Graphene Quantum Dots Improved “Caterpillar”-like TiO2 for Highly Efficient Photocatalytic Hydrogen Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Fabrication of TiO2-GQDs Caterpillar Hybrids
2.3. Characterization and Electrochemical Measurements
2.4. Photocatalytic Experiments
3. Results and Discussion
3.1. Morphology Study
3.2. Characterization of GQDs
3.3. XRD and Raman Spectroscopy Studies
3.4. XPS Studies
3.5. UV-Visible Absorption and Band Structure Studies
3.6. Photocatalytic Properties Studies
3.7. Analysis of Photocatalytic Hydrogen Generation Mechanism
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chu, S.; Cui, Y.; Liu, N. The path towards sustainable energy. Nat. Mater. 2017, 16, 16–22. [Google Scholar] [CrossRef] [PubMed]
- Qiu, B.; Zhu, Q.; Du, M.; Fan, L.; Xing, M.; Zhang, J. Efficient Solar Light Harvesting CdS/Co9S8 Hollow Cubes for Z-Scheme Photocatalytic Water Splitting. Angew. Chem. Int. Ed. 2017, 56, 2684–2688. [Google Scholar] [CrossRef]
- Yuan, Y.-J.; Tu, J.-R.; Ye, Z.-J.; Chen, D.-Q.; Hu, B.; Huang, Y.-W.; Chen, T.-T.; Cao, D.-P.; Yu, Z.-T.; Zou, Z.-G. MoS2-graphene/ZnIn2S4 hierarchical microarchitectures with an electron transport bridge between light-harvesting semiconductor and cocatalyst: A highly efficient photocatalyst for solar hydrogen generation. Appl. Catal. B 2016, 188, 13–22. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, H.; Chen, S.; Su, Y.; Quan, X. Three-dimensional TiO2 nanotube arrays combined with g-C3N4 quantum dots for visible light-driven photocatalytic hydrogen production. RSC Adv. 2017, 7, 13223–13227. [Google Scholar] [CrossRef] [Green Version]
- Jangid, N.K.; Jadoun, S.; Yadav, A.; Srivastava, M.; Kaur, N. Polyaniline-TiO2-based photocatalysts for dyes degradation. Polym. Bull. 2021, 78, 4743–4777. [Google Scholar] [CrossRef]
- Min, S.; Hou, J.; Lei, Y.; Ma, X.; Lu, G. Facile one-step hydrothermal synthesis toward strongly coupled TiO2/graphene quantum dots photocatalysts for efficient hydrogen evolution. Appl. Surf. Sci. 2017, 396, 1375–1382. [Google Scholar] [CrossRef] [Green Version]
- Peiris, S.; de Silva, H.B.; Ranasinghe, K.N.; Bandara, S.V.; Perera, I.R. Recent development and future prospects of TiO2 photocatalysis. J. Chin. Chem. Soc. 2021, 68, 738–769. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, X. Anatase/Bronze TiO2 Heterojunction: Enhanced Photocatalysis and Prospect in Photothermal Catalysis. Chem. Res. Chin. Univ. 2020, 36, 992–999. [Google Scholar] [CrossRef]
- Seo, D.-B.; Bae, S.-S.; Kim, E.-T. Efficient Visible-Light Photocatalysis of TiO2-delta Nanobelts Utilizing Self-Induced Defects and Carbon Doping. Nanomaterials 2021, 11, 1377. [Google Scholar] [CrossRef]
- Li, K.; Chen, R.; Li, S.-L.; Xie, S.-L.; Dong, L.-Z.; Kang, Z.-H.; Bao, J.-C.; Lan, Y.-Q. Engineering Zn1-xCdxS/CdS Heterostructures with Enhanced Photocatalytic Activity. ACS Appl. Mater. Interfaces 2016, 8, 14535–14541. [Google Scholar] [CrossRef]
- Lei, Y.; Yang, C.; Hou, J.; Wang, F.; Min, S.; Ma, X.; Jin, Z.; Xu, J.; Lu, G.; Huang, K.-W. Strongly coupled CdS/graphene quantum dots nanohybrids for highly efficient photocatalytic hydrogen evolution: Unraveling the essential roles of graphene quantum dots. Appl. Catal. B 2017, 216, 59–69. [Google Scholar] [CrossRef] [Green Version]
- Tian, X.-T.; Yin, X.-B. Carbon Dots, Unconventional Preparation Strategies, and Applications Beyond Photoluminescence. Small 2019, 15, 1901803. [Google Scholar] [CrossRef] [PubMed]
- Tu, X.; Wang, Q.; Zhang, F.; Lan, F.; Liu, H.; Li, R. CO2-triggered reversible phase transfer of graphene quantum dots for visible light-promoted amine oxidation. Nanoscale 2020, 12, 4410–4417. [Google Scholar] [CrossRef] [PubMed]
- Mueller, M.L.; Yan, X.; Dragnea, B.; Li, L.-s. Slow Hot-Carrier Relaxation in Colloidal Graphene Quantum Dots. Nano Lett. 2011, 11, 56–60. [Google Scholar] [CrossRef]
- Liu, X.; Jian, X.; Yang, H.; Song, X.; Liang, Z. A photocatalytic graphene quantum dots-Cu2O/bipolar membrane as a separator for water splitting. New J. Chem. 2016, 40, 3075–3079. [Google Scholar] [CrossRef]
- Ryu, J.; Lee, J.W.; Yu, H.; Yun, J.; Lee, K.; Lee, J.; Hwang, D.; Kang, J.; Kim, S.K.; Jang, J. Size effects of a graphene quantum dot modified-blocking TiO2 layer for efficient planar perovskite solar cells (vol 5, pg 18276, 2017). J. Mater. Chem. A 2017, 5, 18276. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Bai, X. A Review on Quantum Dots Modified g-C3N4-Based Photocatalysts with Improved Photocatalytic Activity. Catalysts. 2020, 10, 142. [Google Scholar] [CrossRef] [Green Version]
- Wei, D.; Tang, W.; Gan, Y.; Xu, X. Graphene quantum dot-sensitized Zn-MOFs for efficient visible-light-driven carbon dioxide reduction. Catal. Sci. Technol. 2020, 10, 5666–5676. [Google Scholar] [CrossRef]
- Biswas, A.; Salunke, G.; Khandelwal, P.; Das, R.; Poddar, P. Surface disordered rutile TiO2-graphene quantum dot hybrids: A new multifunctional material with superior photocatalytic and biofilm eradication properties. New J. Chem. 2017, 41, 2642–2657. [Google Scholar] [CrossRef]
- Safardoust-Hojaghan, H.; Salavati-Niasari, M. Degradation of methylene blue as a pollutant with N-doped graphene quantum dot/titanium dioxide nanocomposite. J. Clean. Prod. 2017, 148, 31–36. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Chen, Z.; Zhang, L.; Zhu, D.; Zhang, Q.; Luo, Y.; Shao, X. Graphene Grown on Anatase-TiO2 Nanosheets: Enhanced Photocatalytic Activity on Basis of a Well-Controlled Interface. J. Phys. Chem. C 2018, 122, 6388–6396. [Google Scholar] [CrossRef]
- Peng, J.; Gao, W.; Gupta, B.K.; Liu, Z.; Romero-Aburto, R.; Ge, L.; Song, L.; Alemany, L.B.; Zhan, X.; Gao, G.; et al. Graphene Quantum Dots Derived from Carbon Fibers. Nano Lett. 2012, 12, 844–849. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wu, G.; Liu, X.; Li, W.; Li, M. Orderly integration of porous TiO2(B) nanosheets into bunchy hierarchical structure for high-rate and ultralong-lifespan lithium-ion batteries. Nano Energy 2017, 31, 1–8. [Google Scholar] [CrossRef]
- Tian, H.; Shen, K.; Hu, X.; Qiao, L.; Zheng, W. N, S co-doped graphene quantum dots-graphene-TiO2 nanotubes composite with enhanced photocatalytic activity. J. Alloy. Compd. 2017, 691, 369–377. [Google Scholar] [CrossRef]
- Georgakilas, V.; Perman, J.A.; Tucek, J.; Zboril, R. Broad Family of Carbon Nanoallotropes: Classification, Chemistry, and Applications of Fullerenes, Carbon Dots, Nanotubes, Graphene, Nanodiamonds, and Combined Superstructures. Chem. Rev. 2015, 115, 4744–4822. [Google Scholar] [CrossRef] [PubMed]
- Chinnusamy, S.; Kaur, R.; Bokare, A.; Erogbogbo, F. Incorporation of graphene quantum dots to enhance photocatalytic properties of anatase TiO2. MRS Commun. 2018, 8, 137–144. [Google Scholar] [CrossRef]
- Ebrahimi, M.; Samadi, M.; Yousefzadeh, S.; Soltani, M.; Rahimi, A.; Chou, T.-c.; Chen, L.-C.; Chen, K.-H.; Moshfegh, A.Z. Improved Solar-Driven Photocatalytic Activity of Hybrid Graphene Quantum Dots/ZnO Nanowires: A Direct Z-Scheme Mechanism. ACS Sustain. Chem. Eng. 2017, 5, 367–375. [Google Scholar] [CrossRef]
- Gao, Y.; Hou, F.; Hu, S.; Wu, B.; Wang, Y.; Zhang, H.; Jiang, B.; Fu, H. Graphene Quantum-Dot-Modified Hexagonal Tubular Carbon Nitride for Visible-Light Photocatalytic Hydrogen Evolution. Chemcatchem 2018, 10, 1330–1335. [Google Scholar] [CrossRef]
- Yang, C.-H.; Ma, Z.-Q. Raman spectral analysis of TiO2 thin films doped with rare-earth samarium. Appl. Opt. 2012, 51, 5438–5441. [Google Scholar] [CrossRef]
- Wang, C.-X.; Chen, Y.; Fan, Y.-Z.; Zhang, Y.-W.; Liang, Q.-Y.; Wu, Y.-D.; Li, D.-M.; Jia, J.-F.; Xue, Q.-K.; Zhao, Z.-Q.; et al. Study on the mechanism of visible absorption enhancement for N+ implanted TiO2 by Raman spectroscopy. Surf. Rev. Lett. 2011, 18, 135–140. [Google Scholar] [CrossRef]
- Thang, P.N.; Hung, L.X.; Thuan, D.N.; Yen, N.H.; Hien, N.T.T.; Hanh, V.T.H.; Khang, N.C.; Laverdant, J.; Nga, P.T. Temperature-dependent Raman investigation and photoluminescence of graphene quantum dots with and without nitrogen-doping. J. Mater. Sci. 2021, 56, 4979–4990. [Google Scholar] [CrossRef]
- Wu, X.; Zhao, J.; Guo, S.; Wang, L.; Shi, W.; Huang, H.; Liu, Y.; Kang, Z. Carbon dot and BiVO4 quantum dot composites for overall water splitting via a two-electron pathway. Nanoscale 2016, 8, 17314–17321. [Google Scholar] [CrossRef] [PubMed]
- Giannakoudakis, D.A.; Farahmand, N.; Lomot, D.; Sobczak, K.; Bandosz, T.J.; Colmenares, J.C. Ultrasound-activated TiO2/GO-based bifunctional photoreactive adsorbents for detoxi fication of chemical warfare agent surrogate vapors. Chem. Eng. J. 2020, 395, 125099. [Google Scholar] [CrossRef]
- Umrao, S.; Abraham, S.; Theil, F.; Pandey, S.; Ciobota, V.; Shukla, P.K.; Rupp, C.J.; Chakraborty, S.; Ahuja, R.; Popp, J.; et al. A possible mechanism for the emergence of an additional band gap due to a Ti–O–C bond in the TiO2-graphene hybrid system for enhanced photodegradation of methylene blue under visible light. RSC Adv. 2014, 4, 59890–59901. [Google Scholar] [CrossRef]
- Xing, M.; Shen, F.; Qiu, B.; Zhang, J. Highly-dispersed Boron-doped Graphene Nanosheets Loaded with TiO2 Nanoparticles for Enhancing CO2 Photoreduction. Sci. Rep. 2014, 4, 6341. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Dong, Z.; Wang, X.; Zhao, X.; Tu, J.; Su, Q.; Du, G. Sulfur nanocrystals anchored graphene composite with highly improved electrochemical performance for lithium-sulfur batteries. J. Power Sources 2014, 270, 1–8. [Google Scholar] [CrossRef]
- Yan, X.; Li, Y.; Li, M.; Jin, Y.; Du, F.; Chen, G.; Wei, Y. Ultrafast lithium storage in TiO2-bronze nanowires/N-doped graphene nanocomposites. J. Mater. Chem. A 2015, 3, 4180–4187. [Google Scholar] [CrossRef]
- Yu, S.; Zhong, Y.-Q.; Yu, B.-Q.; Cai, S.-Y.; Wu, L.-Z.; Zhou, Y. Graphene quantum dots to enhance the photocatalytic hydrogen evolution efficiency of anatase TiO2 with exposed {001} facet. PCCP 2016, 18, 20338–20344. [Google Scholar] [CrossRef]
- Choi, H.C.; Jung, Y.M.; Kim, S.B. Size effects in the Raman spectra of TiO2 nanoparticles. Vib. Spectrosc 2005, 37, 33–38. [Google Scholar] [CrossRef]
- Santara, B.; Giri, P.K.; Imakita, K.; Fujii, M. Evidence of oxygen vacancy induced room temperature ferromagnetism in solvothermally synthesized undoped TiO2 nanoribbons. Nanoscale 2013, 5, 5476–5488. [Google Scholar] [CrossRef]
- Bahruji, H.; Bowker, M.; Davies, P.R. Influence of TiO2 structural properties on photocatalytic hydrogen gas production. J. Chem. Sci. 2019, 131, 33. [Google Scholar] [CrossRef] [Green Version]
- Rajender, G.; Kumar, J.; Giri, P.K. Interfacial charge transfer in oxygen deficient TiO2-graphene quantum dot hybrid and its influence on the enhanced visible light photocatalysis. Appl. Catal. B 2018, 224, 960–972. [Google Scholar] [CrossRef]
- Karthik, P.; Vinesh, V.; Shaheer, A.R.M.; Neppolian, B. Self-doping of Ti3+ in TiO2 through incomplete hydrolysis of titanium (IV) isopropoxide: An efficient visible light sonophotocatalyst for organic pollutants degradation. Appl. Catal. A 2019, 585, 117208. [Google Scholar] [CrossRef]
- Abdullah, S.A.; Sandan, M.Z.; Nayan, N.; Embong, Z.; Hak, C.R.C.; Adriyanto, F. Neutron beam interaction with rutile TiO2 single crystal (111): Raman and XPS study on Ti3+-oxygen vacancy formation. Mater. Lett. 2020, 263, 127143. [Google Scholar] [CrossRef]
- Xie, H.; Hou, C.; Wang, H.; Zhang, Q.; Li, Y. S, N Co-Doped Graphene Quantum Dot/TiO2 Composites for Efficient Photocatalytic Hydrogen Generation. Nanoscale Res. Lett. 2017, 12, 400. [Google Scholar] [CrossRef]
- Shafaee, M.; Goharshadi, E.K.; Mashreghi, M.; Sadeghinia, M. TiO2 nanoparticles and TiO2@graphene quantum dots nancomposites as effective visible/solar light photocatalysts. J. Photochem. Photobiol. A 2018, 357, 90–102. [Google Scholar] [CrossRef]
- Makula, P.; Pacia, M.; Macyk, W. How To Correctly Determine the Band Gap Energy of Modified Semiconductor Photocatalysts Based on UV-Vis Spectra. J. Phys. Chem. Lett. 2018, 9, 6814–6817. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Zhang, H.; Ke, J.; Zhang, J.; Tian, W.; Xu, X.; Duan, X.; Sun, H.; Tade, M.O.; Wang, S. 0D (MoS2)/2D (g-C3N4) heterojunctions in Z-scheme for enhanced photocatalytic and electrochemical hydrogen evolution. Appl. Catal. B 2018, 228, 64–74. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, X.; Liu, J.; Han, B.; Hu, X.; Yang, F.; Xu, Z.; Li, Y.; Jia, S.; Li, Z.; et al. Carbon Quantum Dot Implanted Graphite Carbon Nitride Nanotubes: Excellent Charge Separation and Enhanced Photocatalytic Hydrogen Evolution. Angew. Chem. Int. Ed. 2018, 57, 5765–5771. [Google Scholar] [CrossRef]
- Xia, Y.; Li, Q.; Lv, K.; Tang, D.; Li, M. Superiority of graphene over carbon analogs for enhanced photocatalytic H2 production activity of ZnIn2S4. Appl. Catal. B 2017, 206, 344–352. [Google Scholar] [CrossRef]
- He, R.; Liu, H.; Liu, H.; Xu, D.; Zhang, L. S-scheme photocatalyst Bi2O3/TiO2 nanofiber with improved photocatalytic performance. J. Mater. Sci. Technol. 2020, 52, 145–151. [Google Scholar]
- Yang, P.; Zhao, J.; Wang, J.; Cao, B.; Li, L.; Zhu, Z. Construction of Z-scheme carbon nanodots/WO3 with highly enhanced photocatalytic hydrogen production. J. Mater. Chem. A 2015, 3, 8256–8259. [Google Scholar] [CrossRef]
- Chang, D.W.; Baek, J.-B. Nitrogen-Doped Graphene for Photocatalytic Hydrogen Generation. Chem Asian J 2016, 11, 1125–1137. [Google Scholar] [CrossRef] [PubMed]
- Kudo, A.; Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 2009, 38, 253–278. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Zhao, Y.; Zhou, C.; Shang, L.; Peng, Y.; Cao, Y.; Wu, L.-Z.; Tung, C.-H.; Zhang, T. Carbon quantum dots/TiO2 composites for efficient photocatalytic hydrogen evolution. J. Mater. Chem. A 2014, 2, 3344–3351. [Google Scholar] [CrossRef]
- Williams, K.J.; Nelson, C.A.; Yan, X.; Li, L.-S.; Zhu, X. Hot Electron Injection from Graphene Quantum Dots to TiO2. ACS Nano 2013, 7, 1388–1394. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, J.; Chu, L.; Guo, Y.; Sun, C.; Yan, H.; Li, Z.; Li, M. Graphene Quantum Dots Improved “Caterpillar”-like TiO2 for Highly Efficient Photocatalytic Hydrogen Production. Materials 2021, 14, 5354. https://doi.org/10.3390/ma14185354
Ma J, Chu L, Guo Y, Sun C, Yan H, Li Z, Li M. Graphene Quantum Dots Improved “Caterpillar”-like TiO2 for Highly Efficient Photocatalytic Hydrogen Production. Materials. 2021; 14(18):5354. https://doi.org/10.3390/ma14185354
Chicago/Turabian StyleMa, Jing, Lihua Chu, Yanjiao Guo, Changxu Sun, Hao Yan, Ze Li, and Meicheng Li. 2021. "Graphene Quantum Dots Improved “Caterpillar”-like TiO2 for Highly Efficient Photocatalytic Hydrogen Production" Materials 14, no. 18: 5354. https://doi.org/10.3390/ma14185354
APA StyleMa, J., Chu, L., Guo, Y., Sun, C., Yan, H., Li, Z., & Li, M. (2021). Graphene Quantum Dots Improved “Caterpillar”-like TiO2 for Highly Efficient Photocatalytic Hydrogen Production. Materials, 14(18), 5354. https://doi.org/10.3390/ma14185354