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Abstract: Concrete undergoes shrinkage regardless of the influence of external forces. The deforma-
tion of concrete is crucial for the structural stability of high-rise and large-scale buildings. In this study,
the shrinkage and compressive creep of 70–90 MPa high-strength concrete used in high-rise buildings
were evaluated based on the curing conditions (sealed/unsealed), and the existing prediction models
were examined. It was observed that the curing condition does not significantly affect the mechanical
properties of high-strength concrete, but the use of limestone coarse aggregate increases the elastic
modulus when compared to granite coarse aggregate. The autogenous shrinkage of high-strength
concrete is greater than that of normal-strength concrete owing to self-desiccation, resulting in a large
variation from the value predicted by the model. The drying shrinkage was observed to be similar to
that predicted by the model. Compressive creep was affected by the curing conditions, compressive
strength, loading level, and loading age. The compressive creep of high-strength concrete varied
significantly from the prediction results of ACI 209; ACI 209 was modified based on the measured
values. The shrinkage and compressive creep characteristics of high-strength concrete must be
reflected to predict the deformation of an actual structure exposed to various conditions.

Keywords: high-strength concrete; compressive strength; elastic modulus; autogenous shrinkage;
drying shrinkage; compressive creep

1. Introduction

Concrete is a composite composed of cement, aggregate, water, and admixture. It is a
nonhomogeneous material owing to its internal pores, which are absent in homogeneous
materials such as iron. It may exhibit various deformation characteristics when compared to
typical homogeneous materials. It undergoes various deformations based on the presence
or absence of an external force. Autogenous shrinkage, drying shrinkage, and shrinkage
caused by carbonation may be observed in the absence of an external force. Compressive
creep is a physical phenomenon in which the deformation of a member under a continuous
load increases over time even without the application of additional loads following the
elastic deformation caused by loading; it is typically observed in the presence of an external
force [1–6].

Recently, the use of high-strength concrete of 80 MPa or higher at construction sites
has been increasing owing to the increasing demand for high-rise buildings. In general,
high-strength concrete may have different elastic modulus depending on the type of coarse
aggregate [7,8]. The elastic modulus is a factor influencing the compressive creep of
concrete. The compressive creep of high-strength concrete may vary depending on the
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type of coarse aggregate [9]. In addition, as the use of high-strength concrete increases,
the prediction of the compressive deformation of members using high-strength concrete is
gaining significance [10]. The compressive deformation of concrete may vary based on the
load condition and concrete mix of the member, and the lack of accurate prediction and
construction may produce several problems in concrete structures.

Therefore, various models have been developed to predict the behavior of concrete
structures, which are expressed considering the concrete mix and the influence of the
environment [11–15]. However, the deformation behavior exhibited by these models varies
from that of domestically produced concrete; it has been reported that the difference
between the measured and predicted values increases with the increase in age in the case
of high-strength concrete [14–16].

Moon [14] compared the creep models of the CEB-FIP1990 Model Code, ACI 209R,
and Eurocode 2 with the compressive creep test results of 24–60 MPa concrete to analyze
the models. Certain differences were observed between the measured and predicted values,
and it was reported that it is necessary to construct data that reflect various compressive
strengths and loading conditions.

Lee et al. [17] conducted an experimental analysis on the application of models such
as KCI 2011, ACI 209R-92, CEB-MC 90–99, B3, and GL2000 to high-strength concrete.
They reported that the compressive creep characteristics varied based on the loading age
and specimen shape, and that correction was required to apply the existing models to
high-strength concrete.

Haranki [18] evaluated the shrinkage and compressive creep of 25–65 MPa concrete
and proposed modified formulas by comparing the evaluation results with those of the
ACI 209 and CEB-FIP models.

Ojha et al. [19] evaluated the compressive creep of 36–90 MPa concrete and compared
the results with those of Bazant’s B-3, ACI, AASHTO, GL2000, and FIB model code 2010.

As explained earlier, further research is required on the applicability of the existing
prediction models, and database construction is required for high-strength concrete. Addi-
tionally, the shrinkage and compressive creep of high-strength concrete must be predicted
through experimental verification and the verification of the construction site conditions.
For high-strength concrete, it has been reported that the difference between the measured
and predicted values tends to increase with the increase in age [15,20].

Typically, the compressive creep test of concrete requires data for more than six months,
and studies that can be used at actual construction sites remain limited [21–23].

In this study, the mechanical properties of 70, 80, and 90 MPa high-strength con-
crete based on limestone and granite coarse aggregates applied to high-rise structures are
evaluated, and the shrinkage and compressive creep are analyzed based on the curing con-
ditions. Furthermore, the existing shrinkage and compressive creep models are compared
to produce modified formulas.

2. Experiment
2.1. Experimental Procedure

In this study, high-strength concrete with water/binder (W/B) ratios of 0.24, 0.27,
and 0.29 was used. The specimen ID of high-strength concrete was constructed using the
compressive strength, curing condition, coarse aggregate condition, and fiber condition
(90 MPa). The autogenous shrinkage, drying shrinkage, and compressive creep of high-
strength concrete were then evaluated under sealed and unsealed conditions. Table 1
shows the experimental plan.

To control the compressive strength of high-strength concrete, the amount of binder
and aggregate was adjusted, and the target slump flow and air contents were satisfied in all
specimens. The compressive strength and elastic modulus of high-strength concrete based
on limestone and granite coarse aggregates were evaluated to select coarse aggregates for
high-strength concrete. Tables 2 and 3 show the mix proportions of the concrete and the
physical–mechanical properties of used material used in this study. Additionally, nylon
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and polypropylene fibers were mixed at a 1:1 ratio, and 0.1% (v/v) was applied to secure the
fire resistance performance of high-strength concrete, as shown in Table 4. In this study, the
fiber addition and nonaddition conditions were added to 90 MPa concrete to analyze the
mechanical and shrinkage characteristics of high-strength concrete based on the presence
and absence of fibers.

Table 1. Experimental plan.

W/B Specimen ID 1 Curing Condition Test Item

0.24

90N-US
90F-US
90F-S

90F-S(G) 4

90F-US-32% 2

Sealed
Unsealed

• Compressive strength
(MPa)

• Elastic modulus (MPa)
• Autogenous shrinkage
• Drying shrinkage
• Compressive creep

0.27

80F-US
80F-S

80F-S(G) 4

80F-US-7d 3

0.29
70F-US
70F-S

70F-S(G) 4

1 F: Fiber addition condition, N: Fiber nonaddition condition, S: Sealed condition, US: Unsealed condition. 2 32%:
Load (default: 40% of the compressive strength). 3 7d: Loading age (default: 28 days). 4 For comparison with
limestone, only compressive strength and elastic modulus are evaluated.

Table 2. Mix proportion.

fck W/B Slump Flow
(mm)

Air
(%)

S/a
(%)

Unit Weight 1 (kg/m3)

W C FA SF S LG GG

90 0.24 650 ± 20 1.6 47.5 155 481 130 39 745 835 829
80 0.27 650 ± 20 1.7 48.0 158 443 114 23 770 865 856
70 0.29 650 ± 20 1.8 49.0 163 418 110 22 815 875 868

1 W: Water, C: Cement, FA: Fly ash, SF: Silica fume, S: Fine aggregate, LG: Limestone, GG: Granite.

Table 3. Physical–mechanical properties of used material.

Material Physical Properties

Cement Ordinary Portland cement
(OPC, density: 3.15 g/cm3, specific surface area: 3440 cm2/g)

Fly ash Density: 2.30 g/cm3, specific surface area: 3228 cm2/g

Silica fume Density: 2.22 g/cm3, specific surface area: 200,000 cm2/g

Fine aggregate Sea sand (size: 5 mm, density: 2.56 g/cm3, absorption: 1.01%)

Coarse aggregate Crushed limestone (size: 20 mm, density: 2.69 g/cm3, absorption: 0.32%, solid volume percentage: 60.80%)
Crushed granite (size: 20 mm, density: 2.67 g/cm3, absorption: 0.35%, solid volume percentage: 55.42%)

Superplasticizer Polycarboxylic-based superplasticizer (specific gravity: 1.05 ± 0.05, pH: 5.0 ± 1.5)

Table 4. Mechanical properties of fibers.

Fiber Type Length
(mm)

Diameter
(mm)

Aspect
Ratio

Density
(g/cm3)

Tensile
Strength

(MPa)

Extension
(%)

Elastic
Modulus

(GPa)

Melting
Point (◦C)

Nylon 12.49 23.8 524.8 1.14 903.2 18.9 5.0 219.9

Polypropylene 19.17 37.0 518.1 0.91 611.4 21.7 5.8 167.7
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Figure 1 presents the compressive creep of concrete varies based on the curing condi-
tions of the concrete. Particularly, the drying shrinkage is small, and the autogenous shrink-
age in the early ages is greater for high-strength concrete than that for normal-strength
concrete. Therefore, the curing conditions and compressive strengths must be considered.
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Figure 1. Creep deformation with curing conditions: (a) sealed (basic creep); (b) unsealed (drying creep).

2.2. Concrete Specimen Production and Shrinkage Characteristics Evaluation Method

Figure 2 illustrates the concrete specimen production process. The high-strength
concrete used in this study was applied to high-rise buildings, and specimens were fabri-
cated using the concrete produced in the batcher plant for testing under field conditions.
The compressive strength and elastic modulus were evaluated in accordance with the
“KS F 2405 Standard test method for compressive strength of concrete” and “KS F 2438
Standard test method for static modulus of elasticity and Poisson’s ratio in compression of
cylindrical concrete specimens”. Additionally, autogenous shrinkage and drying shrinkage
were evaluated in accordance with the “KS F 2586 Standard test for autogenous shrinkage
and expansion of cement paste, mortar and concrete” and “KS F 2424 Standard test method
for length change of mortar and concrete”. The specimens required for the compressive
creep test were fabricated with a size of Ø150 × 300 mm in accordance with the “KS F 2453
Standard test method for creep of concrete in compression”. Dry curing was performed
after concrete pouring at a temperature of 20 ± 2 ◦C for 24 h. The unsealed specimens were
then demolded and subjected to wet curing at the same temperature for seven days. They
were subjected to dry curing at a relative humidity of 50 ± 10% for 28 days. Additionally,
the sealed specimens were cured by sealing them with plastic wrap and aluminum tape
after demolding. In the compressive strength and modulus test, plastic wrap and alu-
minum tape were removed before proceeding. Figure 3 illustrates the process of measuring
autogenous shrinkage, drying shrinkage, and compressive creep.
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Figure 3. Test overview of high-strength concrete: (a) creep test; (b) shrinkage test.

In the compressive creep test, the loading level was set to 40% of the compressive
strength at 28 days of age, and the measurements were performed for two years after
loading. The creep strain was calculated by subtracting the instantaneous elastic strain and
shrinkage immediately after loading from the total strain measured in the compressive
creep test, as shown in Figure 4. In this study, the compressive creep coefficient was also
calculated by dividing the creep strain by the instantaneous elastic strain, as shown in
Equation (1) [11]. It was calculated to compare the compressive creep of concrete with
different compressive strengths under different loads.

2.3. Shrinkage and Creep Models

The models used to predict the shrinkage and compressive creep of concrete have
been proposed and modified by various researchers in previous studies. In this study, the
prediction models that are mainly examined in South Korea were selected and compared
with the experimental results for high-strength concrete.
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The autogenous shrinkage and drying shrinkage of high-strength concrete were
compared with the CEB code [12] and Eurocode 2 [13]. ACI 209 [8] was selected for the
compressive creep. The compressive creep coefficient presented in ACI 209 is the product
of the ultimate creep coefficient determined by the age and environmental factors at the
time of loading and the formula that expresses the occurrence of compressive creep over
time after loading, as shown in Equations (2) and (3). The applicable correction factors for
the ultimate creep coefficient are composed of functions that add to or subtract from the
default value of “1”. The ultimate creep coefficient does not exceed this value since the
factors are multiplied by a constant of 2.35.

υt =
εc

εel
(1)

where

υt: creep coefficient;
εc: creep strain;
εel: instantaneous elastic strain.

υt =
t0.6

10 + t0.6 υu (2)

υu = 2.35× γc (3)

where

υt: creep coefficient;
t: days after loading;
υu: ultimate creep coefficient;
γc: applicable correction factors.

3. Experimental Results and Discussion
3.1. Compressive Strength and Elastic Modulus

Figure 5 shows the compressive strength of high-strength concrete. When the com-
pressive strengths of 90, 80, and 70 MPa high-strength concrete based on limestone coarse
aggregate at 28 days of age are measured, 87.0, 79.4, and 87.0 MPa are obtained under
the unsealed condition, and 90.8, 80.3, and 69.9 MPa are obtained under the sealed con-
dition, indicating that the sealed condition produces higher compressive strength. When
the granite coarse aggregate is used, 84.6, 77.00, and 71.20 MPa are measured under the
sealed conditions. Figure 6 shows the elastic modulus of high-strength concrete based on
limestone coarse aggregate for which, the elastic modulus is measured to be approximately
1–4% higher under the sealed condition than under the unsealed condition at 28 days
of age. The elastic modulus is mostly observed at 10 days of age and shows a tendency
to converge.
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Figure 5. Compressive strength of high-strength concrete based on limestone and granite.
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Figure 6. Elastic modulus of high-strength concrete based on limestone and granite.

Figure 7 presents the comparison of the compressive strength and elastic modulus
of high-strength concrete at 28 and 56 days of age. The material value trend line of high-
strength concrete based on limestone coarse aggregate is observed to be higher. This
tendency is produced by a phenomenon that can be observed in high-strength concrete
based on limestone coarse aggregate. This phenomenon is reportedly caused by the mineral
properties of limestone and the physicochemical properties of the aggregate [24–26]. The
limestone coarse aggregate is used in this study because the elastic modulus significantly
affects the deformation characteristics of concrete.

Materials 2021, 14, x FOR PEER REVIEW 8 of 15 
 

 

 
Figure 7. Comparison of compressive strength and elastic modulus of high-strength concrete at 28 
and 56 days of age. 

3.2. Autogenous and Drying Shrinkage 
In this study, the shrinkage behavior was evaluated until 180 days of age to compare 

and examine shrinkage behavior at early ages. 
Figure 8 presents the autogenous shrinkage of the high-strength concrete based on 

the compressive strength. The autogenous shrinkage increases with the increase in the 
compressive strength of the concrete. Particularly, approximately 70% of the total autog-
enous shrinkage is observed until seven days of age. The effect of the sealed condition 
(basic creep) on the compressive creep in which the autogenous shrinkage is considered 
is determined to be insignificant because most of the autogenous shrinkage develops at 
an early age before loading. As high-strength concrete has a low W/B unlike normal-
strength concrete, self-desiccation is observed, which is a phenomenon where the internal 
moisture is lost due to the continuous hydration of unhydrated cement [30]. This causes 
a large autogenous shrinkage of high-strength concrete compared with normal-strength 
concrete, and it is important for deformation prediction. 𝜖௔௦(𝑡) = 𝑓 × 𝛾 × 𝜖ஶ(W/B) × 𝛽(𝑡) (4)𝜖ஶ(W/B) = 3070 exp [−7.2(W/B)] (5)𝛽(𝑡) = 1 − exp [−𝑎(𝑡 − 𝑡଴)௕] (6)𝑎 = 5.2843 × (W/B) − 0.7576 (7)𝑏 = −1.3037 × (W/B) − 0.9937 (8)

where 𝜖௔௦(𝑡): autogenous shrinkage with age (×10−6); 𝜖ஶ(W/B): maximum amount of autogenous shrinkage with W/B (×10−6); 𝑓: fiber mixing constant (range of this study: 0.9 when mixed, 1.0 without mixing); 𝛾: aggregate constant (granite 1.0, limestone 1.087); 𝛽(𝑡): function that represents the progress of autogenous shrinkage; 𝑎, 𝑏: experimental constants (Table 5); 

R² = 0.4078

R² = 0.3832

30

33

36

39

42

45

60 70 80 90 100

El
as

tic
 m

od
ul

us
 (G

Pa
)

Compressive strength (MPa)

Limestone Granite

Trend line, limestone

Trend line, granite

Figure 7. Comparison of compressive strength and elastic modulus of high-strength concrete at 28
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When a comparison is performed for 90 F to compare the compressive strength based
on the fiber addition, it is observed that the compressive strength tends to decrease by
approximately 3% when fibers are added [27]. Additionally, the compressive strength
and elastic modulus are observed to be higher under the sealed condition than under the
unsealed condition. It is observed that the cement hydration reaction can continuously
occur under the sealed condition when compared to the unsealed condition because the
moisture in concrete cannot be discharged [28,29].

3.2. Autogenous and Drying Shrinkage

In this study, the shrinkage behavior was evaluated until 180 days of age to compare
and examine shrinkage behavior at early ages.

Figure 8 presents the autogenous shrinkage of the high-strength concrete based on
the compressive strength. The autogenous shrinkage increases with the increase in the
compressive strength of the concrete. Particularly, approximately 70% of the total auto-
genous shrinkage is observed until seven days of age. The effect of the sealed condition
(basic creep) on the compressive creep in which the autogenous shrinkage is considered is
determined to be insignificant because most of the autogenous shrinkage develops at an
early age before loading. As high-strength concrete has a low W/B unlike normal-strength
concrete, self-desiccation is observed, which is a phenomenon where the internal moisture
is lost due to the continuous hydration of unhydrated cement [30]. This causes a large
autogenous shrinkage of high-strength concrete compared with normal-strength concrete,
and it is important for deformation prediction.
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εas(t) = f × γ× ε∞(W/B)× β(t) (4)

ε∞(W/B) = 3070 exp[−7.2(W/B)] (5)

β(t) = 1− exp
[
−a(t− t0)

b
]

(6)

a = 5.2843× (W/B)− 0.7576 (7)

b = −1.3037× (W/B)− 0.9937 (8)

where

εas(t): autogenous shrinkage with age (×10−6);
ε∞(W/B): maximum amount of autogenous shrinkage with W/B (×10−6);
f : fiber mixing constant (range of this study: 0.9 when mixed, 1.0 without mixing);
γ: aggregate constant (granite 1.0, limestone 1.087);
β(t): function that represents the progress of autogenous shrinkage;
a, b: experimental constants (Table 5);
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t: age (days);
t0: initial set time (days).

Table 5. Experimental constants a, b in Equation (7,8).

fck
Constant

a b

90 0.6
80 0.65 0.25
70 0.8

The results of the autogenous shrinkage measurement of high-strength concrete were
compared with the autogenous shrinkage prediction formulas of Eurocode 2 and the CEB
code. The autogenous shrinkage measurements of high-strength concrete were approxi-
mately twice as high as the autogenous shrinkage values predicted using Eurocode 2 and
the CEB code.

Miyazawa and Tazawa [31] proposed an autogenous shrinkage prediction model
that reflects the characteristics of high-strength concrete in which most of the autogenous
shrinkage is observed at the early ages. In this study, Equations (4)–(8) and Table 5. are
proposed using the model proposed by Miyazawa and Tazawa by modifying constants to
fit the measured autogenous shrinkage values of high-strength concrete.

Figure 9 shows the drying shrinkage of high-strength concrete based on the compres-
sive strength. The drying shrinkage decreases with the increase in the compressive strength
of concrete, and approximately 70% of the total shrinkage is observed between 90 and
100 days of age. The drying shrinkage is observed to decrease with the increase in the
compressive strength of concrete due to the presence of a small amount of free water in the
concrete, as W/B is low and the unit water content is small.
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Figure 9. Drying shrinkage of high-strength concrete and code comparison.

Therefore, the compressive creep under the unsealed condition (drying creep) is
significantly affected by the drying shrinkage, and this influence is expected to decrease as
the compressive strength increases. Additionally, it is observed that the measured drying
shrinkage values of high-strength concrete are similar to the predicted drying shrinkage
values of Eurocode 2 and the CEB code.

When fibers are added, the autogenous shrinkage and drying shrinkage are reduced
by approximately 2–4%. This is because the fibers restrict the concrete matrix and inhibit
moisture movement [10].
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3.3. Compressive Creep Coefficient

Figure 10 shows the compressive creep coefficient of high-strength concrete based on
the compressive strength and curing conditions. For the compressive creep coefficient, the
measured values are compared with the predicted values of ACI 209.
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At 720 days of age, the compressive creep coefficients of (90 N), 90 F, 80 F, and 70 F
are 0.45, 0.39, and 0.36 under sealed conditions and (0.69), 0.71, 0.81, and 1.05, respectively,
under unsealed conditions. The compressive creep coefficient under the unsealed condition
is approximately 1.58 to 2.91 times higher than that under the sealed condition. This can
be attributed to the fact that no drying shrinkage is observed under the sealed conditions.
The difference in the compressive creep coefficient decreases with the increase in the
compressive strength. This is because the drying shrinkage decreases with the increase
in the compressive strength. Loading is applied to concrete after 28 days of age during
the laboratory tests. However, it is necessary to consider both autogenous shrinkage and
drying shrinkage for actual buildings because concrete structures are fabricated based on
the construction period.

Under the unsealed condition, the compressive creep coefficient of 90 MPa concrete
increases by approximately 3% owing to fiber addition. This can be attributed to the fact
that the interfacial structure of concrete is weakened and the creep strain increases owing
to the addition of fibers with a lower elastic modulus than that of concrete [32,33].

Figure 11 shows the compressive creep coefficient corresponding to the loading level.
The creep strain at the beginning of the loading and the overall creep strain decreases with
the decrease in the loading level. The loading level must be considered because the load
applied to the concrete structural members may vary depending on the building. Figure 12
shows the compressive creep coefficient corresponding to the loading age. The compressive
strength of high-strength concrete is measured at seven days of age, and 40% of it is applied
to provide the same conditions. At the loading age of seven days, the initial creep strain
is observed to be larger than the loading at 28 days. Additionally, the value predicted by
using ACI 209 varies because ACI 209 considers the age of loading. However, the value
predicted by using ACI 209 varies from the measured compressive creep coefficient values
of high-strength concrete.
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When the compressive creep coefficient of high-strength concrete is analyzed us-
ing ACI 209, the predicted values are evaluated to be approximately 1.42 to 2.07 times
higher than the measured values under the unsealed condition and approximately 2.13 to
2.65 times higher under the sealed condition. The prediction of compressive creep using
ACI 209 is the method mainly used in Korea. However, this method cannot reflect the
compressive creep characteristics of high-strength concrete with a strength of 70 MPa or
higher. Additionally, the increase in the difference in the compressive creep coefficient is
attributed to the high elastic modulus of high-strength concrete based on limestone coarse
aggregate [34].

Additionally, the total strain calculated by the compression creep coefficient predicted
by using ACI 209 is significantly different from the measured total strain regardless of
the curing conditions, as shown in Figure 13. The total strain of high-strength concrete
predicted by using ACI 209 may differ from the compressive strain behavior of the struc-
tures. Therefore, this study proposes constants that can modify the constant 2.35 of the
ultimate creep coefficient of the ACI 209 model. The constants of the ultimate creep coef-
ficient are derived by reflecting the measured compressive creep values of high-strength
concrete in consideration of the curing condition and compressive strength and are shown
in Equation (9) and Table 6.
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Figure 13. Total strain of 90 MPa concrete calculated from compressive creep coefficients that corrected through measured
values and predicted through ACI 209: (a) sealed; (b) unsealed.

Table 6. Modified constants a in Equation (9).

Condition Basic 90N 90F 90F (32%) 80F 80F (7d) 70F

Sealed
2.35

- 0.88 - 0.93 - 1.10
Unsealed 1.11 1.14 0.95 1.28 1.80 1.65

υu′ = a× γc (9)

where

υu′: modified ultimate creep coefficient;
a: modified constants;
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4. Conclusions

1. The compressive strength and elastic modulus of high-strength concrete were eval-
uated to be approximately 2% higher under the sealed condition than under the
unsealed condition based on the curing conditions. This is attributed to the moisture
conserved in the concrete under sealed conditions. Additionally, the compressive
strength and elastic modulus of the high-strength concrete increased by approximately
4% when limestone coarse aggregate was used.

2. The autogenous shrinkage increases, and the drying shrinkage decreases with the
increase in the compressive strength of the concrete. Particularly, the autogenous
shrinkage of high-strength concrete increases owing to the self-desiccation caused by
the hydration of unhydrated cement, which cannot be implemented by the existing
models. Autogenous shrinkage and drying shrinkage occur simultaneously under the
unsealed conditions in actual structures. Therefore, both autogenous shrinkage and
drying shrinkage must be considered to predict the overall shrinkage of high-strength
concrete. Furthermore, modified formulas were derived using the autogenous shrink-
age prediction model proposed by a previous study, which reflected the autogenous
shrinkage development characteristics of high-strength concrete.

3. The compressive creep coefficient of high-strength concrete was evaluated to be ap-
proximately 1.58 to 2.91 times higher under the unsealed condition than under the
sealed condition based on the curing conditions and was also affected by the compres-
sive strength, loading level, and loading age. Additionally, the coarse aggregates affect
the elastic modulus and compressive creep of high-strength concrete, which varies
depending on various conditions, which cannot be reflected by the existing models.
The shrinkage and compressive creep characteristics must be reflected to improve
the prediction accuracy for the deformation of high-strength concrete because actual
structures are exposed to more conditions than in laboratory tests. Therefore, ACI-209
proposed modified formulas to derive the ultimate creep coefficient by reflecting
the compressive creep characteristics of high-strength concrete based on the curing
condition and compressive strength.

4. High-strength concrete has different internal structures because it contains more
binders than normal-strength concrete. Therefore, the shrinkage and compressive
creep of the main structural members must be accurately predicted to ensure structural
stability in high-rise buildings where high-strength concrete is used. The accurate
prediction of the deformation characteristics of high-strength concrete requires the
construction of databases considering conditions such as compressive strength, cur-
ing condition, and coarse aggregate. In addition, future studies should investigate
the correspondence between the compressive deformation of concrete members of
buildings and the predicted values of the compressive deformation of concrete based
on material values.
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