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Abstract: During air bending of sheet metals, the correction of punch stroke for springback control
is always implemented through repeated trial bending until achieving the forming accuracy of
bending parts. In this study, a modelling method for correction of punch stroke is presented for
guiding trial bending based on a data-driven technique. Firstly, the big data for the model are
mainly generated from a large number of finite element simulations, considering many variables,
e.g., material parameters, dimensions of V-dies and blanks, and processing parameters. Based on the
big data, two punch stroke correction models are developed via neural network and dimensional
analysis, respectively. The analytic comparison shows that the neural network model is more
suitable for guiding trial bending of sheet metals than the dimensional analysis model, which has
mechanical significance. The actual trial bending tests prove that the neural-network-based punch
stroke correction model presents great versatility and accuracy in the guidance of trial bending,
leading to a reduction in the number of trial bends and an improvement in the production efficiency
of air bending.

Keywords: V-bending; springback; punch stroke; neural network; dimensional analysis

1. Introduction

Sheet metal bending is a representative forming craft in manufacturing industries [1].
“Springback” refers to the elastically driven change in shape that occurs following a sheet
bending when forming loads are removed from the work piece, which causes problems
such as increased tolerance and variability in subsequent forming operations, in assembly,
and in the final part(s) [2]. In air bending, therefore, precise bending has to be guided by
a springback prediction model that represents the accurate relationship between punch
stroke and forming angle [3]. However, the factors for springback of sheet metals in air
bending are so complicated that the springback prediction models have a certain degree of
error no matter how accurate they are [4]. In the air bending process, the forming angles
need to gradually approach the expected value via repeating trial bending; that is, the
punch stroke keeps being corrected until the tolerance of the forming angle is reached.

The punch stroke correction model, which affords a relationship between deviation of
the bending angle and correction of punch stroke, is also critical for sheet bending and has
been paid much less attention than the springback prediction models [5,6]. The deviation
of the bending angle and the correction of punch stroke should be the differential or
variational perturbation of the bending angle and punch stroke, respectively. Consequently,
the punch stroke correction model could be regarded as the differential or variational
form of the springback prediction model. If the springback prediction model presents
an explicit analytical formula, the punch stroke correction model can be obtained by
differentiation calculation. Some springback prediction models have been analytically
deduced by means of mechanical analysis, considering the geometrical dimensions of
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forming dies and work pieces, the mechanical properties of sheet metals, processing
parameters, etc. [7–9]. However, these analytical models are not accurate enough, due
to simplifications and assumptions during mechanical analysis because the influence of
springback in sheet bending is highly nonlinear, involving many complicated factors.
Thus, their differential forms—for instance, the punch stroke correction model—are also
inaccurate, leading to poor efficiency in trial bending.

With the development of machine learning, data-driven statistical models have been
proposed for the prediction of springback in sheet metal bending [10–14]. The accuracy
of the data-driven models depends on the large scale of data. Based on the design of
the experiments, the data acquisition is generally implemented through a large number
of real/virtual tests of air bending, considering the variations in each factor related to
springback. Compared with real tests, the virtual bending tests by finite element modeling
are suitable for the data-driven statistical models, due to their higher efficiency and lower
costs [15]. In practical application, the data-driven statistical models present high accuracy
in the prediction of springback. The accurate springback prediction models were built by
approximation methods, such as response surface methodology [16,17], artificial neural
network [18–22], and Kriging [23]. The authors proposed a springback prediction model
for air bending through the combination of genetic algorithm and backpropagation neural
network (GA–BPNN), presenting high accuracy and great versatility.

However, it is infeasible to deduce the punch stroke correction model through dif-
ferentiation calculation from the springback prediction models, which have remarkably
complicated statistical forms. In the study, therefore, we aimed to propose a punch stroke
correction model for trial tests in metal sheet bending, which would be able to guide the
accurate correction of punch stroke with high efficiency. The model would be built from big
data on springback in air bending through a GA–BPNN approach. Firstly, a large number
of virtual bends would be implemented to obtain the big data. For comparison, addition-
ally, another punch stroke correction model would be proposed based on dimensional
analysis; that is, a semi-analytical method [24]. Finally, practical sheet metal trial bending
tests would be implemented in order to investigate and contrast the correction accuracy of
punch stroke in the two models.

2. Research Methods
2.1. Modeling Principle

In order to establish a large-scale dataset, the virtual bending finite element tests were
simulated. On the basis of the acquired dataset, the GA–BPNN prediction model was
trained. The input parameters consisted of bending angle α0, elastic modulus E, yield
strength σs, hardening coefficient K, hardening exponent n, thickness t, and groove width
BV . The output parameter was punch stroke D.

Random angle deviations ∆α0 were generated and used to alter the original bend
angles α0 in the established dataset. Corresponding with new angles, the new punch strokes
were obtained through calculation of the prediction model. Punch stroke compensation
∆D was defined as the offset before and after alteration. In this way, another large sample
dataset was created that contained angle deviations ∆α0 and punch stroke compensations
∆D. According to the new dataset, a GA–BPNN and dimensional analysis were used to
build the correction model.

2.1.1. GA–BPNN Model

Machine learning is a statistical modeling technique that enables a computer system
to learn or recognize implicit relationships in given data without any explicit description.
Abstract information or undiscovered phenomena can theoretically be modeled by means
of machine learning as a result of its data-driven properties [25–27].

Among diverse machine learning algorithms, artificial neural networks (ANNs) are
popular because of their excellent modeling performance and wide range of applications
for general approximation [28–30]. The backpropagation neural network (BPNN) is a
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sort of ANN that is widely applied at present; its basic idea is to adjust and modify the
connection weights and thresholds of the network through the reverse propagation of
network output errors, so as to minimize the mean squared error of the output.

In general, the initial weight and bias of the network are generated randomly at the
beginning of network training, which may result in local optima of the network. In this
paper, a genetic algorithm (GA) was used for optimization the initial weight and bias of
the network [31]. Based on a GA–BPNN, the prediction model and correction model were
obtained in this paper. The network model is shown in Figure 1.
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(1) Forward propagation of signals

The input variables need to be normalized to avoid adverse factors in the optimization
process, which is denoted as x = a(0). The feedforward neural network propagates
information by iterating the following formulae:

z(l) = w(l)a(l−1) + b(l) (1)

a(l) = fl

(
z(l)
)

(2)

where z(l) is the net input of neurons in layer l; w(l) is the weight matrix from layer l − 1
to layer l; a(l) is the output of neurons in layer l; b(l) is the bias from layer l − 1 to layer l;
and fl(.) is the activation function of neurons in layer l. Equations (1) and (2) can also be
combined and written as:

a(l) = fl

(
w(l)a(l−1) + b(l)

)
(3)

The final output of the network a(L) can be obtained through the layer-by-layer
transmission of information in the feedforward neural network. The whole network can be
regarded as a compound function ϕ(x; w, b). The input at the first level is defined as x,
and the output of the whole function is a(L).

x = a(0) → z(1) → a(1) → · · · → z(L) → a(L) (4)

where w and b represent the weights and bias, respectively, of all layers in the network.

(2) Backpropagation
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Each sample x(n) in the given training set D =
{
(x(n), y(n))

} N
n = 1

is input to the

feedforward neural network, and then ŷ(n) can be obtained, whose structural risk function
of the dataset D is defined as:

Rw, b =
1
N

N

∑
n=1

ς
(

y(n), ŷ(n)
)
+

1
2

λ ‖ w ‖ 2
F

(5)

where w and b are all the weight matrices and bias vectors in the network respectively;

‖ w ‖ 2
F

is the regularization term to prevent overfitting; λ>0 is the super parameter, and

the larger λ is, the closer w is to 0.
The parameters of network can be learned through the gradient descent algorithm. In

each iteration of the gradient descent algorithm, the parameters w(l) and b(l) of the l layer
are updated as follows:

w(l) ← w(l) − η
∂Rw, b
∂w(l)

= w(l) − η(
1
N

N

∑
n=1

∂ςy(n), ŷ(n)

∂w(l)
+ λw(l)) (6)

b(l) ← b(l) − η
∂Rw, b
∂b(l)

= b(l) − η(
1
N

N

∑
n=1

∂ςy(n), ŷ(n)

∂b(l)
) (7)

where η is the learning rate.

2.1.2. Mathematical Model of Dimensional Analysis

Dimensional analysis is an analytical method to establish mathematical models in the
field of physics [32,33]. Based on dimensional analysis, the laws of physics can be explained
by comparing the dimensions of independent and dependent variables. According to the
principle of homogeneity of dimensions, the dimensions on both sides of the equals sign
must be the same when mathematical expressions are used to express physical relations.
The Buckingham π theorem can be expressed in a physical equation with n variables as:

f (x1, x2, x3, . . . xn) = 0 (8)

where m variables are independent of one another, and the remaining (n −m) variables are
independent. The physical relations can be expressed by (n −m) dimensionless variables
as follows:

F(π1, π2, π3, . . . πn−m) = 0 (9)

where π1, π2, π3, . . . πn−m are (n−m) dimensionless variables. The main factors that affect
the physical process should be ascertained. According to the dimensionless method, the
functional relationship between the factors can be established. Through the combination of
experiments and functional relationships, the exact mathematical expression is obtained.

2.2. Sample Range Definition for Dataset

The springback of sheet metal is affected by many factors, including material parame-
ters, dimensions of V-dies and blanks, and processing parameters. To simplify the modeling
process, in this paper, it is assumed that the sheet metal materials are independent of strain
rate and strain path, obeying the Hill’48 anisotropic yield criterion and the Hollomon
hardening model. The functional form of the hardening model can be expressed as follows:{

σ = Eε (ε < ε0)
σ = Kεn (ε > ε0)

(10)

where E is the elastic modulus, K is the hardening coefficient, and n is the hardening
exponent. Three above and the yield strength σs were regarded as material factors. For a
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common bending process, an 88◦ V-die is usually desirable. The processing parameters
include width of slot BV and punch stroke D, and the product factor is the thickness of
sheet metal T. As mentioned above, 7 affecting factors were involved.

According to the distribution of sheet metal properties, the conventional working
conditions of the bending process, and the standard thicknesses of sheet metals, the
variation ranges of the 7 factors were determined under various conditions, as shown in
Table 1.

Table 1. The range of the factors.

D/mm t/mm E/GPa BV/mm K/MPa n σs/MPa

1 3–5 0.6–2 70–220 12 500–2000 0.1–0.6 120–1000
2 3–5.5 0.6–2 70–220 14 500–2000 0.1–0.6 120–1000
3 3.5–6.5 0.6–2 70–220 16 500–2000 0.1–0.6 120–1000
4 4–7 0.6–3 70–220 18 500–2000 0.1–0.6 120–1000
5 5–8 0.6–3 70–220 20 500–2000 0.1–0.6 120–1000

A Latin hypercube design was used to determine the sample distribution of the
7 factors. A total of 1732 combinations were obtained for the springback prediction model.
It is important to note that the sample size of this article is only an example of the large
sample number, and the actual sample can choose a larger number.

2.3. Acquisition of Finite Element Sample for Training Data

As the output of the prediction model, the springback angle of each combination was
obtained via the finite element simulations of sheet metal bending. In order to simulate
V-bending and springback, a combination of explicit and implicit methods was used. The
element type of the sheet metal part was four-node shell element (S4R), and the friction
coefficient was 0.1.

Perpendicular to the direction of the bending line, the minimum mesh size was
0.2 mm and the maximum size was 2.0 mm. Parallel to the direction of the bending line,
the mesh size was 0.6 mm. Five integration points were set in the direction of thickness.
The simulation process of bending and springback is shown in Figure 2. Each angle
after springback corresponding to each combination of factors was obtained. A total of
20 samples were randomly selected as test samples; samples for modeling and for testing
are shown in Tables 2 and 3, respectively.
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Table 2. Modeling samples from the simulation dataset.

Number D/mm E/GPa BV/mm K/MPa n t/mm σs/MPa α0

1 7.89 75.263 20 695.49 0.369 1.43 510.38 101.05
2 5.94 116.992 20 1507.52 0.136 2.72 843.41 112.83
3 5.67 77.142 16 1218.05 0.297 1.63 126.62 93.76
4 5.50 171.503 18 1342.11 0.148 1.95 344.96 106.17
5 3.68 115.112 16 1390.98 0.425 0.73 263.36 126.52
6 7.48 97.067 20 921.05 0.542 1.88 772.83 101.03
7 3.74 104.210 14 1563.91 0.516 1.85 891.93 118.49
8 3.99 166.992 12 1278.20 0.110 1.17 437.59 101.99
9 5.69 116.616 16 1078.95 0.212 1.85 534.64 98.77
10 3.52 153.834 12 1943.61 0.309 1.72 982.36 110.29
11 5.61 168.496 18 1887.22 0.182 2.00 618.45 106.71
12 7.04 99.323 20 1526.32 0.342 1.44 201.60 96.49
13 6.98 122.631 20 1424.81 0.225 2.80 953.68 102.52
14 5.53 143.684 20 1578.95 0.149 2.84 889.72 117.32
15 4.76 194.812 14 1913.53 0.248 1.37 631.68 102.06
16 6.71 111.353 20 1011.28 0.108 2.69 192.78 101.53
17 3.71 196.315 14 1921.05 0.267 1.08 146.47 110.28
18 6.91 191.052 20 902.26 0.103 1.02 375.84 104.22
19 4.19 155.338 12 1116.54 0.491 0.87 847.82 101.42
. . . . . . . . . . . . . . . . . . . . . . . . . . .

1712 4.94 189.172 18 1443.61 0.128 1.50 532.43 116.43

Table 3. Testing samples from the simulation dataset.

Number D/mm E/GPa BV/mm K/MPa n t/mm σs/MPa α0

1 6.02 114.736 18 1778.2 0.425 1.75 589.77 103.63
2 3.97 123.007 12 1330.83 0.432 1.15 554.49 99.42
3 4.68 107.969 16 1872.18 0.524 1.01 298.65 117.55
4 3.26 103.834 12 511.28 0.504 0.78 137.64 166.86
5 3.85 125.263 14 1954.89 0.470 2.69 898.55 107.75
6 6.36 88.045 20 785.71 0.561 1.26 702.26 107.84
7 3.54 161.729 16 1101.50 0.218 1.46 933.83 132.07
8 4.25 171.879 14 1977.44 0.239 0.81 261.15 111.55
9 4.87 207.969 18 1992.48 0.495 1.32 761.80 112.69
10 4.88 151.579 18 691.73 0.263 0.81 155.29 120.47
11 3.70 138.796 14 1251.88 0.361 1.45 528.02 113.38
12 4.77 154.962 14 1323.31 0.400 1.30 199.40 98.25
13 5.35 186.917 20 1740.6 0.571 1.49 294.24 109.91
14 4.41 219.624 14 1033.83 0.555 1.71 234.69 101.80
15 3.46 184.285 12 1462.41 0.478 1.24 417.74 99.74
16 5.16 173.759 18 1319.55 0.567 2.40 133.23 114.03
17 6.51 170.000 20 635.34 0.510 0.86 477.29 96.74
18 4.11 153.458 12 943.61 0.136 0.87 340.55 104.83
19 6.62 192.932 20 563.91 0.377 1.27 157.49 108.25
20 5.82 203.082 20 917.29 0.421 2.42 907.37 108.25

All calculations were performed on a personal computer (LATOP-FM0CIDDQ Intel(R)
Core(TM) i7-108575H CPU @ 2.30GHz(16CPUs), ~2.3GHz). Dataset was obtained through
integration of ABAQUS and Isight. The GA-BPNN was established using MATLAB 2016a.

2.4. Mechanical Tests and Bending Tests

Five different sheet metals were selected for the tests, including mild steel HC220YD,
stainless steel 304, aluminum alloy 5182, high-strength steel DP980, and copper H62. The
widths of samples were processed to 20 mm. The sheets mentioned above were used for
uniaxial tensile tests and bending experiments. The uniaxial tensile tests were performed
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on the electronic universal material testing machine (AGS-100kN, Shimadzu, Suzhou,
China). The material performance parameters were obtained as shown in Table 4.

Table 4. Mechanical properties of five kinds of sheets.

Material Parameter HC220YD 304 5182 DP980 H62

t/mm 0.66 0.98 1.2 1.52 1.98
E/MPa 167,187 193,358 70,724 218,346 114,649
σs/MPa 195 273 123 717 215
K/MPa 602 1974 563 1532 778

n 0.235 0.590 0.332 0.140 0.345
r0 1.50 1.00 0.57 0.83 0.92
r45 1.86 1.34 0.64 0.88 1.07
r90 2.11 0.87 0.66 0.85 0.89

Sheet metal air bending experiments were carried out with a computerized numerical
control bending machine (WDB100-3100, JFMMRI-JIEMAI, Jinan, China). The V-shaped
slot angle was 88◦, the punch radius r was 1 mm, the V-shaped slot width BV was 12 mm,
and the punch round radius r was 1 mm. The punch stroke was measured with a grating
ruler whose accuracy was within 2 µm. Bending molds and parts after forming are shown
in Figure 3.
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Each sheet metal was subjected to four bending tests with different punch strokes.
After bending, the springback angles were measured by angle ruler with ±0.08◦ accuracy,
the data from which are listed in Table 5. The accuracy of the simulations was verified by
the comparison with the actual bending tests.

2.5. Data Acquisition for the Correction Model

The remaining samples were divided into 85% and 15% as training samples and
verification samples, respectively. Then, the GA-BPNN springback prediction model with
7 factors was established. E, σs, K, n, t, BV , and α0 were input parameters, and punch stroke
D was the output parameter. The mean squared error (MSE) was used to measure the
accuracy of the network:

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2 (11)
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Table 5. Forming angles in bending machine experiments.

Material Number Punch Stroke Forming Angle

HC220YD

1 4.22 96.015
2 3.93 101.380
3 3.65 106.555
4 3.38 111.005

304

5 4.07 91.295
6 3.89 94.155
7 3.63 99.155
8 3.35 104.955

5182

9 4.15 91.915
10 3.87 96.835
11 3.60 102.095
12 3.33 107.585

DP980

13 4.08 99.805
14 3.80 104.885
15 3.52 109.985
16 3.26 115.045

H62

17 4.09 91.135
18 3.82 95.715
19 3.57 100.575
20 3.20 107.925

The conclusion of the network structure research showed that the error was minimal
in the network with the [1–7] structure. The comparisons between the simulation samples
(Table 3) and the network prediction results, as well as the bending tests (Table 5) and
the network prediction results, are shown in Table 6. As can be seen from Table 6, the
prediction deviation of the punch stroke prediction model was within 0.16 mm.

Table 6. Comparison between testing samples and model predictions.

Number
Finite

Element
Testing (mm)

Network
Prediction

(mm)

Stroke
Deviation

(mm)
Number

Bending
Experiment

(mm)

Network
Prediction

(mm)

Stroke
Deviation

(mm)

1 6.02 6.00 −0.02 21 4.22 4.24 0.02
2 3.97 3.89 −0.08 22 3.93 3.95 0.02
3 4.68 4.59 −0.09 23 3.65 3.67 0.02
4 3.26 3.22 −0.04 24 3.38 3.43 0.05
5 3.85 3.92 0.07 25 4.07 4.17 0.10
6 6.36 6.24 −0.12 26 3.89 4.02 0.13
7 3.54 3.43 −0.11 27 3.63 3.78 0.15
8 4.25 4.23 −0.02 28 3.35 3.51 0.16
9 4.87 4.77 −0.10 29 4.15 4.30 0.15

10 4.88 4.92 0.04 30 3.87 4.01 0.14
11 3.70 3.62 −0.08 31 3.6 3.72 0.12
12 4.77 4.92 0.15 32 3.33 3.44 0.11
13 5.35 5.29 −0.06 33 4.08 4.02 −0.06
14 4.41 4.27 −0.14 34 3.8 3.77 −0.03
15 3.46 3.54 0.08 35 3.52 3.55 0.03
16 5.16 5.10 −0.06 36 3.26 3.36 0.10
17 6.51 6.47 −0.04 37 4.09 4.10 0.01
18 4.11 3.95 −0.16 38 3.82 3.85 0.03
19 6.62 6.66 0.04 39 3.57 3.60 0.03
20 5.82 5.75 −0.07 40 3.2 3.26 0.06

In general, to achieve a target bending angle, a trial bending needs to be carried out.
Then, according to the difference from the target value, the forming angle is adjusted by the
correction of the punch stroke and, therefore, the difference from the target value can be
reduced. It usually takes three or four attempts to reach the target angle. Our punch stroke
prediction model could ensure that the error of stroke prediction was within 0.2 mm. It was
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our aim to control the final sheet’s forming angle by fine-tuning the punch stroke, which is
also the significance of the correction model. Based on the prediction model, the punch
strokes D1 were obtained. A total of 1732 data points as ∆α0 were randomly generated and
evenly distributed in [−3◦, 3◦]. Each α0 was changed to α0 + ∆α0 correspondingly. New
angles were input to the prediction model, and the new punch strokes D2 were generated.
Stroke difference ∆D was defined as:

∆D = D2 − D1 (12)

According to ∆α0, with the other corresponding factors as input and ∆D as output,
the correction model could be established. Some training samples are shown in Table 7,
and testing samples are shown in Table 8.

Table 7. Modeling samples for the correction model.

Number ∆D/mm E/GPa BV/mm K/MPa n t/mm σs/MPa ∆α0

1 0.1220 75.263 20 695.49 0.369 1.43 510.38 1.257
2 0.2575 116.992 20 1507.52 0.136 2.72 843.41 −2.348
3 −0.2161 77.142 16 1218.05 0.297 1.63 126.62 2.886
4 0.0248 171.503 18 1342.11 0.148 1.95 344.96 −0.269
5 −0.1643 115.112 16 1390.98 0.425 0.73 263.36 2.518
6 −0.1927 97.067 20 921.05 0.542 1.88 772.83 1.621
7 −0.0630 104.210 14 1563.91 0.516 1.85 891.93 1.104
8 −0.0909 166.992 12 1278.20 0.110 1.17 437.59 1.593
9 −0.1181 116.616 16 1078.95 0.212 1.85 534.64 1.350
10 0.0927 153.834 12 1943.61 0.309 1.72 982.36 −1.787
11 0.1320 168.496 18 1887.22 0.182 2.00 618.45 −1.544
12 0.0710 99.323 20 1526.32 0.342 1.44 201.60 −0.938
13 0.2206 122.631 20 1424.81 0.225 2.80 953.68 −2.241
14 −0.1718 143.684 20 1578.95 0.149 2.84 889.72 1.849
15 −0.2088 194.812 14 1913.53 0.248 1.37 631.68 2.934
16 0.1603 111.353 20 1011.28 0.108 2.69 192.78 −1.794
17 −0.0602 196.315 14 1921.05 0.267 1.08 146.47 0.886
18 0.1436 191.052 20 902.26 0.103 1.02 375.84 −1.350
19 0.0297 155.338 12 1116.54 0.491 0.87 847.82 −0.470
. . . . . . . . . . . . . . . . . . . . . . . . . . .

1712 0.2450 189.172 18 1443.61 0.128 1.50 532.43 2.854

Table 8. Testing samples for the correction model.

Number ∆D/mm E/GPa BV/mm K/MPa n t/mm σs/MPa ∆α0

1 −0.2489 114.736 18 1778.2 0.425 1.75 589.77 2.972
2 −0.0265 123.007 12 1330.83 0.432 1.15 554.49 0.518
3 0.1956 107.969 16 1872.18 0.524 1.01 298.65 −2.487
4 −0.0270 103.834 12 511.28 0.504 0.78 137.64 0.588
5 −0.1048 125.263 14 1954.89 0.470 2.69 898.55 1.666
6 −0.0826 88.045 20 785.71 0.561 1.26 702.26 0.851
7 −0.1668 161.729 16 1101.50 0.218 1.46 933.83 2.698
8 0.1717 171.879 14 1977.44 0.239 0.81 261.15 −2.962
9 −0.1426 207.969 18 1992.48 0.495 1.32 761.80 2.036
10 0.1435 151.579 18 691.73 0.263 0.81 155.29 −1.745
11 0.1432 138.796 14 1251.88 0.361 1.45 528.02 −2.425
12 0.1994 154.962 14 1323.31 0.400 1.30 199.40 −2.768
13 0.0924 186.917 20 1740.6 0.571 1.49 294.24 −1.052
14 0.0955 219.624 14 1033.83 0.555 1.71 234.69 −1.499
15 0.1055 184.285 12 1462.41 0.478 1.24 417.74 −2.172
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Table 8. Cont.

Number ∆D/mm E/GPa BV/mm K/MPa n t/mm σs/MPa ∆α0

16 −0.1550 173.759 18 1319.55 0.567 2.40 133.23 1.804
17 −0.2638 170.000 20 635.34 0.510 0.86 477.29 2.716
18 −0.1605 153.458 12 943.61 0.136 0.87 340.55 2.744
19 0.2362 192.932 20 563.91 0.377 1.27 157.49 −2.480
20 0.1653 203.082 20 917.29 0.421 2.42 907.37 −1.894

3. Results and Analysis
3.1. Punch Stroke Correction Model Based on a GA-BPNN

To optimize the topology of the neural network, different hidden layers and different
neurons in hidden layers were studied (random weights and bias were used tentatively).
First, we focused on the springback prediction model. The MSE values (sum of the mean
squared errors of the training set and verification set) under different structures were
obtained, as shown in Figure 4. Early stopping was used to ensure that the model was
not overfitting.
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Compared with the nets containing one or two hidden layers, the accuracy of the
network with three hidden layers is higher, and is also more stable. The MSE of the
network with a [1–7] architecture can be less than 1.258 (◦ˆ2). According to the parameters
of the network structure study, we determined a [1–7] fully connected architecture as the
BPNN structure of the prediction model. The total number of network parameters thus
determined was 545 (128 + 128 + 272 + 17). Then, a genetic algorithm was used to optimize
the initial weights and bias of the network.

Based on experience from other studies and trial training, the following parameters
worked well. A summary of the GA parameters is shown in Table 9.

Table 9. Parameters of the GA.

Population Iteration Selection
Operator

Crossover
Operator

Mutation
Operator

100 200 0.08 0.8 0.03

The same strategy and parameters were adopted for the punch stroke correction
model, which is also a network with seven inputs and a single output. To illustrate the
advantage of the GA in the stability of optimization, the decreasing loss trend of the
training and validation datasets in the GA-BPNN correction model is shown in Figure 5.
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The GA-BPNN combines the advantages of efficiency and accuracy. After initial
parameter optimization, only 5838 epochs are trained to reach the target, which is just half
of the training process before GA optimization (12,483). After network training, the MSE
could be less than 2.6872 × 10−4 mm2.

The regression coefficient of network training is shown in Figure 6. Comparison
between testing samples and network-predicted values is shown in Figure 7a, and deviation
of punch stroke compensations is shown in Figure 7b.
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As shown in Figures 6 and 7, the deviation of the punch strokes can be controlled
within 0.05 mm. From the above results, it can be concluded that the neural network model
can correct the punch stroke with sufficient accuracy.

3.2. Punch Stroke Correction Model Based on Dimensional Analysis

In this work, the functional relationship between punch stroke compensation ∆D
and angle deviation ∆α0 with elastic modulus E, yield strength σs, hardening coefficient K,
hardening exponent n, sheet thickness t, and groove width BV could be expressed as:

f
(

∆α0, ∆D, BV , t, K, E, σs, n
)
= 0 (13)

The basic dimensions—including length (L), mass (M), and time (T)—were used. ∆α0

and n are dimensionless, while the other physical quantity can be expressed as:

[∆D]= L, [BV ] = L, [t] = L, [K] = L−1MT−2,

[E] = L−1MT−2, [σs] = L−1MT−2

According to the π theorem, four dimensionless variables could be obtained from four
fundamental solutions:

π1 = ∆D1BV
0t−1K0E0σs

0 =
∆D

t

π2 = ∆D0BV
1t−1K0E0σs

0 =
BV
t

π3 = ∆D0BV
0t0K1E−1σs

0 =
K
E

π4 = ∆D0BV
0t0K0E−1σs

1 =
σ0.2

E

And ∆α0 and n were written as:

π5 = n

π6 = ∆α0

Therefore, there was a function ϕ as:

∆D
t

= ϕ(
BV
t

,
K
E

,
σs

E
, n, ∆α0)

whose specific expression form was:

∆D = a0t (
BV
t

)a1
(

K
E

)a2(σs

E

)a3
(n)a4

(
∆α0)

a5
(14)

In order to avoid errors caused by different orders of magnitude between factors,
each dimensionless variable was normalized before calculation. The least squares method
was used for fitting. The parameters obtained by fitting were a0 = 0.41426, a1 = 0.01508,
a2 = 0.0285, a3 = 0.0302, a4 = 0.00994, and a5 = −0.1584. The specific function was obtained
as follows:

∆D = 0.41426t
BV
t

0.01508 K
E

0.0285 σs

E

0.0302
(n)0.00994

(
∆α0

)−0.1584
(15)

The model was tested with the data shown in Table 8. Comparison between the test
samples and the predicted values of the model is shown in Figure 8a, and the deviation of
the punch stroke compensation value is shown in Figure 8b.
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punch stroke compensation.

Comparing the results, using the punch stroke correction model based on dimensional
analysis, the deviation of punch stroke compensation can be kept within 0.15 mm, while
the punch stroke correction model based on a GA-BPNN can keep it within 0.05 mm. The
GA-BPNN model can predict punch stroke more accurately and control the forming angle
to be closer to the target angle.

3.3. Application Examples

Three kinds of sheet metal were chosen for bending experiments with the universal
testing machine (WQ4200, Changchun Kexin instrument institute, Changchun, China)—
HC220YD mild steel, 304 stainless steel, and 5182 aluminum alloy—to further illustrate that
the GA-BPNN punch stroke correction model could control the forming angle accurately
by adjusting the punch stroke. The mechanical property parameters of the three materials
are shown in Table 4.

Three target angles were chosen for each material. The initial strokes were obtained
according to the target angle by calculation of the GA-BPNN punch stroke prediction
model. Based on the GA-BPNN punch stroke correction model, the strokes were adjusted
by the deviation of the angles. The bending tests were performed with the universal
material testing machine, as shown in Figure 9, so that the punch stroke could be freely
controlled. The punch strokes were measured on a grating scale. For the measurement
of the forming angles, a digital protractor was used. The radius of punch R was 1 mm;
the width of the V-shaped groove BV was 12 mm, and the radius of the punch fillet R was
1 mm.
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The bending samples are shown in Figure 10, and the experimental data are shown
in Table 10. Some samples could reach the target angles directly through the prediction
model, while most samples could reach the target angles through one use of the correction
model. All samples from the tests could achieve error precision within 0.5◦.
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Figure 10. Bending samples, where 1–3 are HC220YD steel, 4–6 are 304 stainless steel, and 7–9 are
5182 aluminum.

Table 10. Bending tests of the correction model.

Mat Num Target D1 α0
1 ∆α0

1 ∆D1 α0
2 ∆α0

2 ∆D2 α0
3 ∆α0

3

HC220YD
1 96 4.460 97.745 −1.745 4.578 96.190 −0.190
2 100 4.252 101.520 −1.520 4.364 100.150 −0.150
3 105 3.973 106.390 −1.390 4.084 105.340 −0.340

304
4 98 4.050 100.780 −2.780 4.208 99.080 −1.080 4.276 98.195 −0.195
5 110 3.523 111.940 −1.940 3.644 100.350 −0.135
6 120 3.314 119.960 0.040

5182
7 98 4.168 100.510 −2.510 4.327 98.885 −0.885 4.415 98.155 -0.155
8 104 3.835 106.470 −2.470 3.990 104.255 −0.255
9 110 3.539 112.710 −2.710 3.698 109.640 −0.460

It should be noted that the main purpose of this paper is to provide a correction
method for studying the sheet metal bending springback, which cannot represent optimal
accuracy. In practice, the accuracy of the correction model can be improved by further
improving the finite element simulation accuracy and machine learning fitting accuracy to
meet the requirements of actual conditions.

4. Conclusions

To improve the forming accuracy of air V-bending, this paper establishes a punch
stroke correction model by means of a GA-BPNN and dimensional analysis. The correction
results of the semi-analytical model and the machine learning model are compared based
on the actual bending test. The correction model with guaranteed accuracy can provide
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a more accurate machining stroke for actual production to minimize the shape defects
caused by springback. The following conclusions can be drawn from this study:

(1) A large sample dataset was established via finite element method for bending experi-
ments using various sheet metals. Based on the dataset, a GA-BPNN prediction model
was established, whose accuracy was guaranteed within 0.16 mm by the contrast with
actual bending experiments;

(2) In order to further improve the accuracy of the model-guided processing, the GA-
BPNN and dimensional analysis were used for the establishment of the correction
model. By comparing the verification results with the targets in the dataset, the
GA-BPNN correction model was more capable of fitting the target problem, and the
deviation of punch stroke compensation could be controlled within 0.05 mm;

(3) The accuracy of the GA-BPNN punch stroke prediction model and the GA-BPNN
punch stroke correction model was verified via bending experiments using a universal
material testing machine. Calculated by the prediction model once and the correction
model two times, the error of all of the forming angles could be less than 0.5◦. Our
work provides a new method to solve the problem of precise rapid forming in sheet
metal bending.
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