability and aging degradation of the luminescent particles embedded in
the polymer matrix. Other indirect approaches rely on the dispersion of phosphor particles
within a bulk glassy matrix (particles into the glass, PiG) and by partial glass crystallization,
GC. In both approaches, the selection of glass composition is of fundamental importance
to obtain a suitable glass network. The glass network should neither react with particles
embedded, nor crystallize, and should have a similar refractive index with the phosphors
in the case of the PiG approach. The main drawback is that the particles are often not
homogeneously dispersed. The GC approach faces problems related to the incorporation
of activators in the crystalline phases and the heterogeneous nucleation process; usually,
nucleation only happens on the surface. In direct strategies, the films are directly produced
either using sol-gel using dip-casting or spin-coating techniques or by the employment
of more sophisticated methods, such as sputtering, ion beam evaporation, ultrasonic
spray pyrolysis, and pulsed laser deposition. In terms of methodological simplicity and
cost-effectiveness, the synthesis of films using solution-based processes, such as sol-gel
deposition with dip or spin-coating, are the most extensively employed. However, there are
still some limitations related to scaling-up of this technology and the difficulty in obtaining
thick layers, unless the deposition of multiple layers is done by repeated the whole process.
The shrinkage of the gel and initial density are the main factors that have an influence
on the final thickness [42]. Moreover, the structure of the gel promotes or hinders crack
nucleation; therefore, depending on the chemical composition, the correlation between
the experimental conditions (time, speed, solvent content, catalyst, substrates, annealing,
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hydrolysis, and condensation), the film thickness, and the phase composition, requires in
depth study.

Different luminescent aluminates have been developed in the form of films. ZnAl2O4
films have been doped with Eu, Tb, or Tm using an ultrasonic spray pyrolysis
technique [43,44]; films doped with Mn have been produced using a sol-gel route [45].
Concerning strontium aluminates, a SrAl2O4 polymorph has been obtained by sputtering,
ion beam evaporation, ultrasonic spray pyrolysis, and pulsed laser deposition [46–52].

Keeping in mind the importance of finding a scalable technology, the screen-printing
method has been used to obtain luminescent films. The screen-printing technique has
been previously exploited to obtain thicker transparent Ce-YAG PiG film with a thickness
of >19 µm [53] on a glass substrate. The prepared inks have already dispersed phosphor
particles, so the method follows the concept of an indirect strategy [54]. Our group has
developed a screen-printing strategy assisted by a molten salt route; the approach is a direct
strategy. In principle, the screen-printing technique has been conceived of for thick films,
but it is possible to get films below 1 µm using assisted molten salt flux. The employment
of a molten salt flux promotes crystal growth in the case of the synthesis of particles; the
same concept has been translated to film synthesis. A polycrystalline alumina substrate
(not polished) has been used for the deposition of ink that employs a molten salt based on a
eutectic NaCl and KCl mixture. From a cross-section view, films with ~750 nm in thickness
are crack free (Figure 11a). By employing a non-polished substrate, the coating reveals
the hexagonal grains of the polycrystalline substrate (Figure 11b). Taking into account the
template formation mechanism, the developed film follows the template of alumina grains.
Figure 11c shows a scheme of film growth when a polycrystalline substrate is used. By
modulating the nature of the substrate, it is possible to also grow epitaxial films promoting
an orientation degree. The crystal texturation of screen-printed films should be highlighted
as the oriented films are not usually obtained by a simple synthesis method such as this.
A uniform thickness and the desired phase composition imply the suitable incorporation
of the dopants to get a functional film and the mass transport process of all precursors,
including the activators, should be carefully optimized to promote the formation of the
desired growth. The emission spectrum shows that a luminescent film is successfully
prepared; green emission upon excitation at 380 nm of synthesized SrAl2O4:Eu, Dy film
is observed.
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The optimized screen-printing method assisted by molten salts, which was developed
by our group, can be adapted to other aluminates to produce other active materials for
other emission and excitation ranges.

3. Perspectives and Applications

The main challenge for the luminescent materials research community is to develop
strategies that consider further up-scaling and cost-effective production of materials in
both powder and film forms. The proposed approaches based on sol-gel and molten salt
synthesis exhibit enormous flexibility for different system production. These methodolo-
gies are proven to produce materials at the industrial scale for other systems and, thus,
anticipate the scalability for nanostructured inorganic phosphors. The ability to tailor engi-
neering nanostructures and at the same time tuning both the emission and the excitation
ranges represents a key point for the development of devices for application in printable
optoelectronics, energy storage, sensor technology, as well as products in medicine. The
development of mass production processes will open new application in cost-efficient ap-
plications for common usage; for example, in signage, textile and printing areas. Moreover,
incorporation of the luminescent materials into additive manufacturing will open new
possibilities beyond aesthetic or design applications.

The use of rare earth (RE) as activators of phosphors represents a relevant limitation.
Rare earths are critical materials due to their scarcity, environmental impact and cost. The
high demand for RE in functional applications will imply a foreseeable increase for the
next few years that will depend on the availability of their supply also conditioned by
geopolitical evolution and international trade agreements. The forecast implies an increase
in the cost of raw materials that will restrict certain applications. On the one hand, the
use of strategies to reduce the use of rare earths by inorganic phosphors is an incentive for
researchers. In this sense, nanostructured coatings have shown an increase in the efficiency
of the systems that must be enhanced. The recovery of rare earths from industrial waste
is a necessary aspect to be addressed in the coming years in order to maximize the use
of scarce resources on planet earth. Given that the circular economy approach will be
essential in the coming years for industrial product development, the entry of rare earths
into circular economy processes requires commendable efforts. The strong dependence of
the response of rare earths with minority elements and impurities must be addressed in
order to achieve new, more robust and tolerant formulations, aspects that result far from
obvious for materials with an optical response. Last but not least, the development of
inorganic materials with luminescent properties without rare earths is an emerging field
that requires a strong investment in the coming years. Some recent examples in dual micro-
nanostructure glass-ceramic feldspar nanocrystals having aluminate tetrahedra in their
structure that present a relevant luminescent efficiency without rare-earth activators [55,56].
However, there is still a need to increase its tuning capacity for broadcasts.

Concerning the application of inorganic phosphor as optical probes in biomaging and
biosensing, the luminescent powders are more convenient for the efficient penetration
cell ability for in vivo and in vitro studies. Nevertheless, the luminescent particles can
be functionalized for targeting specific tumor or diseases and furtherly incorporated
in an adequate fluid. Despite, the stability should be verified and the regulation and
standardization needs further steps, the incorporation of phosphors in powder form is still
a solution for multiple bio and lightning applications.

Nowadays, material that can have isotropic lighting characteristics and high mechan-
ical properties is highly desired [57]. Ceramics coatings in the form of films can solve
these requests due to the strong mechanical performance combined with an enhanced
optical response. In addition, the stability increases the lifetime of the final product as
compared to the polymer hybrid composites. The development of transparent films with
a controllable photon release is of a great interest for anti-counterfeiting technology and
energy storage applications from the VUV to NIR range [58]. In addition, the technology
can be applied for not persistent materials, as well. A field that is still under construction
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is the UV-LEDs, the UV–C emission has been proven as efficient technology for surface
disinfection. Therefore, the development of undoped and doped luminescent materials,
which emit in the range of 200-280 nm for inactivating some virus and bacteria, is other
area in which the aluminates can be used. We also envision that the concept of developing
submicron films by screen-printing could be further explored with functionalizing by
plasmon deposition on the surface.

4. Conclusions

Ceramic luminescent nanomaterials, specifically assembled nano-architectures, demon-
strate a better performance in terms of photoluminescence response together with cus-
tomized microstructures and morphologies compared to bulk counterparts. The methods
of assembling particles using sol-gel or molten salts and uniform films using a modified
screen printing assisted by molten salts show the greatest potential to develop luminescent
materials for a wide range of applications in optical (lighting, photonics, indicators), opto-
electronic, bio-sensing, and anti-counterfeiting fields. The synthesis routes presented in
detail in this review are able to overcome the disadvantages of a complex synthesis and
present beneficial solutions for the scaling-up required for industrial applications. The
sol-gel method used to generate nanofibers with large surface-to-volume ratios is of crucial
importance for the development of bio-markers. The combination of the screen-printing
technique and the assisted process through the use of molten salts shows the potential to
control the thickness of uniform films. However, the extensive application of this combined
strategy can also be fully realized for other aluminate-based materials. Further efforts are
needed to explore the enormous potential of this flexible synthesis to create multifunctional
ceramic materials, where the luminescence properties can be exploited.
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