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Abstract: Waterlogged wood treatment with methyltrimethoxysilane (MTMS) proved effective in
stabilising wood dimensions upon drying (anti-shrink efficiency of 76–93%). Before the method
can be proposed as a reliable conservation treatment, further research is required that includes the
evaluation of the mechanical properties of treated wood. The aim of the study was to characterise
the effect of the treatment on the viscoelastic behaviour of archaeological waterlogged elm and oak
wood differing in the degree of degradation. Dynamic mechanical analysis in the temperature range
from −150 to +150 ◦C was used for the study. To better understand the viscoelastic behaviour of
the treated wood, pore structure and moisture properties were also investigated using Scanning
Electron Microscopy, nitrogen sorption, and Dynamic Vapour Sorption. The results clearly show that
methyltrimethoxysilane not only prevents collapse and distortions of the degraded cell walls and
decreases wood hygroscopicity (by more than half for highly degraded wood), but also reinforces the
mechanical strength by increasing stiffness and resistance to deformation for heavily degraded wood
(with an increase in storage modulus). However, the MTMS also has a plasticising effect on treated
wood, as observed in the increased value of loss modulus and introduction of a new tan δ peak).
On the one hand, methyltrimethoxysilane reduces wood hygroscopicity that reflects in lower wood
moisture content, thus limiting the plasticising effect of water on wood polymers, but on the other
hand, as a polymer itself, it contributes to the viscous behaviour of the treated wood. Interestingly,
the effect of silane differs with both the wood species and the degree of wood degradation.

Keywords: archaeological wood; rheological behaviour; methyltrimethoxysilane; silane treatment;
mechanical properties; DMA; wood conservation

1. Introduction

Archaeological waterlogged wooden artefacts are excavated mainly from wet ground
or water reservoirs. Fully saturated with water from the surrounding environment of
the burial site, they usually look good and retain their original shape and dimensions.
However, due to microbial activity, the main wood chemical components (in the first
instance, carbohydrates) degrade over time, making the cell walls thinner and weaker.
Thus, when exposed to drying, waterlogged wood tends to irreversibly change its shape
and dimensions due to shrinkage and cell wall collapse [1–3]. To preserve its integrity and
prevent permanent destruction, the historical wooden objects therefore require immediate
conservation treatment.

Currently, the most common solutions applied by conservators are based on polyethy-
lene glycol (PEG). This is commercially available in a wide range of molecular weights,
which makes it useful for the conservation of wood with varying degrees of degradation
and permeability. PEG can penetrate waterlogged wood tissue and replace water molecules,
thus reinforcing the wood structure and improving its dimensional stability [4–7]. However,
it is not devoid of significant shortcomings, such as high leachability, and a tendency to
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be degraded to acidic by-products over time (which causes further chemical deterioration
of the PEG impregnated wood) [8–11]. Additionally, the PEG-treated wood has increased
hygroscopicity, resulting in strong swelling at high relative humidity, leading to irreversible
wood degradation when strong swelling can induce cracking. It is also known that PEG
has a plasticising effect on the treated wood [8–11]. Other chemicals that have been used
so far for wood conservation, such as alum salts, carbohydrates, sugar alcohols, proteins,
various resins or waxes, are not without drawbacks as well [12–19]. Therefore, the research
continues on developing alternative wood consolidants, including those based on natural
materials, such as cellulose or lignin derivatives, beeswax, colophony and other natural
polymers, or using nanotechnology to create nanocomposites or supramolecular polymer
networks [19–33].

Some recent studies aimed at the application of organosilicon compounds with various
functional groups. Although the first attempts to use these chemicals in wood conservation
already have a history [34–36], only recently has more comprehensive research been
resumed to increase understanding of the properties of the treated wood [37]. One of the
effective alkoxysilanes is methyltrimethoxysilane (MTMS). Although it can slightly lighten
the original wood colour, it proved efficient in dimensional stabilisation of waterlogged
wood, differing in the degree of degradation, ensuring its hydrophobisation and limitation
of susceptibility to brown-rot decay [37–39]. However, before establishing this kind of
treatment as a practical conservation method, the influence of the conservation agent on
the physical and mechanical properties of the wood also have to be evaluated to ensure
that it does not pose a threat to the integrity of the conserved object.

The mechanical performance of wood depends on many factors, including wood
species, presence of juvenile or reaction wood, and density. The roles of temperature and
moisture content at the time of testing [40–44] and the hierarchical structure of the wood are
also recognised, both in terms of grain orientation during the test and at a micro-scale, con-
sidering the orientation of the microfibrils in the various cell wall layers [40–47]. Strength
and stiffness are also dependent on any chemicals used for wood modification [48–50].
Methyltrimethoxysilane is also used as a compatibiliser within fibre-based composites,
a coating for the nanocellulose scaffold or applied for wood treatment in combination
with other chemicals, and has been proven to have a positive impact on the mechanical
properties of the modified materials [51–55]. Therefore, a similar reinforcing effect on wood
structure is expected when it is applied for treatment of waterlogged archaeological wood,
which results in its successful dimensional stabilisation.

Dynamic Mechanical Analysis (DMA) has been used to study the viscoelastic be-
haviour of polymers and polymer composites. As wood is a composite material of three
polymers (cellulose, hemicellulose and lignin), it has also been used in many studies on
treated and untreated wood in both the wet state and the dry state [56–61]. Among other
things, it has been employed to investigate the rheological behaviour of particular cell wall
polymers [59,62,63], to measure the response of wood to changes in both temperature and
humidity at the molecular or microstructural level [58,64,65], to study the decay processes
in wood [66–68], to analyse mechanical properties of wood composites [69–71] or to assess
the effect of different modifying agents on the mechanical properties of wood and wood-
based composites [72–74]. DMA is also applicable for studying the viscoelastic behaviour
of degraded archaeological wood (having altered the quantity and quality of the cell wall
components), as well as for investigating the effect of different chemicals used for wood
conservation. This knowledge is essential to predict the stability of wooden objects and
properly design exhibit mounts and supports to ensure the safety of the artefact and fulfil
the conservation requirements.

The aim of the research was to characterise the viscoelastic behaviour of archaeological
waterlogged elm and oak wood differing in the degree of degradation and investigate
the effect of methyltrimethoxysilane on its mechanical properties, which has never been
studied before. The DMA thermal scan technique was applied to achieve this over the
temperature range from −150 to +150 ◦C. Although the timber had been retrieved from
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anaerobic waterlogged conditions, it was carefully dried (by exchange with ethanol to
minimise distortion effects), and DMA studies were carried out in the air dry state, i.e.,
at atmospheric relative humidity and room temperature. This reflects the objective of the
MTMS modification, which is to enable artefacts from waterlogged conditions to be stored
or displayed in museum collections under atmospheric conditions after a simple treatment.
To better understand the viscoelastic behaviour of the treated wood, wood structure and
moisture properties were also analysed using Scanning Electron Microscopy (SEM), surface
area and pore volume measurements, as well as the Dynamic Vapour Sorption (DVS)
method. MTMS efficiency in wood dimensional stabilisation along with its potentially
positive influence on the mechanical behaviour of the treated wood could increase the
prospects for future application of this chemical in conservation of wooden heritage.

2. Materials and Methods
2.1. Materials

In the presented study, waterlogged archaeological oak (Quercus robur L.) and elm
(Ulmus spp.) excavated from the sediments of the Lednica Lake in the Wielkopolska Region,
Poland, were analysed. Dating back to the turn of the 10th and 11th centuries, the wooden
logs looked well-preserved. However, the elm log and the outer part of oak (sapwood)
were severely degraded (estimated loss of wood substance was about 70–80%). In contrast,
the oak heartwood, characterised by a dense, hard texture, was decayed only to a limited
extent, with loss of wood substance of about 25% [75,76].

Sound contemporary oak sapwood and heartwood, as well as elm heartwood, were
sourced from commercial timber merchants and used for comparison.

2.2. Methods
2.2.1. Sample Preparation

Small rectangular samples (20 mm × 20 mm × 10 mm in the radial, tangential and
longitudinal directions, respectively) were cut out from particular zones of the waterlogged
logs: sapwood and outer heartwood from oak and outer heartwood from elm (Figure 1A).
To improve the effectiveness of a silane treatment, the samples were then dehydrated with
96% ethanol for four weeks [77]. Following dehydration, the specimens were divided into
two sets consisting of 5 samples of each type. The first set was subjected to silane treatment
with a solution of 50% methyltrimethoxysilane (MTMS) in 96% ethanol (v/v) using the
oscillating pressure method (vacuum of 0.9 bar for 0.5 h and subsequent pressure of 10 bars
for 6 h, repeated 6 times). A further 5 samples were used for moisture content determination
without any treatment (see Section 2.2.2). After treatment, the specimens were removed
from the silane solution and air-dried at ambient pressure and room temperature (25–28 ◦C)
for 2 weeks (Figure 1B). The second set served as untreated controls, the samples removed
from ethanol and air-dried as described above (Figure 1C). The dry untreated and treated
wooden blocks thus obtained were then cut into smaller specimens with the dimensions
appropriate for DMA measurements.

2.2.2. Effectiveness of the Treatment Calculations

To evaluate the effectiveness of the MTMS treatment, the weight percent gain (WPG)
was calculated according to Equation (1):

WPG =
Wt −W0

W0
× 100 (1)

where W0 is the estimated oven-dry weight of the sample before impregnation and Wt is
the oven-dry weight of the sample after treatment. Waterlogged wood specimens cannot
be oven-dried before treatment (it would cause its shrinkage, cracking and irreversible
deformation, and the sample would be useless for further study). Therefore, the oven-dry
weight of the examined samples before treatment was calculated on the basis of the water
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content in similar samples that had been dried for moisture content determination (5
replicates were used for the measurement).
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Figure 1. Archaeological wood samples: (A) waterlogged untreated and before any drying;
(B) air-dried untreated; (C) air-dried MTMS-treated; EH—elm heartwood, OS—oak sapwood, OH—
oak heartwood.

The moisture content (MC) at room temperature of treated and untreated wood was
determined using the standard oven-drying method (105 ◦C) and calculated as a ratio
between the mass of water to the mass of a dry sample. Additionally, the wood moisture
content (MC) at the time of the DMA test was determined.

Based on the measurements of the pre- and post-treatment sample dimensions, wood
volumetric shrinkage (S) and anti-shrink efficiency coefficient (ASE) were calculated ac-
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cording to Equations (2) and (3), respectively, in order to assess the effectiveness of the
treatment for dimensional wood stabilisation:

S =
V0 −V1

V0
× 100 (2)

where V0 is the initial volume of the samples (in the waterlogged state) and V1 is the final
volume of the dried samples. It was calculated for untreated and treated samples, to give
Su and St, respectively, where Su is the volumetric shrinkage of the untreated specimens
and St is the volumetric shrinkage of the treated specimens, respectively.

ASE =
Su − St

Su
× 100 (3)

The ASE value indicates what percentage of untreated wood shrinkage has been
suppressed by the applied treatment. An ASE of 100% means that wood dimensions have
not changed during drying. ASE values below 100% indicate wood shrinkage, with low
values indicating very high magnitudes of shrinkage, while values above 100% point to
swelling of the wood. A similar concept is used in wood modification technologies, but in a
different context or a water soak/oven-dry test [78,79]. It should be remembered that this is
a modification of archaeological wood to inhibit large magnitude shrinkage or deformation
on drying rather than addressing a soaking-induced swelling under cyclic wetting.

Bulk density at the time of the test (ρ) was calculated as the ratio of the sample weight
(prior to test) to its volume (prior to test). Thus, it is the bulk density after air-drying and
conditioning under ambient temperature and relative humidity of about 20 ◦C and 50%.

2.2.3. Dynamic Mechanical Analysis Measurements

Dynamic Mechanical Analysis (DMA) was performed on a Triton Technology DMA
analyser (Grantham, UK) using a single cantilever deformation mode. The samples of
dimensions ca. 20 mm × 10 mm × 3 mm (in radial, longitudinal and tangential directions,
respectively) were mounted in a single cantilever clamp, resulting in the bending moment
being applied in the tangential direction. The storage modulus (E′), loss modulus (E′′)
and tan δ (E′′/E′) were measured to observe the relaxation behaviour of the sample over
the temperature range from −150 to 150 ◦C with a heating rate of 5 ◦C/min, loading the
dynamic force of 0.2–1 N oscillated with three different frequencies, 0.1, 1 and 10 Hz. The
static force of 2 N was applied to the sample.

Five replicates of each sample type (elm, oak sapwood, oak heartwood, contemporary
untreated, archaeological untreated and treated with MTMS) were measured. In each
group, the samples had all been cut from the same wooden block. The storage modulus
(E′), the loss modulus (E′′) and the loss factor (tan δ = E′′/E′) were determined by the DMA.

The data obtained were statistically analysed using Statistica 13.3 software (TIBCO
Software Inc., Palo Alto, CA, USA); post hoc Tukey’s honestly significant difference (HSD)
test was applied to find mean values of individual mechanical parameters that differ signif-
icantly within specific wood type groups (elm heartwood, oak sapwood, oak heartwood)
and hence to evaluate the effect of silane treatment on wood viscoelastic behaviour.

2.2.4. Scanning Electron Microscopy Imaging

To facilitate interpretation of DMA results, the wood microstructure was analysed
using a Quanta FEG 650 Scanning Electron Microscope (FEI Company, Hillsboro, OR, USA)
and a Scanning Electron Microscope JEOL 7001F with a Secondary Electron Imaging (SEI)
detector (JEOL, Tokyo, Japan). Dry wood samples were cut into smaller pieces. Their
cross-sections were coated with a 15 nm layer of carbon (oak samples) or chromium (elm
wood) using a high vacuum coating system Leica EM ACE600 (Leica Microsystems GmbH,
Wetzlar, Germany). Then, the samples were mounted in the specimen holder and analysed
at 1, 5 or 15 kV, depending on the sample.
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2.2.5. Surface Area and Pore Volume Measurements

Changes in the wood cell wall porosity after the MTMS treatment were characterised
using a Gemini Surface Area Analyser (Micromeritics Instrument Corporation, GA, USA)
and a nitrogen absorption method. Wood samples were de-gassed and placed in the glass
tubes; then, the nitrogen sorption isotherms were recorded at liquid nitrogen temperature.
Based on the Brunauer–Emmet–Teller (BET) theory [80], i.e., the volume of nitrogen ab-
sorbed on the surface of the cell walls at different partial pressures, the surface area was
calculated using Micromeritics Stardriver software. Wood porosity was analysed using
the Barrett–Joyner–Halenda (BJH) method [81], which is appropriate for making compar-
isons between analysed samples and gives reliable results for meso- and macropores with
diameters above 4 nm [39,82].

2.2.6. Moisture Sorption Analyses

To better understand the viscoelastic behaviour of the studied material, wood mois-
ture properties were analysed using a Dynamic Vapour Sorption (DVS) system (Surface
Measurement Systems, London, UK). About 10 mg of powdered wood of each type was
analysed. The measurements were performed at a constant temperature of 21± 0.2 ◦C. The
flow rate of nitrogen passing over the sample was adjusted to 200 cm3 min−1. The device
was scheduled to start at 0% of air relative humidity (RH) and then increase in 10% steps
up to 95% RH for the adsorption, and the reverse was carried out for the desorption phase.
All the data, i.e., running time, sample mass change, target and actual RH, were recorded
every 20 s. Then, they were used in the analysis of the isotherms obtained. During the
measurement, the equipment maintained the sample at a constant RH until the equilibrium
was reached (i.e., the ratio of change in mass to change in time remained less than 0.002%
per minute for at least 10 min). However, Glass et al. [83] reported that much longer hold
times of the equilibrium change over point can produce slightly different final moisture
content values. However, for comparison of the moisture properties of wood samples in
this study, the stated equilibrium point was chosen as a compromise between the rational
analysis test length and the sufficient accuracy of the moisture content.

3. Results and Discussion
3.1. Effectiveness of the Treatment and Its Impact on the Wood Structure

Treatment of waterlogged archaeological wood with methyltrimethoxysilane resulted
in improved dimensional stabilisation after air-drying, which is consistent with the previ-
ously reported results [75,84]. As is clear from Table 1, the highest shrinkage was observed
for untreated wood, especially the highly degraded elm heartwood (about 70%) and oak
sapwood (about 45%), while with treated specimens, the shrinkage was significantly re-
duced (about 6–16% for the most degraded samples and less than 2% for a better-preserved
oak heartwood). As a consequence, high ASE values were calculated for all MTMS-treated
woods. The highest anti-shrink efficiency was obtained for oak heartwood, while oak and
elm sapwood coefficients were lower by about 7 and 17%, respectively.

Table 1. Average values of the moisture content (MC) at room temperature, weight percent gain
(WPG), volumetric shrinkage (S) and volumetric anti-shrink efficiency (ASE) of archaeological air-
dried elm heartwood (AE), oak sapwood (AOS) and oak heartwood (AOH) untreated and treated
with MTMS.

Wood Type Treatment MC (%) WPG (%) S (%) ASE (%)

AE
untreated 9.2 - 68.7 ± 1.2 -

MTMS 6.5 172.8 ± 4.16 16.3 ± 3.8 76.2 ± 5.5

AOS
untreated 9.0 - 43.4 ± 1.8 -

MTMS 5.5 203.2 ± 15.04 6.0 ± 4.1 86.2 ± 9.4

AOH
untreated 9.7 - 23.2 ± 2.7 -

MTMS 7.4 50.07 ± 1.64 1.7 ± 0.5 92.8 ± 1.5
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The effect of the MTMS treatment is well visible on the macro-scale in Figure 1.
The change in wood dimensions between the wet (1A) and the air-dried state (1B) of
untreated samples is particularly pronounced for the most degraded elm heartwood (EH).
For oak sapwood (OS), however, despite the similar degree of wood degradation (about
70–80%), the shrinkage is smaller due to the differences in anatomical structure between
the two species (e.g., the presence and dimensions of rays, cell types and the cell wall
thicknesses). The applied treatment resulted in the significant improvement of dimensional
wood stability upon drying—the dimensions of dry treated samples (Figure 1C) are more
similar to the dimensions of wet samples. The effect described is also visible on the micro-
scale in SEM images (Figures 2 and 3), especially for the most degraded elm heartwood and
oak sapwood. In untreated air-dried samples (Figures 2A and 3A), the cells are of irregular
shape, often flattened, with the thin, rolling cell walls, while for the treated ones, with
reduced shrinkage (Figures 2B and 3B), the cells are more regular and not flattened, similar
to sound wood. The differences in the microstructure between untreated and treated
archaeological oak heartwood are hardly recognisable in SEM pictures (Figure 3C,D).
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Analysis of cell wall pores clearly showed differences between contemporary and
archaeological samples (Table 2) resulting from wood degradation, i.e., a higher porosity of
archaeological wood. It also revealed further differences in structure between untreated and
treated degraded wood. Generally, despite the different shrinkage levels, silane treatment
decreased surface area and total pore volume of the cell walls proportionally to the amount
of a chemical deposited in wood. The only exception was the most degraded elm samples
with the highest shrinkage level (almost 70%), where the collapse of the cell walls reduced
their porosity so significantly that the effect of treatment is unnoticeable. The change in
porosity is followed by the change in bulk density (except AET, as described above).

The decrease in bulk density of archaeological elm on treatment with MTMS can be
explained with reference to the WPG data, shrinkage coefficient and the SEM micrographs.
To demonstrate a decrease in density, the volume increase by the sample must exceed the
gain in weight from the MTMS treatment. This is the case for AET, as the WPG was smaller
than AOST (173% vs. 203%), yet avoided shrinkage was high (52.4% by subtraction, Table 1,
compared with 37.4% for AOST). For further consideration, we know the MTMS must be
deposited on available surfaces within the two kinds of wood. Looking to Figure 2B, we
observe that in AET the compound middle lamella remains intact, and a small quantity of
degraded secondary cell wall material as a porous aggregate can be found in the cell lumen
spaces. These aggregates are fewer in number and smaller in quantity than the equivalent
material in the AOST material shown in Figure 3B. Therefore, while both AET and AOST
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have significant quantities of porous aggregates in cell lumina, the AOST presents a greater
surface area of this material for the MTMS additional WPG to be accommodated with
limited extra benefit on swelling or stiffness. By comparison, the MTMS deposition into the
compound middle lamella results in the retention of cell shape, as commented previously,
and the quantities of middle lamella remaining is more consistent between the two species.
Thus, the AOST material undergoes an increase in density while AET shows a decrease.
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Table 2. Average values of the surface area, total pore volume and bulk density of contemporary and archaeological
wood samples untreated and treated with MTMS; ±standard deviation, archaeological untreated elm heartwood (AE), oak
sapwood (AOS) and oak heartwood (AOH), archaeological MTMS-treated elm heartwood (AET), oak sapwood (AOST) and
oak heartwood (AOHT), contemporary elm heartwood (CE), oak sapwood (COS) and oak heartwood (COH).

Wood Species Wood ID Surface Area (m2 g–1) Total Pore Volume (cm3 g–1) Bulk Density (g cm–3)

Elm heartwood
AE 1.60 ± 0.06 0.0038 0.53 ± 0.09

AET 1.68 ± 0.03 0.0048 0.48 ± 0.01
CE 0.53 ± 0.01 0.0016 0.71 ± 0.01

Oak sapwood
AOS 4.14 ± 0.10 0.0146 [39] 0.27 ± 0.03

AOST 1.09 ± 0.07 0.0020 [39] 0.47 ± 0.01
COS 0.60 ± 0.06 0.0012 0.67 ± 0.00

Oak heartwood
AOH 0.64 ± 0.01 0.0019 0.70 ± 0.01

AOHT 0.30 ± 0.02 0.0014 [39] 0.73 ± 0.03
COH 0.35 ± 0.02 0.0011 [39] 0.60 ± 0.01
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3.2. The Effect of the Treatment on the Moisture Properties of Archaeological Wood

Treatment with MTMS significantly changed the moisture properties of archaeological
wood. The results of DVS analysis, presented as sorption isotherms and hysteresis in
Figure 4, show a decrease in maximum equilibrium moisture content (EMCmax) and hys-
teresis for all the treated samples, which is in line with the results reported previously [39].
The most pronounced decrease in EMCmax after treatment can be seen for elm heartwood
and oak sapwood (from 20.2 to 6.3% for elm, and from 20.4 to 8% for oak sapwood). This
results from the high quantity of silane deposited in wood during the treatment (WPG was
about 200%, see Table 1). However, the change in sorption properties is also visible for oak
heartwood (EMCmax changed from 23.7 to 19.4%), but it is proportionally smaller due to
the lower silane content. It has already been shown that methyltrimethoxysilane can chem-
ically react with hydroxyls present on wood polymers, hence the observed hydrophobising
effect on wood, which is higher the more that silane molecules are able to interact with
wood hydroxyls [85].
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3.3. Viscoelastic Behaviour of Untreated and MTMS-Treated Archaeological Wood

It is well-known that the treatment of lignocellulosic materials with different chemicals
often leads to their softening [27,86,87]. Therefore, MTMS applied for the conservation
of waterlogged archaeological wood could have a similar effect, and this study sought
to quantify this. The results obtained show that the silane limits wood hygroscopicity,
leading to the reduced wood moisture content (Table 1). It is possible that this decreases
the well-known plasticising effect of water in wood cell walls, which may compensate for
any newly induced plasticising effect of the polymer itself. As a result, it is important to
consider these conflicting effects of the wood modification process.

The dynamic mechanical analysis allows the quantification of several phenomena,
contributing to new understanding in this area. The most commonly discussed is the glass
transition temperature (Tg), i.e., the transition from a glassy state at lower temperatures
to a rubbery state above Tg. In wood, there may be Tg events relating to the lignin, and
the polysaccharides (amorphous cellulose and hemicelluloses) [59]. The Tg of all the wood
polymers has been shown to be strongly changed by the presence of moisture, when
studied in isolation [88,89]. Secondly, the secondary relaxations can be observed for the
polymers in the glassy state (i.e., below Tg), which relate to motions of small chain segments
or rotation of functional groups within the polymer chain [60,90]. Lignin, hemicellulose
and cellulose all demonstrate secondary relaxations when studied ex situ [91–93].

Samples of the contemporary and archaeological elm and oak with similar dimensions
were analysed using DMA in the temperature range −150–150 ◦C. Example DMA scans
for all studied wood samples are presented in Figure 5. Although E′, E′′ and tan δ graphs
for all the contemporary wood specimens are relatively similar, they differ significantly
from their archaeological untreated and treated counterparts and show small differences
between wood species. Although all the samples were stored in identical conditions before
the measurements, their moisture contents were different depending on wood type, the
degree of degradation and the treatment applied (Table 3). MTMS treatment significantly
reduced the MC of archaeological elm and oak sapwood samples to about 4%. Higher MC
was observed for untreated oak heartwood specimens (6.8 and 7.7%), but for the treated
samples, due to the better state of their preservation (resulting in lower permeability and
thus lower WPG of silane), only a moderate MC reduction was noted (to about 5.2%).

Tan δ graphs enable individual secondary relaxations peaks for wood polymers to
be recognised in the samples studied (Figure 5B,D,F). Differences between the rheological
behaviour of contemporary and archaeological wood in the example of elm have already
been described by Spear and Broda [77]. In general, for contemporary samples, the peak
at about −100 ◦C refers to the γ-relaxation and is associated with rotations of methylol
groups present on wood polysaccharides (hemicelluloses and amorphous regions in cellu-
lose) [60,90,94]. In degraded samples, where polysaccharide content is reduced, resulting
in a lower ability to bind water molecules, this peak is shifted towards higher values [60,77],
which is visible for elm heartwood and oak sapwood. For the well-preserved archaeological
oak heartwood, the position of this relaxation remained similar to contemporary oak wood.

The tan δ peaks in the higher temperature range are commonly identified as the
β-peak, which is a secondary relaxation relating to segments of the polymer chain, and
the α-peak or glass transition temperature. The β-peak typically occurs between −7 and
+34 ◦C in wood containing low to moderate quantities of moisture [95], but has also been
reported over a much wider temperature range (e.g., −53 to +53 ◦C [96]) and as high as
70 ◦C [59] or 83 ◦C [97], and up to 118 ◦C in oven-dried wood [98]. A separate βwet peak
has been observed by some researchers [99]. The α-peak relates to micro-Brownian motions
of the polymer chain as the material moves from glassy to viscous state, and typically
occurs at high temperatures (150 to 250 ◦C) for air dry and oven-dry wood [96,98,100].
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In this study, some differences in the location of these peaks were seen between the
three undegraded contemporary woods. In all three undegraded woods, the βwet-peak
was very small, and occurred near −0.7 to +21 ◦C in CE, −9 to +41 ◦C for COS and −9 to
+18 ◦C in COH; this variation related to differences between samples and the frequency
used. There was a stronger peak at 93–114 ◦C for CE, 96–114 ◦C for COS and 91–111 ◦C
for COH, which in some cases (but not all) was associated with a decrease in E′, which
could be attributed to α-peak or glass transition. Where there was no substantial decrease
in the E′ value, and the tan δ graph indicated an upturn at temperatures approaching
150 ◦C (the end of temperature scan range), it could be argued that this peak is a β-peak
not an α-peak [97]. In the archaeological samples, the tan δ peaks were stronger than the
contemporary wood samples, most notably the β-peaks at the higher temperature range.
In several cases, it was noted that peaks in this region were broad, potentially incorporating
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two poorly defined superimposed peaks. The main difference between the contemporary
and archaeological wood is the removal of polysaccharides, so it is expected that the DMA
output is dominated by molecular relaxations of lignin, with only a minor contribution
from degraded hemicellulose or cellulose. The additional peak in the AE sample at 114 ◦C
with an associated strong decrease in E′ could therefore be a glass transition, brought to
lower temperature as a result of degradation. It should be noted that due to the influence of
transient moisture effects, peak information in this range is difficult to definitively interpret.
Therefore, the data in this higher temperature range are presented here only to permit
comparison with the degraded and MTMS treated samples, where changes relative to this
baseline are the object of study.

Table 3. Average values of MC for DMA samples at the start of the measurement, bulk density of wood samples (ρ),
temperature of tan δ responses, and E′, E′′ and tan δ measured at 25 ◦C and a frequency of 1 Hz.

Wood ID MC (%) ρ (g cm−3)
Tan δ Response (◦C)

E′ at 25 ◦C (MPa) E′′ at 25 ◦C (MPa) Tan δ at 25 ◦C
γ MTMS βwet β2 β1 α

CE 8.3 ± 0.3 0.71 ± 0.01 b −97 ± 2 - −41 ± 15 - 97 ± 3b - 394.0 ± 64.9 b 15.3 ± 1.5 b 0.039 ± 0.003 a

AE 8.0 ± 0.4 0.53 ± 0.09 a(a) −86 ± 3 - - - 95 ± 2b 114 ± 2b 61.6 ± 5.5 a(a) 2.8 ± 0.5 a(a) 0.045 ± 0.005 ab(a)

AET 4.2 ± 0.2 0.48 ± 0.01 a(a) −89 ± 3 −5 ± 8 - - 109 ± 8 incr. 87.9 ± 4.1 a(b) 4.8 ± 0.5 a(b) 0.055 ± 0.006 b(a)

COS 7.8 ± 0.2 0.67 ± 0.00 c −99 ± 0 - −43 ± 5 98 ± 2b 110 ± 5b incr. 439.2 ± 18.4 c 15.8 ± 1.5 b 0.036 ± 0.002 a

AOS 8.4 ± 0.4 0.27 ± 0.03 a(a) −75 ± 4 - - 93 ± 6 117 ± 0b - 52.8 ± 8.2 a(a) 2.6 ± 0.5 a(a) 0.050 ± 0.006 b(a)

AOST 3.9 ± 0.2 0.47 ± 0.01 b(b) −77 ± 5 70 ± 7 −3 ± 1 - 132 ± 5 incr. 108.4 ± 13.4 b(b) 4.6 ± 0.4 a(b) 0.043 ± 0.002 ab(a)

COH 6.8 ± 0.1 0.60 ± 0.01 a −87 ± 4b - - 66 ± 0 99 ± 1b incr. 278.4 ± 52.5 a 11.0 ± 2.8 a 0.039 ± 0.003 a

AOH 7.7 ± 0.1 0.70 ± 0.01 b(a) −105 ± 3b - −90 ± 3b 17 ± 0
54 ± 3 107 ± 5 incr. 300.3 ± 57.3 a(a) 9.9 ± 2.0 a(a) 0.033 ± 0.003 a(a)

AOHT 5.2 ± 0.2 0.78 ± 0.01 b(a) −91 ± 5b 58 ± 6 −55 ± 4 100 ± 1 131 ± 9 incr. 213.6 ± 21.2 a(a) 8.0 ± 0.9 a(a) 0.038 ± 0.003 a(a)

b—broad peak, in some runs divided into two more or less separated peaks; incr.—the curve increases at higher temperatures, indicating
a peak at temperatures higher than 150 ◦C; different superscripts (a,b) denote statistically significant (p < 0.05) differences among mean
values within particular wood type groups (elm, oak sapwood, oak heartwood) according to Tukey’s HSD test: the first value relates
to comparison between contemporary, archaeological untreated and treated wood, the second value (in brackets) relates to comparison
between untreated and treated archaeological wood.

Figure 5D shows that a strong additional peak was present for the MTMS-treated
archaeological elm wood (AET). This peak occurred at −5 ◦C, which is close to the location
where the βwet-peak often occurs. The peak in tan δ was accompanied by a substantial
decrease in E′, possibly indicating that the presence of MTMS plasticised the degraded
wood or underwent a glass transition event itself. However, it was surprising to note
that the newly introduced peaks in treated archaeological oak samples (AOST and AOHT,
Figure 5E,F) did not occur at this temperature, but at higher values (70 and 58 ◦C, respec-
tively). In both of the treated oak samples, the tan delta event was accompanied by a
relatively strong decrease in E′, in the same manner as seen for the AET samples. In the
treated oak samples, this relaxation event or glass transition lay closer to the temperature
where the β-peak usually occurs. The difference in MTMS-peak temperature cannot relate
to the level of wood degradation, as the AOS material was degraded to a similar extent to
the AE, whereas AOH was less degraded. It seems likely that species difference (i.e., wood
anatomy and proportions of cell types, or cell wall chemistry) contributes to this difference
between MTMS treatment effect on the two timber species. The difference between MTMS
peak temperature in archaeological elm and oak could have similar origins to the difference
in porosity and surface area between these species (Table 2).

The origin of the MTMS peak and the associated loss of storage modulus at this
temperature for treated archaeological wood are interesting, and could be a plasticisation
effect. The presence of moisture in wood is well-known to act as a plasticiser, and increasing
moisture content has the effect of reducing the temperature that Tg is observed for each of
the wood components, as demonstrated by Goring, as early as 1963 [101,102]. This result
has also been shown in DMA studies, reducing Tg from 130–205 ◦C for dry lignin to 80 ◦C
for saturated lignin [89,96]. Studies on hemicelluloses reveal a shift of Tg from 150–220 ◦C
in the dry state to 80 ◦C at 15% moisture content, and circa 20 ◦C at higher moisture
contents (20–30%) [89,95,103]. Water-saturated samples are thus sometimes used to lower
Tg to permit DMA measurement without incurring thermal degradation [56,57]. Other
plasticisers such as polyethylene glycol and N-methyl-2-pyrrolidone (NMP) have been
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used to conduct immersion DMA experiments, offering a wider temperature range than for
water, while again lowering the temperature at which Tg is observed [104,105]. However,
it would be expected that the MTMS, if acting as a plasticiser and present in abundance
within the treated samples, would lead to a peak at a similar temperature for the three treated
woods. In a non-immersion experiment, using PEG-treated wood in atmospheric conditions,
a reduction in the temperature of the γ-peak (i.e., plasticisation) and a new peak at 27 ◦C
was reported by Obataya et al. [60]. The new peak was proposed to relate to motions within
the backbone of the PEG polymer. This supports the hypothesis that the new MTMS peaks
observed in this study relate to the grafted methyl trimethoxy units.

For comparison, many other wood modification systems are not used specifically for a
plasticising effect; however, they do have an effect on DMA observations, such as introducing
new peaks relating to the polymerised new reagent (e.g., PMMA impregnation), or altering the
location of Tg (e.g., PEG impregnation treatments [60], acetylation reactions [106]), or altering
intensity and location of secondary relaxations (γ and β), e.g., acetylation and formaldehyde
modifications [60,106]. For example, in acetylated wood, the γ-peak moves to a higher
temperature and becomes broader but with a lower value for tan δ, and activation energy
for this motion increases compared to untreated wood. This was proposed to relate to the
substitution of acetyl groups for the hydroxyl site within the wood, leading to a reduction in
methylol groups and an increase in acetyl groups, which have a similar relaxation motion. By
contrast, formaldehyde treatment, which promotes cross-linking within the polysaccharide
components, showed little change in γ-peak location, and no significant change in activation
energy compared to untreated wood. The cross-linking reaction does not alter the methylol
groups, which are responsible for the γ-relaxation.

DMA thermal scans of the studied wood samples enabled the determination of their
mechanical parameters (storage modulus and loss modulus) at 25 ◦C (Table 3). First of all,
except for oak heartwood, the storage modulus of archaeological wood was significantly
lower in comparison with contemporary wood, which reflects its calculated loss of wood
substance (about 70–80%), the resulting lower density and reduced cellulose and hemicel-
luloses content. It is well-known that wood mechanical parameters strongly depend on
density, as well as on cellulose and hemicellulose contents in the cell wall, which account
for wood stiffness and mechanical strength [67,77,107]. The density of COH examined
in the research turned out to be very low for this wood species; moreover, the degree of
degradation of AOH was only about 25%; hence, no significant differences in mechanical
parameters were observed between them.

The effect of MTMS treatment is clearly visible for elm heartwood and oak sapwood,
as E′ and E′′ significantly increased compared to the values for untreated archaeological
material. The highly degraded archaeological wood tissue soaked up large amounts of
silane (WPG of about 200%). By covering and encrusting wood cell walls, MTMS reinforced
their mechanical strengths by increasing their stiffness and resistance to deformation, which
is seen in the increase in the E′ value. However, its plasticising effect can also be observed
in an increased value of the loss modulus. On the one hand, MTMS reduced wood
hygroscopicity that reflects in lower wood moisture content, thus limiting the plasticising
effect of water on wood polymers, but on the other hand, as a polymer itself, it contributed
to the viscous behaviour of the treated wood. Mechanical parameters of archaeological
oak heartwood, however, remained almost unchanged after the treatment (the observed
differences are not statistically important). It can be explained by a much lower amount of
silane absorbed by the wood due its good state of preservation and thus lower permeability
in comparison with highly degraded archaeological oak sapwood and elm heartwood.

To perform Arrhenius analysis, one sample of each wood type was additionally run
on the DMA using three different frequencies (1, 5 and 10 Hz) but under the same loading
conditions. The results are presented in Table 4. The increase in temperature seen for most
tan δ peaks as the frequency is increased can be used to calculate the activation energy for
the molecular motion associated with this tan δ event. The activation energy for the γ-peak
(methylol groups) in contemporary wood was relatively consistent, calculated as 39.2, 31.0
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and 38.4 kJ·mol−1 for elm, oak sapwood and oak heartwood, respectively (Table 4). This is
in good agreement with values reported previously [72] and by other researchers [60] for
the magnitude of Ea of γ peaks in wood.

Table 4. The activation energy for γ-peaks and MTMS peaks of contemporary and archaeological
untreated and treated wood samples.

Wood ID MC (%)
Tan δ at Each Frequency Activation Energy

(kJ·mol−1)

1 Hz 5 Hz 10 Hz γ Peak MTMS

CE 8.3 ± 0.3 −100.7 −89.5 −86.2 39.2 -
AE 8.0 ± 0.4 −74.6 −66.6 −62.3 62.4 -

AET 4.2 ± 0.2 −86.2 −78.1 −73.8 55.1 152.2

COS 7.8 ± 0.2 −99.3 −85.8 −79.6 31.0 -
AOS 8.4 ± 0.4 −58.9 −54.1 −50.0 98.7 -

AOST 3.9 ± 0.2 −80.1 −67.7 −65.1 46.1 980.5

COH 6.7 ± 0.2 −84.9 −76.9 −66.7 38.4 -
AOH 7.7 ± 0.1 −98.3 −87.2 −75.8 28.1 -

AOHT 5.2 ± 0.2 −77.6 −63.7 −67.2 45.5 221.8

For the archaeological wood samples, the values of Ea of the γ-peak were more
variable. Values of 62.4 kJ·mol−1 for AE, 98.7 kJ·mol−1 for AOS and 28.1 kJ·mol−1 for
AOH indicate an increase for the heavily degraded samples, whereas the less-degraded
oak heartwood showed a decrease compared to contemporary wood. The ranking of these
activation energies reflected the degree by which the tan δ peak had been shifted to a higher
temperature by the degradation of polymers, i.e., AOH with the lowest degradation and
negligible shift of temperature had the lowest Ea value, while AOS with the highest shift in
temperature had the greatest Ea value.

Treatment of the archaeological wood with MTMS led to a more consistent Ea value for
the γ-peak, with 55.1, 46.1 and 45.5 kJ·mol−1 reported for AE, AOS and AOH, respectively.
It appears that while MTMS alters the activation energy for rotation of methylol groups
within archaeological wood, it does not give the same value as unmodified contemporary
wood. This may be a result of the influence of the silane on the ability of ungrafted methylol
units to rotate, for example, steric hindrance or altered electromagnetic charge.

Other researchers have shown that the activation energy of secondary relaxations
is typically reduced by the presence of a plasticiser. For example, in PEG treated wood,
Obataya et al. [60] reported a value of 36 kJ·mol−1 for the γ-relaxation (rotation of methylol
groups) compared to 42 kJ·mol−1 for untreated wood. In this present study, the heavily
degraded archaeological woods had an increased temperature for γ-peak (−75 to−50 ◦C, AE
and AOS) than the contemporary woods (−100 to−79 ◦C), and the MTMS treated archaeo-
logical woods showed a reduction in temperature (−86 to −65 ◦C). The increase in Tγ was
accompanied by an increase in Ea in the archaeological woods (62.4 and 98.7 kJ·mol−1 for AE
and AOS, respectively), while the decrease in Tγ was accompanied by a decrease in Ea for
treated archaeological woods (55.1 and 46.1 kJ·mol−1 for AET and AOST, respectively), return-
ing to a value closer to that observed for contemporary wood (39.2 and 31.0 kJ·mol−1 for CE
and COS). This is consistent with degradation-induced loss of mobility in the archaeological
woods, and restoration of some of this mobility in the presence of the MTMS treatment.

The behaviour of the MTMS peaks was also of interest, but Arrhenius analysis may be
negatively influenced by the superimposition of these peaks upon existing peaks of the
wood cell wall polymers. The MTMS peak in AET gave the clearest result with an Ea value
of 152.2 kJ·mol−1 for the peak at −5 to +5 ◦C. This activation energy value is in a similar
range to that reported for β secondary relaxations, but not as high as would be expected for
a glass transition temperature [100]. The effect of plasticisers on β secondary relaxations is
complex [108], and further investigation is needed. By comparison, the Ea value for AOST
was very high, 980.5 kJ·mol−1, and related to a peak at approx. 70 ◦C. This is close to the
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location of the beta peak in AOS samples. The definition of the peak in AOST, and the shift
to a lower temperature value compared to the beta peak in the untreated sample were taken
as a clear indication that this is the influence of MTMS treatment. Whether this peak relates
to plasticisation or is due to the motion of the grafted MTMS monomer or its constituent
parts was unconfirmed. The high value of Ea for this sample was consistent with the strong
decrease in the E′ value at this temperature, taken as further confirmation that MTMS has
in some way plasticised the archaeological oak wood, as similar values were reported for
the α-peak in studies on dried wood by Jiang et al. [100]. The typical action of a plasticiser
or diluent is to reduce the temperature of Tg, as the small diluent molecules infiltrate the
polymer and increase the available free volume for segmental motions [108].

The Ea value for the MTMS peak in the AOHT sample was 221.8 kJ·mol−1, and the
peak occurred at approx. 73 ◦C. The lower value for this Ea may relate to measurement
error in the peak of each tan δ curve, either resulting from measurement “noisE′′ or the
effect of superimposition on an area of the curve which contained several pre-existing
peaks. However, the E′ values again decreased significantly at this point in the thermal
scan, indicating plasticisation by the MTMS. It is not clear whether the Tg in AOST and
AOHT related to the degraded polysaccharide component of the wood wall, or the lignin,
however the occurrence of further tan δ peaks at higher temperatures (Table 3) indicates
that only one component of the wood cell wall had been plasticised, and the other(s)
remained in the glassy state at higher temperatures.

One aspect of interest is that the MTMS peaks did not occur at the same temperature
in the two species. The lack of one specific temperature signature indicates that the new
peaks are not related to one single functional unit within the MTMS structure, but instead
may indicate that the MTMS plasticises existing motions of the wood polymers and is thus
governed by the spatial location of these polymers in the two species. For elm, this gave
a lower temperature MTMS peak than for oak. It could be proposed therefore that the
structure of degraded elm in some way favours molecular motions of a specific kind, while
in oak the MTMS plasticises a different motion or different chain segment, possibly the
plasticisation of the Tg event itself, as indicated by the activation energy.

4. Conclusions

MTMS treatment significantly reduced the shrinkage of archaeological wood on drying
from the waterlogged state. ASE values of 92.8, 86.2 and 76.2% were observed for AET,
AOST and AOHT, respectively. The intended location of the MTMS is the reactive sites on
the wood cell wall material and the location of MTMS here prevents cell wall distortion and
collapse during drying. However, in the heavily degraded samples, high weight gains were
seen (172.8% for AE and 203.2% for AOS), and many MTMS monomers apparently also
reacted onto the amorphous residues located inside cell lumina (remnants of the secondary
cell wall, commonly seen in bacterial-degraded wood with high porosity). Thus, the WPG
values for AET and AOST were very high, compared to 50% WPG observed in AOHT,
where more secondary cell walls remained intact and attached to the cell wall with lower
degradation and lower porosity values.

Cell wall collapse and distortion were avoided by the MTMS treatment, and in the
two most heavily degraded woods (AET and AOST), this gave an increase in storage
modulus at 25 ◦C in DMA experiments. DMA revealed a new peak in tan δ for the MTMS
treated samples. This occurred at −5 ◦C for AET and between 58 and 70 ◦C for AOST
and AOHT. The difference in location of the MTMS peak was attributed to differences in
the architecture of the remaining cell wall materials between the two species. In the case
of AOST and AOHT, there was a clear indication from the change in storage modulus at
the same temperature as the MTMS peak, showing that a glass transition had even been
plasticised by the presence of the grafted silanes. It is unclear whether this Tg is related
to the degraded polysaccharide component of the wood wall or the lignin, and further
research is required.
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The effect of MTMS treatment turned out to be quite a complex problem considering
its direct plasticising effect on wood and the simultaneously provided reduction in wood
equilibrium moisture content, which reduces the plasticising effect of water on wood
polymers. Moreover, the effect differed with both the wood species and the degree of wood
degradation. Further study is then necessary, including nanoindentation measurements
under different moisture conditions, to better understand the observed phenomena and
establish the storage and exhibition conditions that would be safe for the mechanical
stability of the silane-treated waterlogged wooden artefacts. Furthermore, it is essential to
know if the stabilising effect of silane treatment goes along with the reinforcement of the
cell wall of degraded wood. The increased knowledge about the effect of polymers such
as MTMS on the wood properties will allow designing more efficient conservation agents
targeted to the needs of specific wooden objects.
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