Torsional Resistance of Heat-Treated Nickel-Titanium Instruments under Different Temperature Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Tested Nickel-Titanium Instruments
2.2. Torsional Resistance Test
2.3. Statistical Analysis
2.4. Scanning Electronic Microscopic Analysis
2.5. Differential Scanning Calorimetry
3. Results
3.1. Torsional Resistance Test
3.2. Differential Scanning Calorimetry
3.3. Scanning Electronic Microscopic Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shen, Y.; Zhou, H.M.; Wang, Z.; Campbell, L.; Zheng, Y.F.; Haapasalo, M. Phase transformation behavior and mechanical properties of thermomechanically treated K3XF nickel-titanium instruments. J. Endod. 2013, 39, 919–923. [Google Scholar] [CrossRef]
- Cho, O.I.; Versluis, A.; Cheung, G.S.; Ha, J.H.; Hur, B.; Kim, H.C. Cyclic fatigue resistance tests of Nickel-Titanium rotary files using simulated canal and weight loading conditions. Restor. Dent. Endod. 2013, 38, 31–35. [Google Scholar] [CrossRef] [Green Version]
- Cheung, G.S.; Oh, S.H.; Ha, J.H.; Kim, S.K.; Park, S.H.; Kim, H.C. Effect of torsional loading of nickel-titanium instruments on cyclic fatigue resistance. J. Endod. 2013, 39, 1593–1597. [Google Scholar] [CrossRef]
- Plotino, G.; Grande, N.M.; Testarelli, L.; Gambarini, G. Cyclic fatigue of Reciproc and WaveOne reciprocating instruments. Int. Endod. J. 2012, 45, 614–618. [Google Scholar] [CrossRef]
- Gambarini, G.; Gergi, R.; Naaman, A.; Osta, N.; Al Sudani, D. Cyclic fatigue analysis of twisted file rotary NiTi instruments used in reciprocating motion. Int. Endod. J. 2012, 45, 802–806. [Google Scholar] [CrossRef] [PubMed]
- Di Nardo, D.; Zanza, A.; Seracchiani, M.; Donfrancesco, O.; Gambarini, G.; Testarelli, L. Angle of Insertion and Torsional Resistance of Nickel-Titanium Rotary Instruments. Materials 2021, 14, 3744. [Google Scholar] [CrossRef] [PubMed]
- Loska, S.; Basiaga, M.; Pochrząst, M.; Łukomska-Szymańska, M.; Walke, W.; Tyrlik-Held, J. Comparative characteristics of endodontic drills. Acta Bioeng Biomech. 2015, 17, 75–83. [Google Scholar] [PubMed]
- Shen, Y.; Zhou, H.M.; Zheng, Y.F.; Peng, B.; Haapasalo, M. Current challenges and concepts of the thermomechanical treatment of nickel-titanium instruments. J. Endod. 2013, 39, 163–172. [Google Scholar] [CrossRef] [Green Version]
- OneCurve Broucher. Available online: https://micro-mega.com/wp-content/uploads/2020/11/60301900-A_Flyer-One-Curve-Portfolio-EN_web.pdf (accessed on 30 July 2021).
- Gambarini, G.; Plotino, G.; Grande, N.M.; Al-Sudani, D.; De Luca, M.; Testarelli, L. Mechanical properties of nickel-titanium rotary instruments produced with a new manufacturing technique. Int. Endod. J. 2011, 44, 337–341. [Google Scholar] [CrossRef] [PubMed]
- Pereira, E.S.J.; Peixoto, I.F.C.; Viana, A.C.D.; Oliveira, I.I.; Gonzalez, B.M.; Buono, V.T.L.; Bahia, M.G.A. Physical and mechanical properties of a thermomechanically treated NiTi wire used in the manufacture of rotary endodontic instruments. Int. Endod. J. 2012, 45, 469–474. [Google Scholar]
- Martins, J.N.R.; Silva, E.J.N.L.; Marques, D.; Belladonna, F.; Simões-Carvalho, M.; Vieira, V.T.L.; Antunes, H.S.; Braz Fernandes, F.M.B.; Versiani, M.A. Design, metallurgical features, mechanical performance and canal preparation of six reciprocating instruments. Int. Endod. J. 2021, 54, 1623–1637. [Google Scholar] [CrossRef]
- Dosanjh, A.; Paurazas, S.; Askar, M. The Effect of Temperature on cyclic fatigue of nickel-titanium rotary endodontic instruments. J. Endod. 2017, 43, 823–826. [Google Scholar] [CrossRef] [PubMed]
- Plotino, G.; Grande, N.M.; Testarelli, L.; Gambarini, G.; Castagnola, R.; Rossetti, A. Cyclic fatigue of Reciproc and Reciproc Blue nickel-titanium reciprocating files at different environmental temperatures. J. Endod. 2018, 44, 1549–1552. [Google Scholar] [CrossRef] [PubMed]
- de Hemptinne, F.; Slaus, G.; Vandendael, M.; Jacquet, W.; De Moor, R.J.; Bottenberg, P. In vivo intracanal temperature evolution during endodontic treatment after the injection of room temperature or preheated sodium hypochlorite. J. Endod. 2015, 41, 1112–1115. [Google Scholar]
- Ha, J.H.; Kim, S.K.; Cohenca, N.; Kim, H.C. Effect of R-phase heat treatment on torsional resistance and cyclic fatigue fracture. J. Endod. 2013, 39, 389–393. [Google Scholar] [CrossRef] [PubMed]
- Anonymous. ASTM F 2004-17. Standard test method for transformation temperature of nickel-titanium alloys by thermal analysis. Am. Soc. Test. Mater 2016. [Google Scholar] [CrossRef]
- ASTM F 2005-21. Standard terminology for nickel-titanium shape memory alloys. Am. Soc. Test. Mater 2005. [CrossRef]
- ASTM E967-18. Standard test method for temperature calibration of differential scanning calorimeters and differential thermal analyzers. Am. Soc. Test. Mater. 2018. [CrossRef]
- Kus, K.; Breczko, T. DSC-investigations of the effect of annealing temperature on the phase transformation behavior in Ni-Ti shape memory alloy. Mater. Phys. Mech. 2010, 9, 75–83. [Google Scholar]
- Anonymous. ANSI/ADA Specification, No. 28-2008. Root Canal Files and Reamers, Type K; American Dental Association: Chicago, MI, USA, 2008. [Google Scholar]
- Ha, J.H.; Kwak, S.W.; Kim, S.K.; Sigurdsson, A.; Kim, H.C. Effect from rotational speed on torsional resistance of the nickel-titanium instruments. J. Endod. 2017, 43, 443–446. [Google Scholar] [CrossRef]
- Kim, J.Y.; Cheung, G.S.; Park, S.H.; Ko, D.C.; Kim, J.W.; Kim, H.C. Effect from cyclic fatigue of nickel-titanium rotary files on torsional resistance. J. Endod. 2012, 38, 527–530. [Google Scholar] [CrossRef] [PubMed]
- Park, S.Y.; Cheung, G.S.; Yum, J.; Hur, B.; Park, J.K.; Kim, H.C. Dynamic torsional resistance of nickel-titanium rotary instruments. J. Endod. 2010, 36, 1200–1204. [Google Scholar] [CrossRef] [PubMed]
- Ha, J.H.; De-Deus, G.; Versluis, A.; Kwak, S.W.; Kim, H.C. Safe pseudoelastic limit range under torsional loading with Reciproc Blue. Int. Endod. J. 2019, 52, 244–249. [Google Scholar] [CrossRef]
- Ha, J.H.; Sigurdsson, A.; De-Deus, G.; Versluis, A.; Kwak, S.W.; Kim, H.C. Torsional Behavior of WaveOne Gold Endodontic File with the Dedicated Motor of the Original WaveOne File. Materials 2018, 11, 1150. [Google Scholar] [CrossRef] [Green Version]
- Hulsmann, M.; Donnermeyer, D.; Schafer, E. A critical appraisal of studies on cyclic fatigue resistance of engine-driven endodontic instruments. Int. Endod. J. 2019, 52, 1427–1445. [Google Scholar] [CrossRef] [Green Version]
- Cunningham, W.T.; Balekjian, A.Y. Effect of temperature on collagen-dissolving ability of sodium hypochlorite endodontic irrigant. Oral. Surg. Oral. Med. Oral. Pathol. 1980, 49, 175–177. [Google Scholar] [CrossRef]
- de Vasconcelos, R.A.; Murphy, S.; Carvalho, C.A.; Govindjee, R.G.; Govindjee, S.; Peters, O.A. Evidence for reduced fatigue resistance of contemporary rotary instruments exposed to body temperature. J. Endod. 2016, 42, 782–787. [Google Scholar] [CrossRef] [Green Version]
- Brantley, W.A.; Svec, T.A.; Iijima, M.; Powers, J.M.; Grentzer, T.H. Differential scanning calorimetric studies of nickel-titanium rotary endodontic instruments after simulated clinical use. J. Endod. 2002, 28, 774–778. [Google Scholar] [CrossRef] [PubMed]
- Alapati, S.B.; Brantley, W.A.; Svec, T.A.; Powers, J.M.; Nusstein, J.M.; Daehn, G.S. SEM observations of nickel-titanium rotary endodontic instruments that fractured during clinical Use. J. Endod. 2005, 31, 40–43. [Google Scholar] [CrossRef]
- Alexandrou, G.B.; Chrissafis, K.; Vasiliadis, L.P.; Pavlidou, E.; Polychroniadis, E.K. SEM observations and differential scanning calorimetric studies of new and sterilized nickel-titanium rotary endodontic instruments. J. Endod. 2006, 32, 675–679. [Google Scholar] [CrossRef] [PubMed]
- Ataya, M.; Ha, J.H.; Kwak, S.W.; Abu-Tahun, I.H.; El Abed, R.; Kim, H.C. Mechanical properties of orifice preflaring nickel-titanium rotary instrument heat treated using T-Wire technology. J. Endod. 2018, 44, 1867–1871. [Google Scholar] [PubMed]
- Silva, E.J.N.L.; Giraldes, J.F.N.; de Lima, C.O.; Vieira, V.T.L.; Elias, C.N.; Antunes, H.S. Influence of heat treatment on torsional resistance and surface roughness of nickel-titanium instruments. Int. Endod. J. 2019, 52, 1645–1651. [Google Scholar] [CrossRef]
- Pirani, C.; Iacono, F.; Generali, L.; Sassatelli, P.; Nucci, C.; Lusvarghi, L. HyFlex EDM: Superficial features, metallurgical analysis and fatigue resistance of innovative electro discharge machined NiTi rotary instruments. Int. Endod. J. 2016, 49, 483–493. [Google Scholar] [CrossRef] [PubMed]
- Uslu, G.; Ozyurek, T.; Yilmaz, K. Comparison of alterations in the surface topographies of HyFlex CM and HyFlex EDM nickel-titanium files after root canal preparation: A three-dimensional optical profilometry study. J. Endod. 2018, 44, 115–119. [Google Scholar] [CrossRef] [PubMed]
System (Code) | Heat-Treatment | Tip Size/Taper | Manufacturer |
---|---|---|---|
OneShape (OS) | conventional austenite alloy | ISO 25/Constant 6% | MicroMega, Besançon, France |
OneCurve (OC) | C-wire | ISO 25/Constant 6% | MicroMega, Besançon, France |
WaveOne Gold (WOG) | Gold-wire | ISO 25/Variable (8% taper of a few millimeters) | Dentsply-Sirona, Ballaigues, Switzerland |
HyFlex EDM (HFE) | Controlled memory wirevia electrical discharge machining | ISO 25/Variable (8% taper of a few millimeters) | Coltene/Whaledent, Altstätten, Switzerland |
Temperature (°C) | Distortional Angle (Degree) | Toughness (Degree·Ncm) | Maximal Torque (Ncm) | |
---|---|---|---|---|
OneCurve | RT 22 (°C) | 439.4 ± 50.7 aA | 228.0 ± 75.4 aA | 0.781 ± 0.131 aA |
BT (36 °C) | 394.0 ± 41.0 bA | 216.1 ± 45.3 aA | 0.819 ± 0.126 aA | |
OneShape | RT (22 °C) | 439.4 ± 42.2 aB | 233.9 ± 47.0 aB | 0.751 ± 0.089 aB |
BT (36 °C) | 440.0 ± 97.6 aB | 236.2 ± 75.5 aB | 0.777 ± 0.145 aB | |
Hyflex EDM | RT (22 °C) | 582.9 ± 46.9 aC | 597.3 ± 71.6 aC | 1.583 ± 0.192 aC |
BT (36 °C) | 561.1 ± 53.1 aC | 539.8 ± 120.5 aC | 1.462 ± 0.233 aC | |
WaveOne Gold | RT (22 °C) | 389.3 ± 61.7 aD | 320-2 ± 103.3 aD | 1.194 ± 0.225 aD |
BT (36 °C) | 388.9 ± 63.6 aD | 309.0 ± 102.4 aD | 1.228 ± 0.142 aD |
Heating | Cooling | ||||||||
---|---|---|---|---|---|---|---|---|---|
As (°C) | Peak | Af (°C) | Rs (°C) | Peak | Rf (°C) | Ms (°C) | Peak | Mf (°C) | |
OneShape | −18.8 ± 4.0 | −14.6 ± 0.3 | −5.4 ± 4.4 | −2.5 ± 0.9 | −16.8 ± 0.3 | −32.6 ± 2.5 | |||
OneCurve | 25.3 ± 0.6 | 33.8 ± 0.2 | 40.3 ± 0.4 | 40.3 ± 0.4 | 31.5 ± 0.2 | 25.3 ± 0.6 | |||
WaveOne Gold | 27.1 ± 2.6 | 38.4 ± 1.3 | 46.8 ± 0.1 | 44.8 ± 0.5 | 35.8 ± 1.0 | 22.2 ± 2.5 | |||
Hyflex EDM | 38.1 ± 0.4 | 45.3 ± 0.7 | 48.1 ± 0.2 | 46.8 ± 0.1 | 41.9 ± 0.2 | 37.3 ± 0.3 | −10.8 ± 0.5 | −18.7 ± 0.6 | −37.9 ± 0.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jo, H.J.; Kwak, S.W.; Kim, H.-C.; Kim, S.K.; Ha, J.-H. Torsional Resistance of Heat-Treated Nickel-Titanium Instruments under Different Temperature Conditions. Materials 2021, 14, 5295. https://doi.org/10.3390/ma14185295
Jo HJ, Kwak SW, Kim H-C, Kim SK, Ha J-H. Torsional Resistance of Heat-Treated Nickel-Titanium Instruments under Different Temperature Conditions. Materials. 2021; 14(18):5295. https://doi.org/10.3390/ma14185295
Chicago/Turabian StyleJo, Hyo Jin, Sang Won Kwak, Hyeon-Cheol Kim, Sung Kyo Kim, and Jung-Hong Ha. 2021. "Torsional Resistance of Heat-Treated Nickel-Titanium Instruments under Different Temperature Conditions" Materials 14, no. 18: 5295. https://doi.org/10.3390/ma14185295
APA StyleJo, H. J., Kwak, S. W., Kim, H. -C., Kim, S. K., & Ha, J. -H. (2021). Torsional Resistance of Heat-Treated Nickel-Titanium Instruments under Different Temperature Conditions. Materials, 14(18), 5295. https://doi.org/10.3390/ma14185295