Effects of Sc and Zr Addition on Microstructure and Mechanical Properties of AA5182
Abstract
:1. Introduction
2. Experimental Procedure
3. Results
3.1. Effect of Sc and Zr Microalloying Additions on Microstructure
3.2. Effect of Sc and Zr Microalloying on Tensile Properties
4. Discussion
4.1. The Effect of Addition of Sc and Zr on the As-Cast Microstructure of AA5182
4.2. Effect of Sc Addition and Zr on the Recrystallization Microstructure of 5182 Alloy
4.3. Strengthening Mechanisms of 5182-Sc-Zr Alloy
4.3.1. Orowan Strengthening of the Dispersoids Containing Sc and Zr
4.3.2. Grain Boundary Strengthening of 5182 Alloy Containing Sc and Zr
5. Conclusions
- 1.
- Adding 0.1% Sc and 0.1% Zr to commercial 5182 alloy can effectively refine ingot grains. The average grain size of 5182 alloy ingot was 0.7 mm (±0.4 mm). After adding Sc and Zr, the grain size of ingot was reduced to 0.4 mm (±0.2 mm).
- 2.
- The Al3(ScxZr1−x) dispersoids can prevent a 5182-Sc-Zr alloy from recrystallization during the annealing process. Even when annealed at 500 °C for 2 h, the recrystallization rate of the 5182-Sc-Zr alloy was 30.1%, while the 5182 alloy had already completely recrystallized after being annealed at 300 °C for 2 h.
- 3.
- For as-cold rolled sheets, the YS of 5182 alloy and 5182-Sc-Zr alloy was 283.0 MPa and 371.7 MPa, respectively. The yield strength of the 5182-Sc-Zr alloy changed from 371 MPa to 187 MPa with increasing annealing temperature, which was higher than the YS of 5182 alloy, which changed from 283 MPa to 94.2 MPa.
- 4.
- Both Orowan strengthening and fine grain strengthening were calculated to contribute to the strengthening of the 5182-Sc-Zr alloy. The contribution of Orowan strengthening to as-annealed 5182-Sc-Zr was higher than that of grain boundary strengthening.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Luca, A.; Dunand, D.C.; Seidman, D.N. Mechanical properties and optimization of the aging of a dilute Al-Sc-Er-Zr-Si alloy with a high Zr/Sc ratio. Acta Mater. 2016, 119, 35–42. [Google Scholar] [CrossRef] [Green Version]
- Silva, C.J.; Kula, A.; Mishra, R.K.; Niewczas, M. The effect of Sc on plastic deformation of Mg–Sc binary alloys under tension. J. Alloys Compd. 2018, 761, 58–70. [Google Scholar] [CrossRef]
- De Luca, A.; Dunand, D.C.; Seidman, D.N. Microstructure and mechanical properties of a precipitation-strengthened Al-Zr-Sc-Er-Si alloy with a very small Sc content. Acta Mater. 2018, 144, 80–91. [Google Scholar] [CrossRef]
- Ikeshita, S.; Strodahs, A.; Saghi, Z.; Yamada, K.; Burdet, P.; Hata, S.; Ikeda, K.I.; Midgley, P.A.; Kaneko, K. Hardness and microstructural variation of Al-Mg-Mn-Sc-Zr alloy. Micron 2016, 82, 1–8. [Google Scholar] [CrossRef]
- Yin, Z.; Pan, Q.; Zhang, Y.; Jiang, F. Effect of minor Sc and Zr on the microstructure and mechanical properties of Al–Mg based alloys. Mater. Sci. Eng. A 2000, 280, 151–155. [Google Scholar] [CrossRef]
- Filatov, Y.A.; Yelagin, V.I.; Zakharov, V.V. New Al–Mg–Sc alloys. Mater. Sci. Eng. A 2000, 280, 97–101. [Google Scholar] [CrossRef]
- Pan, D.; Zhou, S.; Zhang, Z.; Li, M.; Wu, Y. Effects of Sc(Zr) on the microstructure and mechanical properties of as-cast Al–Mg alloys. Mater. Sci. Technol. 2017, 33, 751–757. [Google Scholar] [CrossRef]
- Teng, G.B.; Liu, C.Y.; Ma, Z.Y.; Zhou, W.B.; Wei, L.L.; Chen, Y.; Li, J.; Mo, Y.F. Effects of minor Sc addition on the microstructure and mechanical properties of 7055 Al alloy during aging. Mater. Sci. Eng. A 2018, 713, 61–66. [Google Scholar] [CrossRef]
- Booth-Morrison, C.; Dunand, D.C.; Seidman, D.N. Coarsening resistance at 400 °C of precipitation-strengthened Al–Zr–Sc–Er alloys. Acta Mater. 2011, 59, 7029–7042. [Google Scholar] [CrossRef]
- Tolley, A.; Radmilovic, V.; Dahmen, U. Segregation in Al3(Sc,Zr) precipitates in Al–Sc–Zr alloys. Scr. Mater. 2005, 52, 621–625. [Google Scholar] [CrossRef]
- Knipling, K.E.; Karnesky, R.A.; Lee, C.P.; Dunand, D.C.; Seidman, D.N. Precipitation evolution in Al–0.1Sc, Al–0.1Zr and Al–0.1Sc–0.1Zr (at.%) alloys during isochronal aging. Acta Mater. 2010, 58, 5184–5195. [Google Scholar] [CrossRef]
- Forbord, B.; Lefebvre, W.; Danoix, F.; Hallem, H.; Marthinsen, K. Three dimensional atom probe investigation on the formation of Al3(Sc,Zr)-dispersoids in aluminium alloys. Scr. Mater. 2004, 51, 333–337. [Google Scholar] [CrossRef] [Green Version]
- Fuller, C.; Murray, J.; Seidman, D. Temporal evolution of the nanostructure of Al(Sc,Zr) alloys: Part I—Chemical compositions of Al3(Sc1−xZrx) precipitates. Acta Mater. 2005, 53, 5401–5413. [Google Scholar] [CrossRef]
- Fuller, C.B.; Seidman, D.N.; Dunand, D.C. Mechanical properties of Al(Sc,Zr) alloys at ambient and elevated temperatures. Acta Mater. 2003, 51, 4803–4814. [Google Scholar] [CrossRef]
- Deng, Y.; Yin, Z.; Zhao, K.; Duan, J.; He, Z. Effects of Sc and Zr microalloying additions on the microstructure and mechanical properties of new Al–Zn–Mg alloys. J. Alloys Compd. 2012, 530, 71–80. [Google Scholar] [CrossRef]
- Bradley, E.L.; Emigh, R.A.; Morris, J.W. Superplastic properties of an Al-2.4Mg-1.8Li-0.5Sc Alloy. Scr. Metall. 1991, 25, 717–721. [Google Scholar] [CrossRef]
- Tang, L.; Peng, X.; Huang, J.; Ma, A.; Deng, Y.; Xu, G. Microstructure and mechanical properties of severely deformed Al-Mg-Sc-Zr alloy and their evolution during annealing. Mater. Sci. Eng. A 2019, 754, 295–308. [Google Scholar] [CrossRef]
- Zhou, S.; Zhang, Z.; Li, M.; Pan, D.; Su, H.; Du, X.; Li, P.; Wu, Y. Correlative characterization of primary particles formed in as-cast Al-Mg alloy containing a high level of Sc. Mater. Charact. 2016, 118, 85–91. [Google Scholar] [CrossRef]
- Røyset, J.; Ryum, N. Scandium in aluminium alloys. Int. Mater. Rev. 2013, 50, 19–44. [Google Scholar] [CrossRef]
- Nieh, T. Subgrain formation and evolution during the deformation of an Al-Mg-Sc alloy at elevated temperatures. Scr. Mater. 1997, 36, 1011–1016. [Google Scholar] [CrossRef]
- Chen, J.; Gong, P.; Yang, L. Forming limit evaluation for AA5182 aluminum alloy at warm temperatures based on M–K model. J. Mater. Eng. Perform. 2020, 29, 1176–1184. [Google Scholar] [CrossRef]
- Seidman, D.N.; Marquis, E.A.; Dunand, D.C. Precipitation strengthening at ambient and elevated temperatures of heat-treatable Al(Sc) alloys. Acta Mater. 2002, 50, 4021–4035. [Google Scholar] [CrossRef]
- Davydov, V.G.; Rostova, T.D.; Zakharov, V.V.; Filatov, Y.A.; Yelagin, V.I. Scientific principles of making an alloying addition of scandium to aluminium alloys. Mater. Sci. Eng. A 2000, 280, 30–36. [Google Scholar] [CrossRef]
- Wu, L.-M.; Wang, W.-H.; Hsu, Y.-F.; Trong, S. Effects of homogenization treatment on recrystallization behavior and dispersoid distribution in an Al–Zn–Mg–Sc–Zr alloy. J. Alloys Compd. 2008, 456, 163–169. [Google Scholar] [CrossRef]
- Wu, X.-F.; Wang, K.-Y.; Wu, F.-F.; Zhao, R.-D.; Chen, M.-H.; Xiang, J.; Ma, S.-N.; Zhang, Y. Simultaneous grain refinement and eutectic Mg2Si modification in hypoeutectic Al-11Mg2Si alloys by Sc addition. J. Alloys Compd. 2019, 791, 402–410. [Google Scholar] [CrossRef]
- Fuller, C.B.; Krause, A.R.; Dunand, D.C.; Seidman, D.N. Microstructure and mechanical properties of a 5754 aluminum alloy modified by Sc and Zr additions. Mater. Sci. Eng. A 2002, 338, 8–16. [Google Scholar] [CrossRef]
- Zhang, W.G.; Ye, Y.C.; He, L.J.; Li, P.J.; Feng, X.; Novikov, L.S. Dynamic response and microstructure control of Al–Sc binary alloy under high-speed impact. Mater. Sci. Eng. A 2013, 578, 35–45. [Google Scholar] [CrossRef]
- Singh, V.; Satya Prasad, K.; Gokhale, A.A. Effect of minor Sc additions on structure, age hardening and tensile properties of aluminium alloy AA8090 plate. Scr. Mater. 2004, 50, 903–908. [Google Scholar] [CrossRef]
- Watanabe, C.; Watanabe, D.; Monzen, R. Coarsening Behavior of Al3Sc Precipitates in an Al–Mg–Sc Alloy. Mater. Trans. 2006, 47, 2285–2291. [Google Scholar] [CrossRef] [Green Version]
- Pisch, A.; Gröbner, J.; Schmid-Fetzer, R. Application of computational thermochemistry to Al and Mg alloy processing with Sc additions. Mater. Sci. Eng. A 2000, 289, 123–129. [Google Scholar] [CrossRef]
- Jia, Z.-h.; RØYset, J.; Solberg, J.K.; Liu, Q. Formation of precipitates and recrystallization resistance in Al–Sc–Zr alloys. Trans. Nonferrous Met. Soc. China 2012, 22, 1866–1871. [Google Scholar] [CrossRef]
- Marquis, E.A.; Seidman, D.N. Nanoscale structural evolution of Al3Sc precipitates in Al(Sc) alloys. Acta Mater. 2001, 49, 1909–1919. [Google Scholar] [CrossRef] [Green Version]
- Marquis, E.A.; Seidman, D.N.; Dunand, D.C. Effect of Mg addition on the creep and yield behavior of an Al–Sc alloy. Acta Mater. 2003, 51, 4751–4760. [Google Scholar] [CrossRef]
- Senkov, O.N.; Shagiev, M.R.; Senkova, S.V.; Miracle, D.B. Precipitation of Al3(Sc,Zr) particles in an Al–Zn–Mg–Cu–Sc–Zr alloy during conventional solution heat treatment and its effect on tensile properties. Acta Mater. 2008, 56, 3723–3738. [Google Scholar] [CrossRef]
- Vo, N.Q.; Dunand, D.C.; Seidman, D.N. Improving aging and creep resistance in a dilute Al–Sc alloy by microalloying with Si, Zr and Er. Acta Mater. 2014, 63, 73–85. [Google Scholar] [CrossRef]
- Kendig, K.L.; Miracle, D.B. Strengthening mechanisms of an Al-Mg-Sc-Zr alloy. Acta Mater. 2002, 50, 4165–4175. [Google Scholar] [CrossRef]
- Zhang, X.; Huang, L.K.; Zhang, B.; Chen, Y.Z.; Duan, S.Y.; Liu, G.; Yang, C.L.; Liu, F. Enhanced strength and ductility of A356 alloy due to composite effect of near-rapid solidification and thermo-mechanical treatment. Mater. Sci. Eng. A 2019, 753, 168–178. [Google Scholar] [CrossRef]
Alloys | Mg | Mn | Cu | Ti | Fe | Si | Zr | Sc |
---|---|---|---|---|---|---|---|---|
5182 Alloy | 4.53 | 0.22 | 0.0003 | 0.005 | 0.175 | 0.068 | - | - |
5182-Sc-Zr Alloy | 4.44 | 0.22 | 0.0003 | 0.005 | 0.168 | 0.67 | 0.123 | 0.1 |
230 °C | 250 °C | 300 °C | 400 °C | 500 °C | |||||
---|---|---|---|---|---|---|---|---|---|
AA5182 | AA5182-Sc-Zr | AA5182 | AA5182-Sc-Zr | AA5182 | AA5182-Sc-Zr | AA5182 | AA5182-Sc-Zr | AA5182 | AA5182-Sc-Zr |
11.8 | 10.3 | 18.9 | 10.8 | 92.9 | 15.7 | 91.0 | 24.4 | - | 30.1 |
Tensile Properties | Cold Rolling 70% | Annealing 230 °C 2 h | Annealing 250 °C 2 h | Annealing 300 °C 2 h | Annealing 400 °C 2 h | Annealing 500 °C 2 h | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
5182 Alloy | 5182-Sc-Zr Alloy | 5182 Alloy | 5182-Sc-Zr Alloy | 5182 Alloy | 5182-Sc-Zr Alloy | 5182 Alloy | 5182-Sc-Zr Alloy | 5182 Alloy | 5182-Sc-Zr Alloy | 5182 Alloy | 5182-Sc-Zr Alloy | |
YS (MPa) | 283.0 | 371.7 | 267.8 | 360.3 | 237.1 | 277.7 | 147.7 | 247.8 | 139.2 | 211.8 | 94.6 | 187.4 |
TS (MPa) | 378.8 | 418.8 | 346.5 | 409.5 | 334.1 | 366.4 | 290.1 | 354.2 | 287.7 | 343.9 | 236.8 | 329.9 |
n | 0.150 | 0.0787 | 0.151 | 0.0831 | 0.193 | 0.178 | 0.329 | 0.204 | 0.349 | 0.238 | 0.370 | 0.314 |
Microstructure Characteristics | Al3(ScxZr1−x) | ||||
---|---|---|---|---|---|
230 °C | 250 °C | 300 °C | 400 °C | 500 °C | |
dm (nm) | 15.2 ± 5.6 | 17.1 ± 4.6 | 17.6 ± 4.7 | 18.1 ± 1.1 | 25 ± 7.6 |
fv | 10−3 | 10−3 | 10−3 | 10−3 | 10−3 |
Grain Size | 230 °C | 250 °C | 300 °C | 400 °C | 500 °C | |
---|---|---|---|---|---|---|
d/μm | 5182 Alloy | 13.8 | 14.0 | 18.5 | 21.1 | 220.9 |
5182-Sc-Zr Alloy | 8.5 | 11.1 | 11.3 | 12.2 | 15.8 |
Strengthening Type | Annealed at 230 °C | Annealed at 250 °C | Annealed at 300 °C | Annealed at 400 °C | Annealed at 500 °C |
---|---|---|---|---|---|
ΔσOr (MPa) | 51.1 | 46.9 | 45.9 | 44.9 | 35.2 |
Δσgb (MPa) | 12.6 | 5.6 | 11.1 | 11.7 | 31.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Yang, X.; Xiang, S.; Zhang, Y.; Shi, J.; Qiu, Y.; Sanders, R.E. Effects of Sc and Zr Addition on Microstructure and Mechanical Properties of AA5182. Materials 2021, 14, 4753. https://doi.org/10.3390/ma14164753
Li J, Yang X, Xiang S, Zhang Y, Shi J, Qiu Y, Sanders RE. Effects of Sc and Zr Addition on Microstructure and Mechanical Properties of AA5182. Materials. 2021; 14(16):4753. https://doi.org/10.3390/ma14164753
Chicago/Turabian StyleLi, Jingxiao, Xiaofang Yang, Shihua Xiang, Yongfa Zhang, Jie Shi, Youcai Qiu, and Robert Edward Sanders. 2021. "Effects of Sc and Zr Addition on Microstructure and Mechanical Properties of AA5182" Materials 14, no. 16: 4753. https://doi.org/10.3390/ma14164753
APA StyleLi, J., Yang, X., Xiang, S., Zhang, Y., Shi, J., Qiu, Y., & Sanders, R. E. (2021). Effects of Sc and Zr Addition on Microstructure and Mechanical Properties of AA5182. Materials, 14(16), 4753. https://doi.org/10.3390/ma14164753