Technological Characterization of PET—Polyethylene Terephthalate—Added Soil-Cement Bricks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Mixtures
2.2. Experimental Procedures
3. Results and Discussion
3.1. Characterization of Materials and Mixtures
3.1.1. Granulometric Analysis
3.1.2. Consistency Limits
3.1.3. Moisture Content and Compaction Energy
3.1.4. Microstructural Characterization
3.2. Technological Characterization of Bricks
3.2.1. Compressive Strength
3.2.2. Water Absorption
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Araújo, C.K.D.C.; Salvador, R.; Piekarski, C.M.; Sokulski, C.C.; De Francisco, A.C.; Camargo, S.K.D.C.A. Circular Economy Practices on Wood Panels: A bibliographic analysis. Sustainability 2019, 11, 1075. [Google Scholar] [CrossRef] [Green Version]
- Krishna, R.; Mishra, J.; Meher, S.; Das, S.K.; Mustakim, S.; Singh, S.K. Industrial solid waste management through sustainable green technology: Case study insights from steel and mining industry in Keonjhar, India. Mater. Today Proc. 2020, 33, 5243–5249. [Google Scholar] [CrossRef]
- Luiz, N.F.; Cecchin, D.; Azevedo, A.R.G.; Alexandre, J.; Silva, F.C.; Paes, A.L.C.; Pinheiro, V.D.; Do Carmo, D.F.; Ferraz, P.F.P.; Hüther, C.M.; et al. Characterization of materials used in the manufacture of ceramic tile with incorporation of ornamental rock waste. DuraSpace 2020, 18, 904–914. [Google Scholar] [CrossRef]
- Da Silva, T.R.; de Azevedo, A.R.; Cecchin, D.; Marvila, M.T.; Amran, M.; Fediuk, R.; Vatin, N.; Karelina, M.; Klyuev, S.; Szelag, M. Application of Plastic Wastes in Construction Materials: A Review Using the Concept of Life-Cycle Assessment in the Context of Recent Research for Future Perspectives. Materials 2021, 14, 3549. [Google Scholar] [CrossRef] [PubMed]
- Areias, I.O.R.; Vieira, C.M.F.; Colorado, H.A.; Delaqua, G.C.G.; Monteiro, S.N.; Azevedo, A.R.G. Could city sewage sludge be directly used into clay bricks for building construction? A comprehensive case study from brazil. J. Build. Eng. 2020, 31, 2566. [Google Scholar] [CrossRef]
- United Nations. The state of plastics: World Environment Day Outlook 2018. In UN Environment Programme; ONU: New York, NY, USA, 2018; p. 11. [Google Scholar]
- Spósito, F.A.; Higuti, R.T.; Tashima, M.M.; Akasaki, J.L.; Melges, J.L.P.; Assunção, C.C.; Bortoletto, M.; Silva, R.G.; Fioriti, C.F. Incorporation of PET wastes in rendering mortars based on Portland cement/hydrated lime. J. Build. Eng. 2020, 32, 101506. [Google Scholar] [CrossRef]
- World Wide Fund for Nature (WWF). Solving Plastic Pollution through Accountability; WWF Word: New York, NY, USA, 2019; p. 23. [Google Scholar]
- De Castro, A.M.; Carniel, A.; Stahelin, D.; Junior, L.S.C.; Honorato, H.D.A.; de Menezes, S.M.C. High-fold improvement of assorted post-consumer poly(ethylene terephthalate) (PET) packages hydrolysis using Humicola insolens cutinase as a single biocatalyst. Process. Biochem. 2019, 81, 85–91. [Google Scholar] [CrossRef]
- Da Costa, A.M.; Lopes, V.R.D.O.; Vidal, L.; Nicaud, J.-M.; de Castro, A.M.; Coelho, M.A.Z. Poly(ethylene terephthalate) (PET) degradation by Yarrowia lipolytica: Investigations on cell growth, enzyme production and monomers consumption. Process. Biochem. 2020, 95, 81–90. [Google Scholar] [CrossRef]
- Almeida, F.C.; Sales, A.; Moretti, J.P.; Mendes, P.C. Sugarcane bagasse ash sand (SBAS): Brazilian agroindustrial by-product for use in mortar. Constr. Build. Mater. 2015, 82, 31–38. [Google Scholar] [CrossRef]
- De Azevedo, A.R.A.R.G.; Marvila, M.T.; Tayeh, B.A.; Cecchin, D.; Pereira, A.C.; Monteiro, S.N.S.N. Technological performance of açaí natural fibre reinforced cement-based mortars. J. Build. Eng. 2021, 33. [Google Scholar] [CrossRef]
- Azevedo, A.; de Matos, P.; Marvila, M.; Sakata, R.; Silvestro, L.; Gleize, P.; Brito, J. Rheology, Hydration, and Microstructure of Portland Cement Pastes Produced with Ground Açaí Fibers. Appl. Sci. 2021, 11, 3036. [Google Scholar] [CrossRef]
- Abdel-Ghani, N.T.; El-Sayed, H.A.; El-Habak, A.A. Utilization of by-pass cement kiln dust and air-cooled blast-furnace steel slag in the production of some “green” cement products. HBRC J. 2018, 14, 408–414. [Google Scholar] [CrossRef] [Green Version]
- Carasek, H.; Girardi, A.C.C.; Araújo, R.C.; Angelim, R.; Cascudo, O. Study and evaluation of construction and demolition waste recycled aggregates for masonry and rendering mortars. Cerâmica 2018, 64, 288–300. [Google Scholar] [CrossRef] [Green Version]
- Rahman, Z.A.; Saleh, N.M.M.; Idris, W.M.R.; Lihan, T. Thermal effect on mechanical characteristics of drinking water sludge brick incorporated with rice husk Ash (Kesan Suhu terhadap Cirian Mekanik Bata Sisa Rawatan Air Campuran Abu Sekam Padi). Sains Malays. 2019, 48, 2541–2549. [Google Scholar] [CrossRef]
- Azevedo, A.; Marvila, M.; Fernandes, W.J.; Alexandre, J.; Xavier, G.; Zanelato, E.; Cerqueira, N.; Pedroti, L.; Mendes, B. Assessing the potential of sludge generated by the pulp and paper industry in assembling locking blocks. J. Build. Eng. 2019, 23, 334–340. [Google Scholar] [CrossRef]
- Contreras, M.; Teixeira, S.R.; Lucas, M.C.; Lima, L.C.N.; Cardoso, D.S.L.; da Silva, G.A.C.; Gregório, G.C.; de Souza, A.E.; dos Santos, A. Recycling of construction and demolition waste for producing new construction material (Brazil case-study). Constr. Build. Mater. 2016, 123, 594–600. [Google Scholar] [CrossRef] [Green Version]
- Jannat, N.; Hussien, A.; Abdullah, B.; Cotgrave, A. Application of agro and non-agro waste materials for unfired earth blocks construction: A review. Constr. Build. Mater. 2020, 254, 119346. [Google Scholar] [CrossRef]
- Pooja, P.; Vaitla, M.; Sravan, G.; Reddy, M.P.; Bhagyawati, M. Study on behavior of concrete with partial replacement of fine aggregate with waste plastics. Mater. Today Proc. 2019, 8, 182–187. [Google Scholar] [CrossRef]
- Alfahdawi, I.H.; Osman, S.A.; Hamid, R.; L-Hadithi, A.I.A. Influence of PET wastes on the environment and high strength concrete properties exposed to high temperatures. Constr. Build. Mater. 2019, 225, 358–370. [Google Scholar] [CrossRef]
- Perera, S.; Arulrajah, A.; Wong, Y.C.; Horpibulsuk, S.; Maghool, F. Utilizing recycled PET blends with demolition wastes as construction materials. Constr. Build. Mater. 2019, 221, 200–209. [Google Scholar] [CrossRef]
- Akinyele, J.O.; Ajede, A. The use of granulated plastic waste in structural concrete. Afr. J. Sci. Technol. Innov. Dev. 2018, 10, 169–175. [Google Scholar] [CrossRef]
- Mohammed, A.A.; Rahim, A.A.F. Experimental behavior and analysis of high strength concrete beams reinforced with PET waste fiber. Constr. Build. Mater. 2020, 244, 118350. [Google Scholar] [CrossRef]
- Akinyele, J.O.; Igba, U.T.; Adigun, B.G. Effect of waste PET on the structural properties of burnt bricks. Sci. Afr. 2020, 7, e00301. [Google Scholar] [CrossRef]
- Paschoalin Filho, J.A.; Storopoli, J.H.; Dias, A.J.G. Evaluation of compressive strength and water absorption of soil-cement bricks manufactured with addition of pet (polyethylene terephthalate) wastes. Acta Sci. Technol. 2016, 38, 163–171. [Google Scholar] [CrossRef]
- Akinwumi, I.I.; Domo-Spiff, A.H.; Salami, A. Marine plastic pollution and affordable housing challenge: Shredded waste plastic stabilized soil for producing compressed earth bricks. Case Stud. Constr. Mater. 2019, 11, e00241. [Google Scholar] [CrossRef]
- França, B.R.; Azevedo, A.; Monteiro, S.N.; Filho, F.D.C.G.; Marvila, M.; Alexandre, J.; Zanelato, E.B. Durability of Soil-Cement Blocks with the Incorporation of Limestone Residues from the Processing of Marble. Mater. Res. 2018, 21, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Campos, A.; Brito, L.T. Structural behavior of soil-cement bricks using different sources of water and healing methods Comportement structurel de sol ciment briques utilisant différentes sources fuentes de agua y métodos de sanación. Interações (Campo Grande) 2017, 20, 283–296. [Google Scholar]
- Al-Fakih, A.; Mohammed, B.S.; Liew, M.S.; Nikbakht, E. Incorporation of waste materials in the manufacture of masonry bricks: An update review. J. Build. Eng. 2019, 21, 37–54. [Google Scholar] [CrossRef]
- Reis, F.M.D.; Ribeiro, R.P.; Reis, M.J. Physical-mechanical properties of soil-cement bricks with the addition of the fine fraction from the quartzite mining tailings (State of Minas Gerais—Brazil). Bull. Eng. Geol. Environ. 2020. [Google Scholar] [CrossRef]
- Kongkajun, N.; Laitila, E.A.; Ineure, P.; Prakaypan, W.; Cherdhirunkorn, B.; Chakartnarodom, P. Soil-cement bricks produced from local clay brick waste and soft sludge from fiber cement production. Case Stud. Constr. Mater. 2020, 13, e00448. [Google Scholar] [CrossRef]
- Kouamé, A.N.; Doubi, B.I.H.G.; Konan, L.K.; Tognonvi, M.; Oyetola, S. The effect of Shea butter wastes on Physical Properties of Compressed Earth Bricks (CEB) and Cement Stabilized. Aust. J. Basic Appl. Sci. 2020, 13, 19–26. [Google Scholar] [CrossRef]
- Vilela, A.P.; Eugênio, T.M.C.; De Oliveira, F.F.; Mendes, J.F.; Ribeiro, A.G.C.; Vaz, L.E.V.D.S.B.; Mendes, R.F. Technological properties of soil-cement bricks produced with iron ore mining waste. Constr. Build. Mater. 2020, 262, 120883. [Google Scholar] [CrossRef]
- Brazilian Association of Technical Standards (ABNT). NBR 10833: Production of Soil-Cement Bricks and Blocks Using a Manual or Hydraulic Press—Procedure; ABNT: Rio de Janeiro, Brazil, 2013; 3p. [Google Scholar]
- Brazilian Association of Technical Standards (ABNT). NBR 7181: Granulometric Analysis; ABNT: Rio de Janeiro, Brazil, 2016; 12p. [Google Scholar]
- Brazilian Association of Technical Standards (ABNT). NBR 6459: Soil—Determination of Liquidity Limit; ABNT: Rio de Janeiro, Brazil, 2017; 5p. [Google Scholar]
- Brazilian Association of Technical Standards (ABNT). NBR 7180: Soil—Determination of the Plasticity Limit; ABNT: Rio de Janeiro, Brazil, 2016; 3p. [Google Scholar]
- Brazilian Association of Technical Standards (ABNT). NBR 7182: Soil—Compaction Test; ABNT: Rio de Janeiro, Brazil, 2020; 9p. [Google Scholar]
- Brazilian Association of Technical Standards (ABNT). NBR 12023: Soil-Cement—Compaction Test; ABNT: Rio de Janeiro, Brazil, 2012; 7p. [Google Scholar]
- Azevedo, A.; Cecchin, D.; Carmo, D.; Silva, F.; Campos, C.; Shtrucka, T.; Marvila, M.; Monteiro, S. Analysis of the compactness and properties of the hardened state of mortars with recycling of construction and demolition waste (CDW). J. Mater. Res. Technol. 2020, 9, 5942–5952. [Google Scholar] [CrossRef]
- Brazilian Association of Technical Standards (ABNT). NBR 8491: Soil-Cement Brick—Requirements; ABNT: Rio de Janeiro, Brazil, 2012; 5p. [Google Scholar]
- Brazilian Association of Technical Standards (ABNT). NBR 8492: Soil-Cement Brick—Dimensional Analysis, Determination of Compressive Strength and Water Absorption—Test Method; ABNT: Rio de Janeiro, Brazil, 2012; 4p. [Google Scholar]
- Brazilian Association of Technical Standards (ABNT). NBR 6502: Rocks and Soils—Terminology; ABNT: Rio de Janeiro, Brazil, 1995; 18p. [Google Scholar]
- Souza, M.I.B.; Segantini, A.A.S.; Pereira, J.A. Soil-cement pressed bricks made with concrete wastes. Rev. Bras. Eng. Agrícola Ambient. 2008, 12, 205–212. [Google Scholar] [CrossRef]
- Brazilian Portland Cement Association (ABCP). Fabricação de Tijolos de Solo-Cimento com a Utilização de Prensas Manuais, 3rd ed.; ABCP: São Paulo, Brazil, 2000; 16p, ISBN 85-87024-28-0. (In Portuguese) [Google Scholar]
- Ferreira, D.; Luso, E.; Cruz, M. Ecological soil-cement blocks with waste incorporation. In Proceedings of the REHABEND 2018: Construction Pathology, Rehabilitation Technology and Heritage Management, Caceres, Spain, 15–18 May 2018; pp. 1368–1376. [Google Scholar]
- Murmu, A.L.; Patel, A. Towards sustainable bricks production: An overview. Constr. Build. Mater. 2018, 165, 112–125. [Google Scholar] [CrossRef]
- Siqueira, F.B.; Holanda, J.N.F. Effect of incorporation of grits waste on the densification behavior of soil-cement bricks. Ceramica 2015, 61, 414–419. [Google Scholar] [CrossRef] [Green Version]
- Umasabor, R.I.; Daniel, S.C. The effect of using polyethylene terephthalate as an additive on the flexural and compressive strength of concrete. Heliyon 2020, 6, e04700. [Google Scholar] [CrossRef] [PubMed]
- Brazilian Association of Technical Standards (ABNT). NBR 15270-1: Ceramic Components—Blocks and Bricks for Masonry—Part 1: Requirements; ABNT: Rio de Janeiro, Brazil, 2017; 26p. [Google Scholar]
- Santos, A.C.D. Investigation of the Effect of Incorporating PET Waste in Cementitious Composites. Ph.D. Thesis, Federal University of São João Del-rei, São João del-Rei, Brazil, 2012; p. 102. (In Portuguese). [Google Scholar]
- Górak, P.; Postawa, P.; Trusilewicz, L.N.; Łagosz, A. Lightweight PET based composite aggregates in Portland cement materials—Microstructure and physicochemical performance. J. Build. Eng. 2020, 34, 101882. [Google Scholar] [CrossRef]
- Martins, R.O.G.; Alvarenga, R.D.C.S.S.; Pedroti, L.G.; de Oliveira, A.F.; Mendes, B.C.; de Azevedo, A.R.G. Assessment of the durability of grout submitted to accelerated carbonation test. Constr. Build. Mater. 2018, 159, 261–268. [Google Scholar] [CrossRef]
- De Azevedo, A.R.G.; Marvila, M.T.; Rocha, H.A.; Cruz, L.R.; Vieira, C.M.F. Use of glass polishing waste in the development of ecological ceramic roof tiles by the geopolymerization process. Int. J. Appl. Ceram. Technol. 2020, 17, 2649–2658. [Google Scholar] [CrossRef]
- Carvalho, A.; de Castro Xavier, G.; Alexandre, J.; Pedroti, L.G.; de Azevedo, A.R.G.; Vieira, C.M.F.; Monteiro, S.N. Environmental durability of soil-cement block incorporated with ornamental stone waste. Mater. Sci. Forum 2014, 798–799, 548–553. [Google Scholar] [CrossRef]
- Neuba, L.M.; Pereira Junio, R.F.; Ribeiro, M.P.; Souza, A.T.; Lima, E.S.; Filho, F.C.G.; Monteiro, S.N. Promising mechanical, thermal, and ballistic properties of novel epoxy composites reinforced with cyperus malaccensis sedge fiber. Polymers 2020, 12, 1776. [Google Scholar] [CrossRef] [PubMed]
Mixtures | Soil (vol.%) | Cement (vol.%) | PET (vol.%) |
---|---|---|---|
0% | 90 | 10 | 0 |
10% | 80 | 10 | 10 |
20% | 70 | 10 | 20 |
30% | 60 | 10 | 30 |
PET (%) | LL (%) | PL (%) | PI (%) |
---|---|---|---|
0% | 40.1 | 22.4 | 17.7 |
10% | 34.0 | 20.0 | 14.0 |
20% | 36.7 | 19.4 | 17.3 |
30% | 33.8 | 18.4 | 15.3 |
PET | Specific Weight (kN/m3) | Optimum Humidity (%) |
---|---|---|
0% | 17.8 | 14.5 |
10% | 16.6 | 15.0 |
20% | 15.6 | 15.3 |
30% | 13.9 | 16.5 |
PET (%) | Compressive Strength 7 Days | Standard Deviation 7 Days | Compressive Strength 28 Days | Standard Deviation 28 Days |
---|---|---|---|---|
0 | 0.68 Ba | 0.132 | 0.83 Ca | 0.115 |
10 | 0.88 Ba | 0.053 | 0.89 Ca | 0.043 |
20 | 1.56 Ab | 0.270 | 1.80 Aa | 0.111 |
30 | 1.39 Aa | 0.120 | 1.45 Ba | 0.118 |
PET (%) | Water Absorption | Standard Deviation |
---|---|---|
0 | 16.23 A | 1.057 |
10 | 15.93 A | 0.109 |
20 | 15.27 A | 0.252 |
30 | 15.21 A | 0.283 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
da Silva, T.R.; Cecchin, D.; de Azevedo, A.R.G.; Valadão, I.; Alexandre, J.; da Silva, F.C.; Marvila, M.T.; Gunasekaran, M.; Garcia Filho, F.; Monteiro, S.N. Technological Characterization of PET—Polyethylene Terephthalate—Added Soil-Cement Bricks. Materials 2021, 14, 5035. https://doi.org/10.3390/ma14175035
da Silva TR, Cecchin D, de Azevedo ARG, Valadão I, Alexandre J, da Silva FC, Marvila MT, Gunasekaran M, Garcia Filho F, Monteiro SN. Technological Characterization of PET—Polyethylene Terephthalate—Added Soil-Cement Bricks. Materials. 2021; 14(17):5035. https://doi.org/10.3390/ma14175035
Chicago/Turabian Styleda Silva, Tulane Rodrigues, Daiane Cecchin, Afonso Rangel Garcez de Azevedo, Izabella Valadão, Jonas Alexandre, Flavio Castro da Silva, Markssuel Teixeira Marvila, Murali Gunasekaran, Fabio Garcia Filho, and Sergio Neves Monteiro. 2021. "Technological Characterization of PET—Polyethylene Terephthalate—Added Soil-Cement Bricks" Materials 14, no. 17: 5035. https://doi.org/10.3390/ma14175035
APA Styleda Silva, T. R., Cecchin, D., de Azevedo, A. R. G., Valadão, I., Alexandre, J., da Silva, F. C., Marvila, M. T., Gunasekaran, M., Garcia Filho, F., & Monteiro, S. N. (2021). Technological Characterization of PET—Polyethylene Terephthalate—Added Soil-Cement Bricks. Materials, 14(17), 5035. https://doi.org/10.3390/ma14175035