Fluidity Investigation of Pure Al and Al-Si Alloys
Abstract
:1. Introduction
2. Experimental Methods
3. Results
3.1. Effect of Plunger Speed on Fluidity
3.2. Effect of Channel Gap on Fluidity
3.3. Effect of Die Temperature on Fluidity
4. Discussion
4.1. Peeling of Solidification Layer
4.2. Plunger Speed
4.3. Channel Gap
4.4. Die Temperature
5. Conclusions
- (1)
- The superiority of the 1070 fluidity to the Al-Si alloy decreased as the plunger speed decreased. This indicates that the effect of the heat transfer on the fluidity decreased compared with the latent heat as the plunger speed decreased.
- (2)
- The relationship between the Si content and fluidity was downward convex when the channel gap was 0.8 or 1.0 mm, whereas it rose monotonically to the right when the gap was 0.5 mm. This shows that pure aluminum does not have superior fluidity to the Al-Si alloys at a very thin channel gap. This result could be explained by the solidification layer peeling from the die earlier at lower Si contents.
- (3)
- The effect of the die temperature on the fluidity was investigated at die temperatures of 30 and 150 °C. The fluidity was greater when the die temperature was 150 °C. The increase in the fluidity of the pure aluminum 1070 with increasing temperature was smaller than that of the Al-Si alloy. It became clear that increasing the die temperature is not useful for increasing the fluidity of pure aluminum. This result could be explained by the solidification layer sticking to the die for longer times at higher die temperatures.
- (4)
- The inflection point in the relationship between Si content and fluidity represents the point at which the dominant factor determining the fluidity changes. In the region of lower Si content to the left the inflection point, the peeling of the solidification layer from the die is the dominant factor, whereas in the region of higher Si content to the right of the inflection point, the latent heat is the dominant factor.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Flemings, M.C.; Niyama, E.; Tayor, H.F. Fluidity of Aluminum alloys. An experimental and qualitative evaluation. AFS Trans. 1961, 69, 566–576. [Google Scholar]
- Kayama, N.; Murai, K.; Kiguchi, S.; Satoh, H. Effect of formation of primary crystals on fluidity and viscosity in nearly stages of solidification. Rep. Cast. Res. Lab. Waseda Univ. 1976, 27, 1–8. [Google Scholar]
- Dahle, A.K.; BæcKerund, L.; Arnberg, L. Castability of Aluminum foundry alloys. Int. J. Cast Met. Res. 1996, 9, 103–112. [Google Scholar] [CrossRef]
- Timelli, G.; Bonollo, F. Fluidity of aluminium die castings alloy. Int. J. Cast Met. Res. 2007, 20, 304–311. [Google Scholar] [CrossRef]
- Hans, E.; Xu, H. Fluidity of alloys under high pressure die casting conditions. Scr. Mater. 2005, 53, 7–10. [Google Scholar]
- Mollard, F.R.; Flemings, M.C.; Niyama, E.F. Understanding aluminum fluidity: The key to advanced cast products. AFS Trans. 1987, 95, 647–652. [Google Scholar]
- Sheshadri, M.R.; Ramachandran, A. Casting fluidity and fluidity of aluminium and its alloys. Mod. Cast. 1965, 21, 110–122. [Google Scholar]
- Gowri, S.; Samuel, F.H. Effect of alloying element on the solidification characteristic and microstructure of Al-Si-Cu-Mg-Fe 380 alloy. Metall. Mater. Trans. A 1994, 25, 437–448. [Google Scholar] [CrossRef]
- Behera, R.; Chatterjee, D.; Sutradhar, G. Effect of reinforcement particles on the fluidity and solidification behavior of the stir cast aluminum. Am. J. Mater. Sci. 2012, 2, 53–61. [Google Scholar] [CrossRef] [Green Version]
- Adefuye, O.A. Casting fluidity of commercially pure Al-Si casting alloys. Trans. J. Sci. Technol. 2014, 4, 16–30. [Google Scholar]
- Niesse, J.E.; Flemings, M.C.; Taylor, H.F. Applications of Theory in Understanding Fluidity of Metals. AFS Trans. 1959, 67, 685–697. [Google Scholar]
- Sahoo, K.L.; Sivaramakrishnan, C.S. Some studies on Al–8.3Fe–0.8V–0.9Si alloy for near net shape casting. J. Mater. Process. Technol. 2002, 135, 253–257. [Google Scholar] [CrossRef]
- Kayama, N. Viscosity and Fluidity in the Early Stages of Solidification of Metals, Quality Control of Engineering Alloys and the Role of metals Science; Delft University of Technology: Delft, The Netherlands, 1978; pp. 103–119. [Google Scholar]
- Niu, G.; Mao, J.; Wang, J. Effect of Ce addition on fluidity of casting aluminum alloy A356. Metall. Mater. Trans. A 2019, 50, 5935–5944. [Google Scholar] [CrossRef]
- Heidazadeh, A.; Emamy, M.; Rhimzadeh, A.; Soufi, R.; Sohrabi Baba Heidary, D.; Nasibi, S. The effect of copper addition on the fluidity and viscosity of an Al-Mg-Si alloy. J. Mater. Eng. Perform. 2014, 23, 469–476. [Google Scholar] [CrossRef]
- Campbell, J. Thin wall castings. Mater. Sci. Technol. 1988, 4, 194–204. [Google Scholar] [CrossRef]
- Emamy, M.; Abbasi, S.; Kaboli, S.; Vampbell, J. Fluidity of Al based metal matrix composites containing Al2O3 and SiC particles. Int. J. Cast Met. Res. 2009, 22, 430–437. [Google Scholar] [CrossRef]
- Rosandi, R.; Masnur, D. Influence of pouring temperatures to fluidity of aluminum scrap cans with investment casting using natural clays as mold materias. JOM FTEKNIK 2016, 3, 1–3. [Google Scholar]
- Niyama, E.; Anzai, K.; Funakubo, T.; Hiratsuka, S. Some basic research for thin wall casting technology. J. Mater. Process. Technol. 1997, 63, 779–783. [Google Scholar]
- Tiryakioglu, M.; Askeland, D.R.; Ramsay, C.W. The fluidity of 319 and A356: An experimental design approach. AFS Trans. 1994, 102, 17–25. [Google Scholar]
- Borouni, M.; Niroumand, N.; Fathi, M.H. Effect of a nano-ceramic mold coating on the fluidity length of thin wall castings in Al4-1 alloy gravity sand casting. Mater. Technol. 2014, 4, 473–477. [Google Scholar]
- Nishi, N. Characteristics of Fluid Flow for Thin Wall Aluminum Alloy Die Castings. Imono 1995, 67, 918–923. [Google Scholar]
- Komazaki, T.; Asada, J.; Watanabe, K.; Sasaki, H.; Nishi, N. Effects of Casting Conditions on Flow Length of Thin-Walled Diecasting for ADC 10 Alloy. Imono 1995, 67, 689–695. [Google Scholar]
- Brenji, R.V. Effectof reinforcement amount, mold temperature, superheat, and mold thickness on fluidity of in-situ Al-Mg2Si compisites. China Foundry 2018, 15. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.-G.; Sung, S.-Y.; Kim, Y.-J. Microstructure, metal mold reaction and fluidity of investment Cast-TiAl alloys. Mater. Trans. 2004, 45, 536–541. [Google Scholar] [CrossRef] [Green Version]
- Haga, T.; Fuse, H. Semisolid casting of product with thin fins by using Al-25%Si. Key Eng. Mater. 2015, 651–653, 1551–1556. [Google Scholar] [CrossRef]
- Haga, T.; Fuse, H.; Terao, M. Fabrication thin heat sink by the die casting of semisolid Al-25%Si. Solid State Phenom. 2018, 285, 423–428. [Google Scholar] [CrossRef]
- Fuse, H.; Imamura, S.; Terao, M.; Haga, T. Semisolid die casting of hypereutectic Al-25%Si alloy. Mater. Trans. 2020, 61, 993–999. [Google Scholar] [CrossRef]
- Haga, T.; Imamura, S.; Watari, H.; Nishida, S. Effect of Casting Conditions on Fluidity of Aluminum Alloy in Die Casting. In Proceedings of the International Conference on Leading Edge Manufacturing/Materials and Processing (LEMP), Cincinnati, OH, USA, 3 September 2020; ASME: Washington, DC, USA, 2020. Available online: https://doi.org/10.1115/LEMP2020-8625 (accessed on 31 August 2021).
- Available online: https://hishinuma.jp/menu/2013/09/hc50f.html (accessed on 29 May 2021).
- Available online: https://hishinuma.jp/menu/cat/cat132/cat1/ (accessed on 29 May 2021).
- Motomura, M.; Haga, T.; Sakurai, Y. Design and assembling of single roll apparatus for rapid solidification and characteristics of wide Al-Si eutectic alloy foils solidified. J. JILM 1988, 38, 528–533. [Google Scholar] [CrossRef]
- Haga, T. Development of a twin roll caster for light metals. J. Achiev. Mater. Manuf. Eng. 2010, 43, 393–402. [Google Scholar]
- Haga, T.; Ishihara, K.; Katayama, T.; Nishiyama, T. Effect of contacting condition between molten metal and roll on Al-12%Si alloy strip cast by melt drag method. Keikinzoku 1998, 48, 613–617. [Google Scholar]
- Lang, G. Giesseigenschaften und Oberflächenspannung von Aluminium und bi-nären Aluminiumlegierungen. Aluminum 1972, 48, 664–672. [Google Scholar]
- Ravi, K.R.; Pillai, R.M.; Amaranathan, K.R.; Pai, B.C.; Chakraborty, M. Nanocomposites: A gaze through its applications in transport industry. J. Alloys Compd. 2008, 456, 201–210. [Google Scholar] [CrossRef]
- Terumoto, H.; Ozaki, R.; Miyake, H.; Okada, A. Properties of Molten Metal and Fluidity of Al-Si alloy. Imono 1991, 63, 671–675. [Google Scholar]
- Okada, A.; Miyake, H.; Niwa, T. Ribbon Forming Ability of Al-Cu and Al-Si Alloys by Splat Cooling. Imono 1987, 59, 596–601. [Google Scholar]
- Haga, T.; Watari, H.; Kumai, S. High-speed twin-roll casting of Al-Mg-Si alloys. Int. J. Microstruct. Mater. Prop. 2007, 2, 178–184. [Google Scholar] [CrossRef]
- Kim, J.M.; Loper, C.R., Jr. Effect of Solidification Mechanism on Fluidity of Al-Si Casting Alloys. AFS Trans. 1995, 103, 521–529. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haga, T.; Imamura, S.; Fuse, H. Fluidity Investigation of Pure Al and Al-Si Alloys. Materials 2021, 14, 5372. https://doi.org/10.3390/ma14185372
Haga T, Imamura S, Fuse H. Fluidity Investigation of Pure Al and Al-Si Alloys. Materials. 2021; 14(18):5372. https://doi.org/10.3390/ma14185372
Chicago/Turabian StyleHaga, Toshio, Shinjiro Imamura, and Hiroshi Fuse. 2021. "Fluidity Investigation of Pure Al and Al-Si Alloys" Materials 14, no. 18: 5372. https://doi.org/10.3390/ma14185372
APA StyleHaga, T., Imamura, S., & Fuse, H. (2021). Fluidity Investigation of Pure Al and Al-Si Alloys. Materials, 14(18), 5372. https://doi.org/10.3390/ma14185372