Anhysteretic Magneto-Elastic Behaviour of Terfenol-D: Experiments, Multiscale Modelling and Analytical Formulas
Abstract
:1. Introduction
2. Experimental Characterisation of Terfenol-D
2.1. Experimental Setup
2.2. Anhysteretic Measurements
3. Multiscale Magneto-Elastic Model
3.1. Multiscale Modelling Principle
3.2. Multiscale Modelling Results
4. Analytical Magneto-Elastic Model
4.1. Analytical Constitutive Equations
4.2. Analytical Modelling Results
5. Modelling 3D Configurations
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Takahashi, N.; Morimoto, H.; Yunoki, Y.; Miyagi, D. Effect of shrink fitting and cutting on iron loss of permanent magnet motor. J. Magn. Magn. Mater. 2008, 320, e925–e928. [Google Scholar] [CrossRef]
- Ebrahimi, H.; Gao, Y.; Dozono, H.; Muramatsu, K.; Okitsu, T.; Matsuhashi, D. Effects of stress and magnetostriction on loss and vibration characteristics of motor. IEEE Trans. Magn. 2016, 52, 8201404. [Google Scholar] [CrossRef]
- Yamazaki, K.; Mukaiyama, H.; Daniel, L. Effects of multi-axial mechanical stress on loss characteristics of electrical steel sheets and interior permanent magnet machines. IEEE Trans. Magn. 2018, 54, 1300304. [Google Scholar] [CrossRef]
- Bozorth, R.M. Ferromagnetism; Van Norstand Company: New York, NY, USA, 1951. [Google Scholar]
- Claeyssen, F.; Lhermet, N.; Letty, R.L.; Bouchilloux, P. Actuators, transducers and motors based on giant magnetostrictive materials. J. Alloys Compd. 1997, 258, 61–73. [Google Scholar] [CrossRef]
- Engdahl, G. Handbook of Giant Magnetostrictive Materials; Academic Press: Cambridge, MA, USA, 2000. [Google Scholar]
- Olabi, A.G.; Grunwald, A. Design and application of magnetostrictive materials. Mater. Des. 2008, 29, 469–483. [Google Scholar] [CrossRef] [Green Version]
- Apicella, V.; Clemente, C.S.; Davino, D.; Leone, D.; Visone, C. Review of modeling and control of magnetostrictive actuators. Actuators 2019, 8, 45. [Google Scholar] [CrossRef] [Green Version]
- Wun-Fogle, M.; Restorff, J.B.; Leung, K.; Cullen, J.R.; Clark, A.E. Magnetostriction of Terfenol-D heat treated under compressive stress. IEEE Trans. Magn. 1999, 35, 3817–3819. [Google Scholar] [CrossRef]
- Anderson, P.I.; Moses, A.J.; Stanbury, H.J. Assessment of the stress sensitivity of magnetostriction in grain-oriented silicon steel. IEEE Trans. Magn. 2007, 43, 3467–3476. [Google Scholar] [CrossRef]
- Sablik, M.J.; Kwun, H.; Burkhardt, G.L.; Jiles, D.C. Model for the effect of tensile and compressive stress on ferromagnetic hysteresis. J. Appl. Phys. 1987, 61, 3799–3801. [Google Scholar] [CrossRef]
- Sablik, M.J.; Jiles, D.C. Coupled magnetoelastic theory of magnetic and magnetostrictive hysteresis. IEEE Trans. Magn. 1993, 29, 2113–2123. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Xu, M. Modified Jiles-Atherton-Sablik model for asymmetry in magnetomechanical effect under tensile and compressive stress. J. Appl. Phys. 2011, 110, 063918. [Google Scholar] [CrossRef]
- Jakubas, A.; Chwastek, K. A simplified Sablik’s approach to model the effect of compaction pressure on the shape of hysteresis loops in soft magnetic composite cores. Materials 2020, 13, 170. [Google Scholar] [CrossRef] [Green Version]
- Bergqvist, A.; Engdahl, G. A stress-dependent magnetic Preisach hysteresis model. IEEE Trans. Magn. 1991, 27, 4796–4798. [Google Scholar] [CrossRef]
- Adly, A.A.; Mayergoyz, I.D. Magnetostriction simulation using anisotropic vector Preisach-type models. IEEE Trans. Magn. 1996, 32, 4773–4775. [Google Scholar] [CrossRef]
- Fonteyn, K.; Belahcen, A.; Kouhia, R.; Rasilo, P.; Arkkio, A. FEM for directly coupled magneto-mechanical phenomena in electrical machines. IEEE Trans. Magn. 2010, 46, 2923–2926. [Google Scholar] [CrossRef]
- Rasilo, P.; Singh, D.; Aydin, U.; Martin, F.; Kouhia, R.; Belahcen, A.; Arkkio, A. Modeling of hysteresis losses in ferromagnetic laminations under mechanical stress. IEEE Trans. Magn. 2016, 52, 7300204. [Google Scholar] [CrossRef] [Green Version]
- Rasilo, P.; Singh, D.; Jeronen, J.; Aydin, U.; Martin, F.; Belahcen, A.; Daniel, L.; Kouhia, R. Flexible identification procedure for thermodynamic constitutive models for magnetostrictive materials. Proc. R. Soc. Lond. A 2019, 475, 20180280. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, W.D. Magnetization and magnetostriction processes in Tb(0.27-0.30)Dy(0.73-0.70)Fe(1.9-2.0). J. Appl. Phys. 1997, 81, 2321–2326. [Google Scholar] [CrossRef]
- Buiron, N.; Hirsinger, L.; Billardon, R. A multiscale model for magneto-elastic couplings. J. Phys. IV 1999, 9, 87–196. [Google Scholar] [CrossRef]
- Daniel, L.; Hubert, O.; Billardon, R. Homogenisation of magneto-elastic behaviour: From the grain to the macro scale. Comp. Appl. Math. 2004, 23, 285–308. [Google Scholar] [CrossRef]
- Daniel, L.; Galopin, N. A constitutive law for magnetostrictive materials and its application to Terfenol-D single and polycrystals. Eur. Phys. J. Appl. Phys. 2008, 42, 153. [Google Scholar] [CrossRef] [Green Version]
- Daniel, L.; Hubert, O.; Buiron, N.; Billardon, R. Reversible magneto-elastic behavior: A multiscale approach. J. Mech. Phys. Solids 2008, 56, 1018–1042. [Google Scholar] [CrossRef]
- Daniel, L.; Rekik, M.; Hubert, O. A multiscale model for magneto-elastic behaviour including hysteresis effects. Arch. Appl. Mech. 2014, 84, 1307–1323. [Google Scholar] [CrossRef] [Green Version]
- Ito, S.; Mifune, T.; Matsuo, T.; Kaido, C. Energy-based magnetization and magnetostriction modeling of Grain-Oriented silicon steel under vectorial excitations. IEEE Trans. Magn. 2016, 52, 2002604. [Google Scholar] [CrossRef]
- Vanoost, D.; Steentjes, S.; Peuteman, J.; Gielen, G.; Gersem, H.D.; Pissoort, D.; Hameyer, K. Magnetic hysteresis at the domain scale of a multi-scale material model for magneto-elastic behaviour. J. Magn. Magn. Mater. 2016, 414, 168179. [Google Scholar] [CrossRef]
- Zhan, Y.S.; Lin, C.H. A constitutive model of coupled magneto-thermo-mechanical hysteresis behavior for Giant Magnetostrictive Materials. Mech. Mater. 2020, 148, 103477. [Google Scholar] [CrossRef]
- Hubert, O.; Daniel, L.; Bernard, L. Multiscale modeling of magnetostrictive materials. In Reference Module in Materials Science and Materials Engineering; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Daniel, L.; Hubert, O.; Rekik, M. A simplified 3D constitutive law for magneto-mechanical behaviour. IEEE Trans. Magn. 2015, 51, 7300704. [Google Scholar] [CrossRef] [Green Version]
- Bernard, L.; Mailhé, B.J.; Sadowski, N.; Batistela, N.J.; Daniel, L. Multiscale approaches for magnetoelasticity in device simulation. J. Magn. Magn. Mater. 2019, 487, 165241. [Google Scholar] [CrossRef]
- Zhao, W.; Wang, S.; Xie, X.; Zhou, X.; Liu, L. A simplified multiscale magneto-mechanical model for magnetic materials. J. Magn. Magn. Mater. 2021, 526, 167695. [Google Scholar] [CrossRef]
- Shi, P. One-dimensional magneto-mechanical model for anhysteretic magnetization and magnetostriction in ferromagnetic materials. J. Magn. Magn. Mater. 2021, 537, 168212. [Google Scholar] [CrossRef]
- Daniel, L. An analytical model for the effect of multiaxial stress on the magnetic susceptibility of ferromagnetic materials. IEEE Trans. Magn. 2013, 49, 2037. [Google Scholar] [CrossRef]
- Daniel, L. An analytical model for the magnetostriction strain of ferromagnetic materials subjected to multiaxial stress. Eur. Phys. J. Appl. Phys. 2018, 83, 30904. [Google Scholar] [CrossRef] [Green Version]
- Szewczyk, R. Generalization of the model of magnetoelastic effect: 3D mechanical stress dependence of magnetic permeability tensor in soft magnetic materials. Materials 2020, 13, 4070. [Google Scholar] [CrossRef]
- Domenjoud, M.; Berthelot, E.; Galopin, N.; Corcolle, R.; Bernard, Y.; Daniel, L. Characterization of Giant Magnetostrictive Materials under static stress: Influence of loading boundary conditions. Smart Mater. Struct. 2019, 28, 095012. [Google Scholar] [CrossRef]
- Pearson, J.; Squire, P.T.; Atkinson, D. Which anhysteretic magnetization curve. IEEE Trans. Magn. 1997, 33, 3970–3972. [Google Scholar] [CrossRef]
- Nowicki, M. Anhysteretic magnetization measurement methods for soft magnetic materials. Materials 2018, 11, 2021. [Google Scholar] [CrossRef] [Green Version]
- Jiles, D.C. Introduction to Magnetism and Magnetic Materials; Chapman & Hall: London, UK, 1991. [Google Scholar]
- Sandlund, L.; Fahlander, M.; Cedell, T.; Clark, A.E.; Restorff, J.B.; Wun-Fogle, M. Magnetostriction, elastic moduli, and coupling factors of composite Terfenol-D. J. Appl. Phys. 1994, 75, 5656–5658. [Google Scholar] [CrossRef]
- Galopin, N.; Daniel, L.; Bouillault, F.; Besbes, M. Numerical analysis for the design of a magneto-elastic characterisation device. Prz. Elektrotechniczny 2007, 83, 44–47. [Google Scholar]
- Garcia-Miquel, H.; Barrera, D.; Amat, R.; Kurlyandskaya, G.V.; Sales, S. Magnetic actuator based on giant magnetostrictive material Terfenol-D with strain and temperature monitoring using FBG optical sensor. Measurement 2016, 80, 201–206. [Google Scholar] [CrossRef]
- Daniel, L.; Bernard, L.; Hubert, O. Multiscale modeling of magnetic materials. In Reference Module in Materials Science and Materials Engineering; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Daniel, L.; Hubert, O. An analytical model for the ΔE effect in magnetic materials. Eur. Phys. J. Appl. Phys. 2009, 45, 31101. [Google Scholar] [CrossRef]
- Aydin, U.; Rasilo, P.; Martin, F.; Belahcen, A.; Daniel, L.; Haavisto, A.; Arkkio, A. Effect of multi-axial stress on iron losses of electrical steel sheets. J. Magn. Magn. Mater. 2019, 469, 19–29. [Google Scholar] [CrossRef]
Parameter | Value | Unit | Source |
---|---|---|---|
8 × 10 | A·m | Sandlund et al. [41] | |
(−0.8, −1.8) × 10 | J·m | Engdahl [6] | |
(9, 164) × 10 | - | Jiles [40] | |
5 × 10 | mJ | - | |
1 | MPa | - |
Parameter | Value | Unit | Parameter | Value | Unit |
---|---|---|---|---|---|
A/m | - | ||||
m/A | m/A | ||||
Pa | Pa |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Daniel, L.; Domenjoud, M. Anhysteretic Magneto-Elastic Behaviour of Terfenol-D: Experiments, Multiscale Modelling and Analytical Formulas. Materials 2021, 14, 5165. https://doi.org/10.3390/ma14185165
Daniel L, Domenjoud M. Anhysteretic Magneto-Elastic Behaviour of Terfenol-D: Experiments, Multiscale Modelling and Analytical Formulas. Materials. 2021; 14(18):5165. https://doi.org/10.3390/ma14185165
Chicago/Turabian StyleDaniel, Laurent, and Mathieu Domenjoud. 2021. "Anhysteretic Magneto-Elastic Behaviour of Terfenol-D: Experiments, Multiscale Modelling and Analytical Formulas" Materials 14, no. 18: 5165. https://doi.org/10.3390/ma14185165
APA StyleDaniel, L., & Domenjoud, M. (2021). Anhysteretic Magneto-Elastic Behaviour of Terfenol-D: Experiments, Multiscale Modelling and Analytical Formulas. Materials, 14(18), 5165. https://doi.org/10.3390/ma14185165