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Abstract

:

Artificial intelligence and machine learning are employed in creating functions for the prediction of self-compacting concrete (SCC) strength based on input variables proportion as cement replacement. SCC incorporating waste material has been used in learning approaches. Artificial neural network (ANN) support vector machine (SVM) and gene expression programming (GEP) consisting of 300 datasets have been utilized in the model to foresee the mechanical property of SCC. Data used in modeling consist of several input parameters such as cement, water–binder ratio, coarse aggregate, fine aggregate, and fly ash (FA) in combination with the superplasticizer. The best predictive models were selected based on the coefficient of determination (R2) results and model validation. Empirical relation with mathematical expression has been proposed using ANN, SVM, and GEP. The efficiency of the models is assessed by permutation features importance, statistical analysis, and comparison between regression models. The results reveal that the proposed machine learning models achieved adamant accuracy and has elucidated performance in the prediction aspect.
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1. Introduction


In recent years, concrete technology has been improving due to the fact that it is the most commonly used building material in the world. The knowledge of advance techniques of designing concrete has also improved recently due to different type of concrete being designed containing different admixtures [1]. One of the results of developing concrete designing technology is self-compacting concrete (SCC) [2]. Self-compacting concrete is defined as a cementitious material that can flow under its own weight and was first developed in the late 1990s in Japan. SCC deforms efficiently and shows maximum resistance to segregation and bleeding as per American Concrete Institute committee 237 R-07 [3]. Moreover, due to its workability, SCC is more often used where there is a need of creating different shapes of the elements or there are some parts of elements hardly reachable [4].



SCC is an advanced material with similar strength and durability as compared with traditional vibrated concrete; however, very often, due to self-venting, it is characterized by better performance; thus, it is sometimes used in strengthening of reinforced concrete (RC) beams [5,6]. Even though the SCC is commonly used in construction practice, designing proper mixture of SCC is still a difficult task to solve. The main reason of this is the fact that concrete itself is a quasi-brittle material [7]; the SCC requires relevant flow, and more often, industrial wastes are added as by-products: fly ash (FA), silica fume (SF), and ground granulated blast furnace slag (GGBFS) [8]. There are certain waste byproducts that, when included in the cementitious system as a partial replacement of cement, substantially reduce the desired energy and CO2 emission [9].



In light of sustainable development and waste management, investigating the influence of the addition of the aforementioned by-products on cementitious composites properties should not be neglected. Fly ash is a fine-grained dust, consisting mainly of spherical, vitrified grains obtained by burning pulverized coal with or without co-incineration, showing pozzolanic properties and mainly containing Al2O3 and SiO2. Fly ash may be used in the production of concrete if it meets the requirements included in the standards [10]. The use of fly ash in concrete brings many benefits, such as: completing the particle size distribution curve, increasing the final strength of concrete as a result of the pozzolanic activity of fly ash, compacting the microstructure, and easier displacement of aggregate grains in relation to each other, which is the essence of a fresh self-compacting concrete mixture [11].



The SCC’s complex structure requires a rigorous mixed design process for achieving its required properties. The SCC mixture can differ, when analyzing the literature, due to variations in the quantity and quality of mineral admixtures, as well as design standards. What is more, the general relationship between the binder ratio to mineral admixtures, chemical admixtures, w/b ratio, and aggregate particle size seems to be ambiguous. Meanwhile, traditional methods were used by many researchers in achieving SCC properties, but the modeling aspect and optimization of mineral admixture are still missing in most aspects [12].



Computation methods as well as machine learning techniques have recently become a powerful way of modeling and estimating an extensive series of problems, particularly in modeling concrete properties [13,14,15]. Numerous studies have been conducted in the prediction of mechanical properties of self-compacting concrete and some selected of the latest, together with the name of the applied machine learning algorithm and used waste material, are listed in Table 1.



Despite the fact that researchers are implementing machine learning algorithms in concrete investigations, there is a lack of works focusing on models predicting the compressive strength of SCC modified with FA using comparative analyses containing artificial neural networks (ANN), support vector machine (SVM) and gene expression programming (GEP) combined. Taking into account the information presented in the Table 1, there is lack of comparative analysis of different machine learning algorithms used for self-compacting concrete compressive strength prediction. Thus, the aim of this study is to perform such analysis using ANN, SVM, and GEP and also to compare the obtained results with similar scientific works presented in the literature.




2. Research Significance


The novelty of this research is the usage of the newest machine learning algorithms in the comparative manner in order to evaluate the compressive strength of fly ash-based self-compacting concrete. For this purpose, the artificial neural network, support vector machine, and genetic expression programming were used. In particular, the novelty of this research is the usage of the genetic expression programming for this purpose. The best model among those investigated was selected after optimization. Permutation features and statistical analysis with in-depth error measures are conducted to compare the accuracy of aforementioned models and comparing them with others in the scientific field.




3. Prediction Methods


3.1. Artificial Neural Network (ANNs)


Artificial neural networks are algorithms simulating the microstructure (neurons) of a biological nervous system [27,28,29]. Their structure is similar to the biological connection between neurons in the human brain. The ANNs consist of layers: input (consist of variables used in order to forecast the investigated property), hidden (consist of nodes connected with other layers using functions and weights) and output (which is consist of predicted variables). It is possible to analyze data using ANN thanks to learning algorithms such as: quasi-Newtons, Levenberg–Marquardt’s and conjugate gradients [8]. ANNs are widely used in many applications and can therefore be a useful tool in engineering applications [30].



In this study, a multi-layer perceptron (MLP) feed-forward with backpropagation algorithm ANNs have been selected. One hidden layer and varying neuron numbers are selected to find the optimum performance of the multilayer perceptron neuron network (MLPNN) [31]. The learning algorithms used in ANNs modeling of SCC compressive strength were the Broyden–Fletcher–Goldfarb–Shano algorithm and the Levenberg–Marquardt algorithm. The data set division was fixed as: 70% of data was used in training process and 30% of data was used in processes of testing and validation [32]. Moreover, optimization of the training, validation set, and training set was obtained by changing the number of neuron layers with iteration, and vice versa. The most accurate results were obtained for the topology of six inputs, 13 hidden neurons, and one output. The topology of this network is presented in Figure 1 and described in Table 2.




3.2. Support Vector Machine (SVM)


The support vector machine is a supervised learning model used for analyzing classification and regression data, invented by Vapnik [33]. The data are represented as a map of points in space and the solution is the hyperplane (lane in 2D, plane in 3D, etc.) with the widest possible gap between two classes. Each point in this space is described with support vectors; however, there are some situations wherein the division of the data set is possible only after using kernel functions, presented in Figure 2.



The support vector machine has been successfully used in solving some engineering problems, e.g., analyzing the durability of lightweight cement composites with hydrophobic coatings modified by nanocellulose [33]. In this work, the v-SVM was used, with linear kernel function as the most accurate. The other kernel function tested: polynomial, RBF, or sigmoid were not that significantly accurate.




3.3. Genetic Engineering Programming (GEP)


Genetic engineering programming is a versatile approach as it incorporates both gene algorithms (GAs) and genetic programming (GP) [34]. This algorithm consisting of trees, that are called expression trees (ETs), and the benefit of this solution is the fact of adamantly simplified at the chromosome level operation of genetic work [35]. Another modification in GEP, in comparison to GAs, is that the individual chromosomes that contain numerous genes and are additionally classified into the model head and tail [36]. Each individual gene of GEP, presented as a node of the ET, stores a number of variables with constant length, function set, and terminal sets. Function set, terminal set, and variables are connected with each other via a linear genetic code. It is worth mentioning here that these sets must have closure property. A sample of the GEP gene can also be represented by an expression tree (ETs) diagram. An example of ET diagram is shown in Figure 3.



It is expected that every gene (chromosome) contains the head, which executes the algorithm by creating chromosomes. The individuals (gene) in GEP are selected and represented as expression tree(s) with the execution of the analysis. After performing the analysis, the fitness is estimated; based on this, the decision of dismissing or reiterating is made. Dismissing the fitness finishes the algorithm, while, during reiteration, the fitness is calculated and estimated once again in order to evaluate the suitability for another expression of chromosomes as expression trees. The schematic diagram of the GEP algorithm is shown in Figure 4.





4. Data Presentation


4.1. Correlation Graph Python Programming Based


The collected SCC database taken from published literature [17,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60] includes information on the water–binder ratio, fly ash, fine and coarse aggregate, superplasticizer, and cement content (see Appendix A). Each model performance is governed by the distribution of its parameters [61]. It can be seen that machine learning and artificial intelligence are hand full tools in the prediction of mechanical properties of SCCs. The distribution and relationship (optimal quantities) of input parameters to its output can be seen in contour form in Figure 5. It can be seen that with the increasing value of cement content, the compressive strength value has also increased; however, it is the opposite in the case the of water–binder ratio, wherein the increase of this ratio results in a decrease in compressive strength. Moreover, using these variable concentrations in SCCs yield maximum compressive strength output, thus eliminating its need for going in hit and trial methods to obtain the target strength. Furthermore, the range and description of data is shown in Table 3 and Table 4. It may be concluded that machine learning and deep learning approaches adamantly benefit in the prediction of the mechanical aspect of SCCs.




4.2. Sensitivity Analysis or Permutation Feature Importance


The influence of parameters on the compression strength of SCC was calculated by using machine learning (python) based program. It can be seen in Figure 6 that cement and fly ash play a vital role in SCC compressive strength prediction with 53% of their net contribution, whereas the coarse aggregate and water–binder ratio have an influence of 27.27% on the compressive strength of SCC.



Development of the SCCs model incorporating waste material is based on the selection of input parameters. These variables have an intransigent impact on SCCs mechanical properties. All parameters in the dataset were carefully studied, and only the influential parameters for a generalized relationship were selected. The compressive strength response (    f ′  c   ) of SCC depends upon the following factors as illustrated in Equation (1).


    f ′  c  = f  (   (   fly   ash  ,    SP   )  ,  Fine   aggregate  ,  Coarse   aggregate  ,   Water   Binder    )   



(1)







It must be noted that properly fitting parameters play an adamant part in the effectiveness and simplification of the established model. The factors for the GEP algorithm were calculated on the premise of research recommendations and numerous preliminary runs [62]. It must be kept in mind that gene chromosomes (population size) and head sizes are the key aspects in controlling program run time. Larger chromosome population and head size result in a longer time of test. Due to the number of possible results and the difficulty of the assessment model estimation, three best populations, i.e., 50, 100, or 150, and one head size were taken into consideration. The parameters for the model used in the GEP algorithm are listed in Table 5.



The correlation coefficient (R2) is a common mean degree of performance of any machine learning model. Nevertheless, the inconsiderateness of R to divide and multiply the productivity values into a constant implies that R (coefficient of relation) cannot be used exclusively as the predictive precision of any model. Therefore, errors such as the relative root mean square error (RMSE), mean absolute error (MAE), and relative mean square error (RSE) were also calculated. An output index or performance index (ρ) is proposed to measure model efficiency as a result of both R and RRMSE [63]. The calculated expressions are given as equations for these error functions, which are listed below:


  R M S E =       ∑   i = 1  n       (  e  x i  − m  o i   )   2   n     



(2)






  M A E =     ∑   i = 1  n   |  e  x i    −   m  o i   |   n   



(3)






  R =     ∑   i = 1  n   (  e  x i  −     e x  ¯   i   )   (  m  o i  −     m o  ¯   i   )        ∑   i = 1  n     (  e  x i  −     e x  ¯   i   )   2    ∑   i = 1  n     (  m  o i  −     m o  ¯   i   )   2       



(4)




where   e  x i   ,   m  o i   ,       e x  ¯   i   , and       m o  ¯   i    are experimental values setup and model domain.





5. Results and Discussion


5.1. Artificial Neural Network


The influence of variables including regression coefficient R2 as well as statistical characteristics of errors between actual targets and modeled outputs are measured for the performance evaluation of the MLP-ANN model. The network output is assessed independently for training, validation, and testing set. The correlation between experimental values and prediction sets for training, validation, and testing set, respectively, are shown in Figure 7. It shows that the obstinate relation between an experimental set with modeled output for data exists. It can be seen that the training set, validation set, and test set give a coefficient of correlation close to 1, as illustrated in Figure 7a,c,e. Moreover, the prediction accuracy by ANN can also be evaluated by its error distribution. Figure 7b,d,f, present the error distribution of the training set, validation set, and testing set with prediction to output variables, showing satisfactory performance of the model. It can be seen that the error distribution of training set data between the experimentally measured compressive strength and predicted lies mostly below 10 MPa, showing that 93% of errors between the measured values and the predicted values lie in the range of 0 MPa to 10 MPa with error values between −7.65 MPa and 8.35 MPa, respectively, for training, as depicted in Figure 7b. Similarly, validation demonstrates the same trend by showing lesser error distribution in the same range of error values between −10.06 MPa and 8.27 MPa, as illustrated in Figure 7d, and for the testing set, the range of error values was a little bit higher and ranged between −12.54 MPa and 10.21 MPa, as depicted in Figure 7f. Thus, the prediction model shows obstinate and adamant modeling in relation to prediction and experimental results.




5.2. Support Vector Machine


The influence of variables including regression coefficient R2 as well as statistical characteristics of errors between actual targets and modeled outputs are measured for the performance evaluation of the SVM model. The correlation between experimental values and prediction sets for training, validation, and testing set, respectively, are shown in Figure 8. It shows that the relation between an experimental set with modeled output for data exists, but it is not as sufficient as in comparison to ANN. It can be seen that training set, validation set, and test set give the coefficient of correlation are lower than for ANN but are still very high, as illustrated in Figure 8a,c,e. Moreover, the prediction accuracy by SVM is also illustrated by its error distribution, presented in Figure 8b,d,f). It can be seen that error values ranges between −17.75 MPa and 17.00 MPa, respectively, for training, as depicted in Figure 8b. Similarly, validation demonstrates the same trend by showing lesser error distribution in the same range of error values between −11.33 MPa and 14.35 MPa, as illustrated in Figure 8d, and for the testing set, the range of error values was a little bit higher and ranges between −15.78 MPa and 21.82 MPa, as depicted in Figure 8f. Thus, the prediction model shows less accuracy in comparison to ANN.




5.3. Gene Expression Programming


The output of the GEP algorithm for the SCC model is denoted as an expression tree(s), as illustrated in Figure 9. The GEP algorithm solves nonlinear expressions as well as linear ones by forming a tree-like structure, which can then be used to form an equation used to predict the model outcome. These ETs were then decoded to give empirical relationships. The ETs for compressive strength of SCC contains four basic mathematical functions containing addition, multiplication, subtraction, and division. Moreover, it can be seen that these expression trees contain parameters and constants to prepare empirical equations, as shown in Table 6.



Defined relationships between ETs and genes help in predicting the compressive properties of self-compacting concrete (   f c ′   ). The response to predict the compressive strength is then proposed with expression trees by using Equation (5).


   f c ′  = A × B × C  



(5)




where:


  A =  (  d  ( 2 )  −  (      d  ( 4 )    d  ( 2 )    + d  ( 1 )    d  ( 4 )  − G 1 C 2    )   )  / G 1 C 5  



(6)






  B = (  (   (   (  d  ( 1 )  + d  ( 4 )  ×  (  d  ( 0 )  − G 2 C 3  )   )  −  (   (  G 2 C 1 × G 2 C 5  )  × d  ( 0 )   )   )  + d  [ 3 ]   )   



(7)






  C =  (      d  ( 3 )      G 3 C 6 − d  ( 5 )    d  ( 2 )         (  G 3 C 9 − d  ( 1 )   )  −  (  G 3 C 7 × G 3 C 5  )     )   



(8)







The evaluation of the model expectations against the actual results of SCC strength is graphically shown in Figure 10. It depicts that all input variables to predict f′c of SCC are accurately taken into account by the model. The presented results are highly correlated, as be seen in Figure 10a,c,e; it was also proved by the obtained values of linear correlation coefficient, equal to 0.941, 0.935, and 0.947 for training and validation. The proposed model’s efficiency is significantly affected by the number of datasets [63]. This research consists of 300 datasets in the prediction of SCC; hence, high accuracy of the model is expected. The response of predicted values with error distribution is presented in Figure 10b,d,f. It can be seen that all sets for the GEP model show a minimum error with the maximum range that lies below 10 MPa, as depicted in Figure 10b,d,f. It confirms the accuracy of the desired model with respect to regression models and it is on the same level of accuracy as for ANN.




5.4. Comparison between the Proposed Models


The machine learning algorithms used in the article are accurate in prediction of the compressive strength of self-compacting concrete modified by fly ash. It can be observed based on the values of the parameters describing their accuracy, which were linear coefficient of correlation R, root mean square error RMSE, and mean average error MAE. Among the artificial neural networks, the support vector machine and gene expression programming, there is difficult to point the most accurate algorithm. The least accurate was support vector machine due to the lowest values of the linear coefficient of correlation and the highest values of errors in all processes. However, even though the neural network was the most accurate during the training process, the gene expression programming algorithm was more accurate in the testing and validation processes. Thus, for construction practice, it might be beneficial to use this algorithm, which performs better in the testing and validation processes instead of training because of the threat of overfitting. In Figure 11, the aforementioned algorithms were compared with other models presented in the literature.



It can be seen that all of the investigated models are predict the SCC compressive strength well, according to the literature. However, due to the fact that none of the models were perfectly accurate (linear correlation coefficient was equal to 1.0), it is still possible to improve the algorithms by building other databases or using different algorithms.





6. Conclusions


This research discusses the machine learning application of artificial intelligence, in particular, artificial neural network, support vector machine, and gene expression programming for the prediction of self-compacting concrete compressive strength. By performing an extensive literature survey for obtaining the experimental results of the SCCs compressive strength values and also by performing numerical analysis using ANN, SVM, and GEP, the following conclusions can be drawn:




	
ANN-, SVM-, and GEP-based models predict the properties of SCC strength; however, ANN and GEP are the most accurate for this purpose;



	
ANN, SVM, and GEP models were characterized by the very high values of linear correlation coefficient equal to R = 0.9588, R = 0.9344 and R = 0.9353 for the testing set, respectively. The test set of the ANN, SVM, and GEP models show average error values of 5.428 MPa, 5.023 MPa, and 3.741 MPa, respectively. This indicates that the GEP model was able to be performed better in terms of accuracy during this process in comparison to the ANN and SVM models;



	
Permutation features show clear influential parameters for strength prediction. Variable such as the ratio of cement and fly ash added to the mixture have a major effect on strength with 53% out of total parameters. Thus, it is important to know their ratio in the mixture in order to evaluate the SCC compressive strength; without this variable, the modelling might be less accurate;



	
Statistical analysis and external checks give obstinate responses for all models.








These models were used for prediction rather than conducting experimental work; thus, their utilization in the civil engineering field will lower the carbon footprint. Below, a few recommendations for continuing similar research in the future are presented:




	
Hybrid models or advanced evolutionary algorithms can be developed, and the results can be compared to the present study.



	
The techniques used in this study can be used to model other engineering properties of concrete and structures.








As every study and technique has some limitations, some of the limitations of GEP are as follows:




	
Sometimes, the GEP is trapped in a local region that does not contain the global optimum. This phenomenon is called premature convergence and is one of the serious problems in genetic algorithms.



	
The “best” fitness is in comparison to other fitness; i.e., the stop criterion is not clear in every problem.



	
For specific optimization problems and problem instances, other optimization algorithms may be more efficient than genetic algorithms in terms of speed of convergence.
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Table A1. Self-compacting concrete mixture components and compressive strength.






Table A1. Self-compacting concrete mixture components and compressive strength.





	
No.

	
Cement

	
Fly Ash

	
Water–Powder Ratio

	
Sand

	
Coarse Aggregate

	
Superplasticizer

	
Strength




	
-

	
kg/m3

	
kg/m3

	
-

	
kg/m3

	
kg/m3

	
kg/m3

	
MPa






	
1

	
148

	
137

	
0.55

	
830

	
1002

	
0.11

	
17.95




	
2

	
393

	
0

	
0.49

	
758

	
940

	
0

	
39.58




	
3

	
325

	
60

	
0.65

	
900

	
850

	
0.12

	
31.4




	
4

	
374.3

	
0

	
0.51

	
730.4

	
1013.2

	
0.02

	
39.06




	
5

	
348

	
224

	
0.5

	
783

	
848

	
0.43

	
58.6




	
6

	
296

	
107

	
0.55

	
778

	
819

	
0.04

	
31.42




	
7

	
350

	
162

	
0.41

	
768

	
840

	
0.18

	
51.7




	
8

	
296

	
106.7

	
0.55

	
778.4

	
819.2

	
0.04

	
31.42




	
9

	
374

	
0

	
0.51

	
730

	
1013

	
0.02

	
39.05




	
10

	
148.1

	
136.6

	
0.56

	
830.1

	
1001.8

	
0.11

	
17.96




	
11

	
275

	
0

	
0.67

	
808

	
1088

	
0

	
24.5




	
12

	
231.75

	
121.62

	
0.49

	
778.45

	
1056.4

	
0.03

	
33.73




	
13

	
181.38

	
167.01

	
0.49

	
777.8

	
1055.6

	
0.04

	
27.77




	
14

	
194.68

	
100.52

	
0.56

	
905.9

	
1006.4

	
0.04

	
25.72




	
15

	
325

	
60

	
0.65

	
899

	
850

	
0.43

	
30.8




	
16

	
420

	
80

	
0.33

	
785

	
860

	
0.3

	
56




	
17

	
212.52

	
100.37

	
0.51

	
903.59

	
1007.8

	
0.04

	
31.64




	
18

	
290

	
100

	
0.33

	
913

	
837

	
0.01

	
42.7




	
19

	
333

	
0

	
0.58

	
842.6

	
931.2

	
0

	
31.97




	
20

	
250

	
160

	
0.55

	
742

	
837

	
0.5

	
28.5




	
21

	
339

	
0

	
0.58

	
781

	
968

	
0

	
32.04




	
22

	
207

	
207

	
0.45

	
845

	
843

	
0.4

	
33.2




	
23

	
252

	
0

	
0.73

	
784

	
1111

	
0

	
19.69




	
24

	
360

	
240

	
0.28

	
853

	
698

	
0.3

	
63.5




	
25

	
417

	
153

	
0.32

	
828

	
759

	
0.31

	
61.82




	
26

	
163

	
245

	
0.4

	
851

	
851

	
0.2

	
26.2




	
27

	
310

	
0

	
0.62

	
850

	
970

	
0

	
27.92




	
28

	
350

	
133

	
0.38

	
815

	
883

	
0.34

	
55.3




	
29

	
190.34

	
125.18

	
0.51

	
802.59

	
1088.1

	
0.05

	
28.47




	
30

	
427

	
115

	
0.36

	
779

	
844

	
0.26

	
59.4




	
31

	
475

	
0

	
0.48

	
594

	
932

	
0

	
39.29




	
32

	
164.6

	
150.4

	
0.58

	
728.9

	
1023.3

	
0.07

	
18.03




	
33

	
165

	
150

	
0.58

	
729

	
1023

	
0.07

	
18.03




	
34

	
318

	
126

	
0.47

	
737

	
861

	
0.02

	
40.06




	
35

	
317.9

	
126.5

	
0.47

	
736.6

	
860.5

	
0.02

	
40.06




	
36

	
280

	
96

	
0.87

	
817

	
850

	
0.62

	
15.9




	
37

	
540

	
0

	
0.32

	
613

	
1125

	
0

	
67.31




	
38

	
183

	
160

	
0.55

	
891

	
837

	
0.5

	
22.1




	
39

	
238.05

	
94.11

	
0.56

	
847.01

	
949.91

	
0.03

	
30.23




	
40

	
307

	
0

	
0.63

	
812

	
968

	
0

	
27.53




	
41

	
480

	
96

	
0.38

	
819

	
699

	
0.94

	
53




	
42

	
144.8

	
133.6

	
0.65

	
811.5

	
979.5

	
0.08

	
13.2




	
43

	
145

	
134

	
0.65

	
812

	
979

	
0.08

	
13.2




	
44

	
151.6

	
111.9

	
0.7

	
815.9

	
992

	
0.05

	
12.18




	
45

	
325

	
60

	
0.85

	
722

	
850

	
0.43

	
13.3




	
46

	
370

	
24

	
0.69

	
772

	
850

	
0.25

	
26.4




	
47

	
152

	
112

	
0.7

	
816

	
992

	
0.05

	
12.18




	
48

	
331

	
0

	
0.58

	
825

	
978

	
0

	
31.45




	
49

	
252.5

	
0

	
0.74

	
784.3

	
1111.6

	
0

	
19.77




	
50

	
505

	
60

	
0.35

	
630

	
1030

	
0

	
64.02




	
51

	
134.7

	
165.7

	
0.6

	
804.9

	
961

	
0.07

	
13.29




	
52

	
325

	
60

	
0.65

	
899

	
850

	
0.43

	
32.6




	
53

	
135

	
166

	
0.6

	
805

	
961

	
0.07

	
13.29




	
54

	
475

	
0

	
0.34

	
662

	
1044

	
0.02

	
58.52




	
55

	
251.37

	
118.27

	
0.52

	
754.3

	
1043.6
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69.5




	
297

	
380

	
192

	
0.35

	
931

	
621

	
0.21

	
67.8




	
298

	
412

	
138

	
0.33

	
887

	
752

	
0.02

	
73.4




	
299

	
350

	
186

	
0.33

	
786

	
851

	
0.22

	
70.4




	
300

	
375

	
125

	
0.35

	
938

	
673

	
0.7

	
60.8
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Figure 1. The topology of the neural network used in the study. 
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Figure 2. Graphical interpretation of support vector machine method. 
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Figure 3. An example of tree expression (ETs). 
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Figure 4. Schematic diagram of GEP algorithm. 
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Figure 5. Concentration of input variables in achieving maximum compressive strength of SCC. 






Figure 5. Concentration of input variables in achieving maximum compressive strength of SCC.



[image: Materials 14 04934 g005]







[image: Materials 14 04934 g006 550] 





Figure 6. Features importance in strength prediction. 
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Figure 7. (a) Predictions vs. target data of training set; (b) error distribution of ANN model with prediction versus training set; (c) predictions vs. target data of validation set; (d) error distribution of ANN model with prediction versus validation set; (e) predictions vs. target data of testing set; (f) error distribution of ANN model with prediction versus testing set. 
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Figure 8. (a) Predictions vs. target data of training set; (b) error distribution of SVM model with prediction versus training set; (c) predictions vs. target data of validation set; (d) error distribution of SVM model with prediction versus validation set; (e) predictions vs. target data of testing set; (f) error distribution of SVM model with prediction versus testing set. 






Figure 8. (a) Predictions vs. target data of training set; (b) error distribution of SVM model with prediction versus training set; (c) predictions vs. target data of validation set; (d) error distribution of SVM model with prediction versus validation set; (e) predictions vs. target data of testing set; (f) error distribution of SVM model with prediction versus testing set.
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Figure 9. GEP model expression trees of SCC. 
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Figure 10. (a) Predictions vs. target data of training set; (b) error distribution of GEP model with prediction versus training set; (c) predictions vs. target data of validation set; (d) error distribution of GEP model with prediction versus validation set; (e) predictions vs. target data of testing set; (f) error distribution of GEP model with prediction versus testing set. 






Figure 10. (a) Predictions vs. target data of training set; (b) error distribution of GEP model with prediction versus training set; (c) predictions vs. target data of validation set; (d) error distribution of GEP model with prediction versus validation set; (e) predictions vs. target data of testing set; (f) error distribution of GEP model with prediction versus testing set.
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Figure 11. The comparison of models for SCC compressive strength prediction. 
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Table 1. The latest works in the subject of concrete compressive strength prediction.
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	S. No
	Algorithm Name
	Notation
	Dataset
	Prediction Properties
	Year
	Waste Material Used
	References





	1
	Artificial neural network
	ANN
	169
	Compressive strength
	2016
	FA

GGBFS

SF

RHA
	[16]



	2
	Artificial neural network
	ANN
	205
	Compressive strength
	2019
	FA

GGBFS

SF

RHA
	[17]



	3
	Artificial neural network
	ANN
	114
	Compressive strength
	2017
	FA
	[18]



	4
	Artificial neural network
	ANN
	80
	Compressive strength
	2011
	FA
	[19]



	5
	Artificial neural network
	ANN
	300
	Compressive strength
	2009
	FA
	[20]



	6
	Support vector machine
	SVM
	-
	Compressive strength
	2020
	FA
	[21]



	7
	Random forest
	RF
	131
	Compressive strength
	2019
	FA

GGBFS

SF
	[22]



	8
	Biogeographical-based programming
	BBP
	413
	Elastic modulus
	2016
	SF

FA

SLAG
	[23]



	9
	Intelligent rule-based enhanced multiclass support vector machine and fuzzy rules
	IREMSVM-FR with

RSM
	114
	Compressive strength
	2019
	FA
	[24]



	10
	Support vector machine
	SVM
	115
	Slump test

L-box test

V-funnel test

Compressive strength
	2020
	FA
	[25]



	11
	Multivariate adaptive regression spline
	M5

MARS
	114
	Compressive strength

Slump test

L-box test

V-funnel test
	2018
	FA
	[26]
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Table 2. Neural network properties.
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	Parameter
	Neural Network

Properties





	Input parameters
	Six (6)



	Output parameters
	One (1)



	Percentage of training set/testing and validation set
	70/30



	Number of epochs
	Hundred (100)



	Performance limit
	10−6



	Training model
	Supervised



	Training process
	Quasi-Newton



	Activation function (HL)
	Logistic (sigmoid)



	Activation function (OL)
	Logistic (linear)
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Table 3. Range of input and output variables.
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Parameters

	
Minimum

	
Maximum




	
Input Variables




	
Cement (kg/m3)

	
83

	
540




	
Fly ash (kg/m3)

	
0

	
525




	
Coarse aggregate (kg/m3)

	
578

	
1125




	
Fine aggregate (kg/m3)

	
478

	
1180




	
Superplasticizer (%)

	
0

	
1.36




	
Water–binder ratio

	
0.22

	
0.9




	
Output Variable

	
Minimum

	
Maximum




	
Compressive strength (MPa)

	
8.54

	
78.4
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Table 4. The dataset from the latest works in the subject of concrete compressive strength prediction.
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Statistical Measures of Input Parameters and Output Strength in Modeling Prediction




	
Dataset

	
Parameters






	
Training Set

	
Cement

	
Fly Ash

	
Water–Binder

	
Fine Aggregate

	
Coarse Aggregate

	
Superplasticizer




	
Mean

	
292.48

	
118.08

	
0.48

	
802.90

	
912.45

	
0.18




	
Standard Error

	
6.69

	
6.13

	
0.01

	
6.76

	
7.82

	
0.02




	
Median

	
290.00

	
120.68

	
0.46

	
793.46

	
900.00

	
0.05




	
Mode

	
250.00

	
0.00

	
0.55

	
742.00

	
837.00

	
0.00




	
Standard Deviation

	
96.95

	
88.88

	
0.13

	
97.97

	
113.39

	
0.26




	
Sample Variance

	
9399.46

	
7899.70

	
0.02

	
9598.18

	
12,857.39

	
0.07




	
Kurtosis

	
−0.11

	
2.55

	
0.26

	
2.30

	
0.27

	
3.89




	
Skewness

	
0.51

	
0.87

	
0.76

	
0.57

	
−0.35

	
2.00




	
Range

	
457.00

	
525.00

	
0.67

	
693.00

	
547.00

	
1.36




	
Minimum

	
83.00

	
0.00

	
0.23

	
487.00

	
578.00

	
0.00




	
Maximum

	
540.00

	
525.00

	
0.90

	
1180.00

	
1125.00

	
1.36




	
Sum

	
61,421.24

	
24,796.10

	
100.81

	
168,608.70

	
191,614.79

	
37.16




	
Count

	
210.00

	
210.00

	
210.00

	
210.00

	
210.00

	
210.00




	
Validation Set

	
Cement

	
Fly Ash

	
Water–Binder

	
Fine Aggregate

	
Coarse Aggregate

	
Superplasticizer




	
Mean

	
292.65

	
117.73

	
0.49

	
789.71

	
912.83

	
0.18




	
Standard Error

	
13.13

	
13.29

	
0.02

	
15.47

	
18.82

	
0.04




	
Median

	
295.90

	
107.25

	
0.50

	
784.50

	
879.00

	
0.04




	
Mode

	
250.00

	
0.00

	
0.55

	
774.00

	
837.00

	
0.00




	
Standard Deviation

	
89.07

	
90.14

	
0.13

	
104.91

	
127.67

	
0.27




	
Sample Variance

	
7933.73

	
8125.93

	
0.02

	
11,005.42

	
16,300.13

	
0.07




	
Kurtosis

	
1.04

	
−1.12

	
−0.41

	
3.03

	
−0.04

	
4.61




	
Skewness

	
0.65

	
0.09

	
0.03

	
−0.08

	
−0.22

	
2.07




	
Range

	
396.40

	
275.00

	
0.58

	
657.00

	
535.00

	
1.25




	
Minimum

	
143.60

	
0.00

	
0.22

	
478.00

	
590.00

	
0.00




	
Maximum

	
540.00

	
275.00

	
0.80

	
1135.00

	
1125.00

	
1.25




	
Sum

	
13,461.90

	
5415.63

	
22.52

	
36,326.78

	
41,989.96

	
8.22




	
Count

	
46.00

	
46.00

	
46.00

	
46.00

	
46.00

	
46.00




	
Test Set

	
Cement

	
Fly Ash

	
Water–Binder

	
Fine Aggregate

	
Coarse Aggregate

	
Superplasticizer




	
Mean

	
292.76

	
101.57

	
0.49

	
837.83

	
912.01

	
0.15




	
Standard Error

	
12.53

	
11.32

	
0.02

	
13.30

	
20.65

	
0.03




	
Median

	
290.00

	
100.37

	
0.51

	
808.00

	
940.60

	
0.03




	
Mode

	
250.00

	
0.00

	
0.33

	
899.00

	
837.00

	
0.00




	
Standard Deviation

	
84.02

	
75.94

	
0.13

	
89.20

	
138.54

	
0.22




	
Sample Variance

	
7059.62

	
5767.29

	
0.02

	
7956.13

	
19,193.24

	
0.05




	
Kurtosis

	
−0.76

	
−0.93

	
−1.03

	
2.35

	
−0.75

	
1.99




	
Skewness

	
0.09

	
0.03

	
0.02

	
1.21

	
−0.45

	
1.66




	
Range

	
340.30

	
263.00

	
0.46

	
473.00

	
490.00

	
0.80




	
Minimum

	
134.70

	
0.00

	
0.27

	
662.00

	
621.00

	
0.00




	
Maximum

	
475.00

	
263.00

	
0.73

	
1135.00

	
1111.00

	
0.80




	
Sum

	
13,174.34

	
4570.57

	
22.21

	
37,702.21

	
41,040.48

	
6.82




	
Count

	
45.00

	
45.00

	
45.00

	
45.00

	
45.00

	
45.00











[image: Table] 





Table 5. Gene expression programming variables detail set.






Table 5. Gene expression programming variables detail set.





	
Settings




	
General property

	
     f ′  c    




	
Chromosomes

	
30




	
Genes

	
3, 4, 5




	
Head size

	
8




	
Linking function

	
Multiplication




	
Function set

	
+, −, ×, ÷, exp




	
Numerical Constants




	
Constant per gene

	
10




	
Data type

	
Floating number




	
Lower bound

	
−10




	
Upper bound

	
10




	
Genetic Operators




	
Mutation rate

	
0.00138




	
Inversion rate

	
0.00546




	
Insertion Sequences transposition rate

	
0.00546




	
Root Insertion Sequence transposition rate

	
0.00546




	
One-point recombination rate

	
0.00277




	
Two-point recombination rate

	
0.00277




	
Gene recombination rate

	
0.00277




	
Gene transposition rate

	
0.00277
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Table 6. Constant and notation used to prepare empirical equation.






Table 6. Constant and notation used to prepare empirical equation.





	Parameters Notation
	Parameters
	Constant Notations
	Constant Values





	d0
	Cement
	G1C5
	−4.28835075



	d1
	Fly ash
	G1C2
	37.75001621



	d2
	Water–powder
	G2C3
	39.89209066



	d3
	Fine aggregate
	G2C1
	9.967413128



	d4
	Coarse aggregate
	G2C5
	26.22055325



	d5
	Superplasticizer
	G3C9
	−20.52776364



	-
	-
	G3C7
	145.5520044



	-
	-
	G3C5
	−10.5395382



	-
	-
	G3C6
	544.4511609
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