A Three-Phase Transport Model for High-Temperature Concrete Simulations Validated with X-ray CT Data
Abstract
:1. Introduction
2. Model Description
2.1. Dehydration and Porosity Descriptions from the Literature
2.2. Balance Equations
2.3. Constitutive Equations
2.4. Boundary Conditions
2.5. Numerical Approximation
3. Results
3.1. Skeleton Mass Density
3.2. Validation on a Slowly Heated Cylinder
3.3. High-Temperature Benchmark Problem
4. Replication
5. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Notation
mass of dehydrated water (kg m−3) | T | temperature [K] | |
dehydration degree (-) | capillary pressure (Pa) | ||
effective thermal conductivity (W m−1 K−1) | saturation (-) | ||
mass content per unit volume (kg m−3) | mass density (kg m−3) | ||
specific heat capacity (J kg−1 K−1) | n | porosity (-) | |
evaporation enthalpy (J kg−1) | |||
D | gas diffusion coefficient (m2 s−1) | Subscripts | |
k | intrinsic permeability (m2) | dry air | |
pressure (Pa) | water vapour | ||
relative permeability (-) | gas/moist air | ||
dehydration enthalpy (J kg−1) | liquid water | ||
dynamic viscosity (Pa s) | skeleton | ||
c | cement content (kg m−3) |
Appendix A. Water and Air Properties
Parameter | Value | Unit | Parameter | Value |
---|---|---|---|---|
Pa s | 1.99274064 | |||
Pa s | 1.09965342 | |||
Pa s K−1 | −0.510839303 | |||
Pa s K−1 | −1.75493479 | |||
Pa s K−2 | −45.5170352 | |||
322 | kg m−3 | |||
J K−4 | 1.0854263 | |||
J K−3 | 31.444765 | |||
J K−2 | 1.1377150 | |||
J K−1 | 29.443528 |
Appendix B. Dehydration Models
Tenchev et al. [4] | Name | |||||
Start values | 0.2 | 500.0 | 600.0 | 0.003 | 0.0002 | |
Fitted values | 0.202 | 364.1 | 473.3 | 0.00514 | 0.000843 | |
Gawin et al. [13] | Name | |||||
Start values | — | 0.0003 | ||||
Fitted values | 0.209 | 0.00308 | ||||
Pesavento [6] | Name | k | ||||
Start values | 0.2 | −0.004 | ||||
Fitted values | 0.189 | −0.0057 | ||||
Dwaikat and Kodur [14] | Name | r | ||||
Start values | 0.2 | 0.005 | ||||
Fitted values | 0.187 | 0.00345 | ||||
Dal Pont and Ehrlacher [15] | Name | |||||
Start values | 0.2 | 200.0 | ||||
Fitted values | 0.199 | 178.02 |
References
- Bažant, Z.P.; Najjar, L.J. Nonlinear water diffusion in nonsaturated concrete. Mat. Constr. 1972, 5, 3–20. [Google Scholar] [CrossRef]
- Künzel, H.M. Simultaneous Heat and Moisture Transport in Building Components. One- and Two-Dimensional Calculation Using Simple Parameters; Technical Report; Fraunhofer Institute of Building Physics: Stuttgart, Germany, 1995. [Google Scholar]
- Abdel-Rahman, A.K.; Ahmed, G.N. Computational Heat And Mass Transport In Concrete Walls Exposed To Fire. Numer. Heat Transf. Part A Appl. 1996, 29, 373–395. [Google Scholar] [CrossRef]
- Tenchev, R.T.; Li, L.Y.; Purkiss, J.A. Finite Element Analysis of Coupled Heat and Moisture Transfer in Concrete Subjected to Fire. Numer. Heat Transf. Part A Appl. 2001, 39, 685–710. [Google Scholar] [CrossRef]
- Gawin, D.; Majorana, C.E.; Schrefler, B.A. Numerical analysis of hygro-thermal behaviour and damage of concrete at high temperature. Mech. Cohes.-Frict. Mater. 1999, 4, 37–74. [Google Scholar] [CrossRef]
- Pesavento, F. Non-Linear Modelling of Concrete as Multiphase Porous Material in High Temperature Conditions. Ph.D. Thesis, University of Padova, Padova, Italy, 2000. [Google Scholar]
- Dauti, D.; Dal Pont, S.; Weber, B.; Briffaut, M.; Toropovs, N.; Wyrzykowski, M.; Sciumé, G. Modeling concrete exposed to high temperature: Impact of dehydration and retention curves on moisture migration. Int. J. Numer. Anal. Methods Geomech. 2018, 42, 1516–1530. [Google Scholar] [CrossRef]
- Balázs, G.L.; Lublóy, E.; Földes, T. Evaluation of Concrete Elements with X-Ray Computed Tomography. J. Mater. Civ. Eng. 2018, 30, 06018010. [Google Scholar] [CrossRef]
- Henry, M.; Darma, I.S.; Sugiyama, T. Analysis of the effect of heating and re-curing on the microstructure of high-strength concrete using X-ray CT. Constr. Build. Mater. 2014, 67, 37–46. [Google Scholar] [CrossRef]
- Powierza, B.; Stelzner, L.; Oesch, T.; Gollwitzer, C.; Weise, F.; Bruno, G. Water Migration in One-Side Heated Concrete: 4d In-Situ CT Monitoring of the Moisture-Clog-Effect. J. Nondestruct. Eval. 2018, 38, 15. [Google Scholar] [CrossRef]
- Hartlieb, P.; Toifl, M.; Kuchar, F.; Meisels, R.; Antretter, T. Thermo-physical properties of selected hard rocks and their relation to microwave-assisted comminution. Miner. Eng. 2016, 91, 34–41. [Google Scholar] [CrossRef]
- Hager, I.; Tracz, T.; Śliwiński, J.; Krzemień, K. The influence of aggregate type on the physical and mechanical properties of high-performance concrete subjected to high temperature. Fire Mater. 2016, 40, 668–682. [Google Scholar] [CrossRef]
- Gawin, D.; Pesavento, F.; Schrefler, B.A. What physical phenomena can be neglected when modelling concrete at high temperature? A comparative study. Part 1: Physical phenomena and mathematical model. Int. J. Solids Struct. 2011, 48, 1927–1944. [Google Scholar] [CrossRef]
- Dwaikat, M.; Kodur, V. Hydrothermal model for predicting fire-induced spalling in concrete structural systems. Fire Saf. J. 2009, 44, 425–434. [Google Scholar] [CrossRef]
- Dal Pont, S.; Ehrlacher, A. Numerical and experimental analysis of chemical dehydration, heat and mass transfers in a concrete hollow cylinder submitted to high temperatures. Int. J. Heat Mass Transf. 2004, 47, 135–147. [Google Scholar] [CrossRef]
- Lothenbach, B.; Scrivener, K.; Snellings, R. (Eds.) A Practical Guide to Microstructural Analysis of Cementitious Materials; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Taylor, H.F.W. Cement Chemistry; Academic Press: New York, NY, USA, 1990. [Google Scholar]
- Jennings, H.M. Refinements to colloid model of C-S-H in cement: CM-II. Cem. Concr. Res. 2008, 38, 275–289. [Google Scholar] [CrossRef]
- Gawin, D.; Pesavento, F.; Schrefler, B.A. Modelling of hygro-thermal behaviour and damage of concrete at temperature above the critical point of water. Int. J. Numer. Anal. Meth. Geomech. 2002, 26, 537–562. [Google Scholar] [CrossRef]
- Gawin, D.; Pesavento, F.; Schrefler, B.A. What physical phenomena can be neglected when modelling concrete at high temperature? A comparative study. Part 2: Comparison between models. Int. J. Solids Struct. 2011, 48, 1945–1961. [Google Scholar] [CrossRef]
- DeJong, M.J.; Ulm, F.J. The nanogranular behavior of CSH at elevated temperatures (up to 700 C). Cem. Concr. Res. 2007, 37, 1–12. [Google Scholar] [CrossRef]
- Beneš, M.; Štefan, R. Hygro-thermo-mechanical analysis of spalling in concrete walls at high temperatures as a moving boundary problem. Int. J. Heat Mass Transf. 2015, 85, 110–134. [Google Scholar] [CrossRef] [Green Version]
- Baroghel-Bouny, V.; Mainguy, M.; Lassabatere, T.; Coussy, O. Characterization and identification of equilibrium and transfer moisture properties for ordinary and high-performance cementitious materials. Cem. Concr. Res. 1999, 29, 1225–1238. [Google Scholar] [CrossRef]
- Davie, C.T.; Pearce, C.J.; Bićanić, N. Coupled Heat and Moisture Transport in Concrete at Elevated Temperatures—Effects of Capillary Pressure and Adsorbed Water. Numer. Heat Transf. Part A Appl. 2006, 49, 733–763. [Google Scholar] [CrossRef]
- Logg, A.; Mardal, K.A.; Wells, G. (Eds.) Automated Solution of Differential Equations by the Finite Element Method; Lecture Notes in Computational Science and Engineering; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar] [CrossRef]
- Stelzner, L.; Powierza, B.; Weise, F.; Oesch, T.S.; Dlugosch, R.; Meng, B. Analysis of moisture transport in unilateral-heated dense high-strength concrete. In Proceedings of the 5th International Workshop on Concrete Spalling, Boras, Sweden, 12–13 October 2017; pp. 227–239. [Google Scholar]
- Sandve, G.K.; Nekrutenko, A.; Taylor, J.; Hovig, E. Ten Simple Rules for Reproducible Computational Research. PLoS Comput. Biol. 2013, 9, e1003285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scrivener, K.L.; Crumbie, A.K.; Laugesen, P. The Interfacial Transition Zone (ITZ) Between Cement Paste and Aggregate in Concrete. Interface Sci. 2004, 12, 411–421. [Google Scholar] [CrossRef]
- Wagner, W.; Pruss, A. International Equations for the Saturation Properties of Ordinary Water Substance. Revised According to the International Temperature Scale of 1990. Addendum to J. Phys. Chem. Ref. Data 16, 893 (1987). J. Phys. Chem. Ref. Data 1993, 22, 783–787. [Google Scholar] [CrossRef] [Green Version]
- Watson, K. Thermodynamics of the liquid state. Ind. Eng. Chem. 1943, 35, 398–406. [Google Scholar] [CrossRef]
Component | Content (kg m−3) |
---|---|
Cement CEM I 42.5 R | 580 |
Water | 173 |
Quarzitic aggregate | |
0/2 mm | 764 |
2/4 mm | 229 |
4/8 mm | 535 |
Silica fume | 63.8 |
Superplasticizer | 14.5 |
Parameter | Value | Unit | Parameter | Value | Unit |
---|---|---|---|---|---|
2.884 × 10−21 | m2 | 4.282 | W m−1 K−1 | ||
0.005 | K−1 | −0.002108 | K−1 | ||
D | 1.319 × 10−6 | m2 s−1 | 2400 | kJ kg−1 | |
a | 52.691 | kPa | h | 238.1 | W m−2 K−1 |
b | 1.778 | — | 1 | — | |
0.2 | m s−1 | 1200 | J kg−1 K−1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pohl, C.; Šmilauer, V.; Unger, J.F. A Three-Phase Transport Model for High-Temperature Concrete Simulations Validated with X-ray CT Data. Materials 2021, 14, 5047. https://doi.org/10.3390/ma14175047
Pohl C, Šmilauer V, Unger JF. A Three-Phase Transport Model for High-Temperature Concrete Simulations Validated with X-ray CT Data. Materials. 2021; 14(17):5047. https://doi.org/10.3390/ma14175047
Chicago/Turabian StylePohl, Christoph, Vít Šmilauer, and Jörg F. Unger. 2021. "A Three-Phase Transport Model for High-Temperature Concrete Simulations Validated with X-ray CT Data" Materials 14, no. 17: 5047. https://doi.org/10.3390/ma14175047
APA StylePohl, C., Šmilauer, V., & Unger, J. F. (2021). A Three-Phase Transport Model for High-Temperature Concrete Simulations Validated with X-ray CT Data. Materials, 14(17), 5047. https://doi.org/10.3390/ma14175047