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Abstract: This paper presents precise measurements of the temperature dependencies of the quadratic
electro-optic coefficients g1111 − g1122 and n3

eg3333 − n3
og1133 in KH2PO4 crystals. In addition to

traditional electro-optic coefficients describing changes in the function of an applied electric field,
intrinsic coefficients, defined in terms of induced polarization, are also considered. Both intrinsic
coefficients decrease with increases in temperature, but the relative temperature changes are of
different orders of magnitude: 10−4 and 10−3 K−1. A Sénarmont-type setup was used for the electro-
optic measurements. To achieve the best accuracy, a new approach was developed, in which, instead
of using only one specific point on the modulator’s transmission characteristic, the operating point is
changed during the measurements.

Keywords: electro-optic effects; polarimetric method; Sénarmont configuration; KDP crystal

1. Introduction

Electro-optic coefficients are traditionally defined by expanding the components Bij
of the relative optical dielectric impermeability tensor into a power series in the applied
low-frequency electric field:

Bij = δij/n2
i + rijkEk + gijklEkEl + . . . , (1)

where δij is the Kronecker delta, ni are field-free refractive indices, and rijk and gijkl are the
coefficients of the linear and quadratic electro-optic effects, respectively. The coefficients
rijk and gijkl show a significant temperature dependence and vary widely in different
materials. However, the changes in the rijk coefficients are much smaller if we describe the
impermeability tensor as a function of the induced polarization, rather than as a function
of the applied field [1–3]. Due to the very small amount of experimental data available, it is
currently unclear whether this rule can also be applied to the coefficients of the quadratic
effect. Following the approach suggested by Pockels for the linear electro-optic effect [1,2],
the intrinsic quadratic electro-optic coefficients fijk, defined in terms of polarization, can be
introduced as

fijkl =
gijkl

ε2
0(εkk − 1)(εll − 1)

. (2)

Similar coefficients may be defined using the Miller approach [2,3]:

δijkl =
−εiiεjjgijkl

4(εii − 1)
(
εjj − 1

)
(εkk − 1)(εll − 1)

, (3)

where ε0 is the vacuum permittivity, εii and εjj are the principal values of the optical
dielectric tensor, and εkk and εll are the principal values of the dielectric constant at a low
modulating frequency.

The aim of this work was to experimentally investigate the temperature dependencies
of the g1111 − g1122 and n3

e g3333 − n3
og1133 quadratic electro-optic coefficients in KH2PO4
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(KDP) crystals, and the corresponding intrinsic coefficients defined by Equations (2) and (3).
The coefficients were chosen to show that it is possible, in the same material, to have one
intrinsic coefficient with a clear temperature dependence and another with an almost
constant value. Moreover, we show that, in the case of very weak temperature dependence,
there is a significant difference between the coefficients defined by Equations (2) and (3).
Although the properties of KDP crystals are quite well documented, the quadratic electro-
optic coefficients, known from the literature, have only been measured at room temperature,
or at low temperatures, near the paraelectric-ferroelectric phase transition. In this paper,
we provide new data for temperatures from 25 ◦C to 85 ◦C for the g1111 − g1122 coefficient
and up to 90 ◦C for n3

eg3333 − n3
og1133.

This research required a method that would ensure the best accuracy of electro-optic
measurements and allow the detection of very small temperature changes. Due to the
limitations and disadvantages of existing methods, we developed a new method for
measuring the coefficients of the quadratic electro-optic effect, which can also be used
when the linear effect cannot be completely eliminated. Our method uses the well-known
Sénarmont-type system, but in comparison to previous works, the following improvements
have been made:

1. Our approach uses multiple operating points on the transmission characteristic of
the modulator, instead of traditional measurement at only one specific point. The
operating points are changed by a precise stepper motor that rotates the analyzer.

2. We propose a new advanced model of the experimental setup, which takes into
account the possible differences in the transmission of the fast and slow waves in the
sample and the quarter-wave plate, the inaccuracy in the phase difference introduced
by the quarter-wave plate, the partial interference of two waves passing through the
sample, and the apparent quadratic electro-optic effect that originates from the linear
effect and nonlinear transmission characteristic of the modulator. The use of such a
detailed model complicates the measurement procedure, but it seems necessary to
achieve the highest accuracy in the electro-optic measurements.

2. Materials and Methods

Polarimetric methods for measuring electro-optic effects are based on the change in
light intensity that occurs when the light passes through a sample, placed between two
linear polarizers, under the influence of an applied electric field. The system may also
include a retardation plate, placed in front of, or behind, the sample. In the most common
configuration, the polarizers are crossed and oriented at an angle of ±45◦ relative to the
planes of the fast waves in the sample and in the retardation plate. Assuming that there
is no dichroism nor optical activity in the system, the intensity of the emerging light is
given by

I = (Imax/2)[1− cos(Γ± γ)], (4)

where Imax is the maximum light intensity, Γ and γ are phase differences between the slow
and fast waves in the sample and in the retardation plate, respectively, and the sign ±
depends on the angle 0◦ or 90◦ between the azimuths of the fast waves.

In many materials submitted to electro-optic measurements, no significant natural
birefringence is expected. For such materials, the configuration, described by Equation (4),
is traditionally used with a quarter-wave plate (γ = 90◦), which is added to obtain an almost
linear relationship between the intensity of the transmitted light and small field-induced
changes in Γ. This approach has been used in many electro-optic measurements performed
for various uniaxial crystals, with a light beam along the optical axis, including LiNbO3,
GaAS, KDP-type crystals, and others [4–8]. There are also known measurements of the Kerr
effect in dispersions of nanoparticles [9] and in various liquids, such as mineral oils [10].
However, the method turns out to be sensitive to inaccuracies in the phase difference intro-
duced by commercially available quarter-wave plates, as well as to additional birefringence
that may appear both in the optical windows and in the sample itself.
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In the case of a strongly birefringent sample, it is possible to use the temperature
dependence of the linear birefringence to slowly move the working point along the I(Γ)
characteristic [11–15]. In such a system, no additional retardation plate is needed (γ = 0◦),
and readings can be made at many points on the characteristic. This approach offers good
sensitivity and accuracy, but it turns out to be very time-consuming. The method also
causes some difficulties—for example, even small movements in the position of the crystal
on its bases, during temperature changes, are observed as deviations of the actual I(T)
dependence from the theoretical, strictly periodic, function.

The measurement system, without a retardation plate, was also used for samples that
did not show natural birefringence, which corresponds to the minimum transmission point
in Formula (4). Although the sensitivity of this method is low, it is sufficient when the
quadratic electro-optic effect is very strong, such as for metal nanoparticles in glass [16,17].

A promising method that has been proposed recently, for determining electro-optic
coefficients, uses a photoelastic modulator, operating as a dynamic retarder to compensate
for the retardation introduced by the sample. The results so far reported for this method
only include the linear electro-optic effect [18,19].

The electro-optic modulator may also have a configuration typical for the Sénarmont
compensator. In this arrangement, the quarter-wave plate is placed behind the sample.
The angle between the fast axis of the quarter-wave plate and the fast axis of the sample is
±45◦, while the azimuth β of the analyzer can be freely adjusted. When the azimuth of the
polarizer is +45◦, the azimuth of the fast axis of the sample is 0◦, and the azimuth of the
quarter-wave plate is +45◦, we obtain

I = (Imax/2)[1 + sin(2β+ Γ)]. (5)

There are several known variations of measurement methods using the Sénarmont-
type arrangement [4,5], but it is typically assumed that only one of the two specific op-
erating points on the I(Γ) characteristic is used. The first option is to use the most linear
part of the characteristic (5), which can be achieved by setting the analyzer at β = −Γ(0)/2,
where Γ(0) is the field-free value of Γ. Since finding the maximum linearity point is neither
easy nor accurate, the frequency-doubling electro-optic modulation (FDEOM) method uses
the minimum transmission point. However, the FDEOM method provides relatively low
sensitivity, which may be a significant limitation when the field-induced changes in Γ are
very small.

The Sénarmont-type system is a common choice for many measurements of the linear
electro-optic effect. In contrast, there are very few reports on measurements of the quadratic
effect using maximum linearity conditions [20] or the FDEOM method [21,22]. To the best
knowledge of the author, there are no reports in the literature on the separation of the
quadratic electro-optic effect from the linear electro-optic effect and other unintended
phenomena. However, slight inaccuracies in real systems mean that the linear effect often
makes a dominant contribution to light modulation in configurations that theoretically
exclude its occurrence. In such cases, it may not be clear whether the experimental results
describe a true quadratic electro-optic effect or are a result of the linear effect.

In this paper, we show that the difficulties associated with the Sénarmont-type system
can be overcome by changing the operating point during measurements. Since these
changes can be achieved by rotating the analyzer, there is no need to exploit temperature
changes, as in Refs. [11–15], which are more difficult to control. A more advanced and
realistic mathematical model of the measurement system is also needed. Let us reconsider
the Sénarmont-type system, but now, with the following assumptions:

Assumption 1. The phase difference γ introduced by the quarter-wave plate may differ from the
ideal value of 90◦.

Assumption 2. The amplitude transmission coefficients through the quarter-wave plate Qf and Qs
for the fast and slow waves, respectively, may not be equal.



Materials 2021, 14, 5435 4 of 16

Assumption 3. The amplitude transmission coefficients through the sample Sf and Ss for fast and
slow waves, respectively, may not be equal. The difference between the Qf and Qs coefficients or the
Sf and Ss coefficients does not mean that the material used must show linear dichroism. In practice,
this difference can also result from mechanical surface treatment, which may give precedence to one
of the directions parallel to the surface. Another possible reason is that slightly different fractions
of the fast and slow waves of light are reflected at the boundary between two media, as given by
Fresnel’s equation.

Assumption 4. The linear electro-optic effect need not be completely eliminated, and may make a
significant nonlinear contribution to the dependence of the intensity of the emerging light on the
applied electric field.

Assumption 5. The fast and slow waves emerging from the sample may show only partial interference.

Sénarmont-type optical systems may differ in the orientation of their components. In
the studied configuration, the azimuth of the polarizer α =−45◦ or +45◦, the azimuth of the
fast axis of the sample ψ = 0◦ or 90◦, and the azimuth of the fast axis of the quarter-wave
plate θ = −45◦ or +45◦. Assumptions 1–4 can be taken into account directly in the Jones
matrix calculus. Using the general form of the Jones matrix, derived in Ref. [23], it can be
found that the ratio of the emerging light intensity I to the intensity Ip behind the polarizer
is given by

I/Ip = 1
8
(
Q2

f + Q2
s
)(

S2
f + S2

s
)

+ 1
4 pq

(
Q2

f −Q2
s
)
SfSs cos Γ

+ 1
8 q sin(2β)

(
Q2

f −Q2
s
)(

S2
f + S2

s
)

+ 1
4 s cos(2β)QfQs

(
S2

f − S2
s
)

cosγ
+ 1

4 p sin(2β)
(
Q2

f + Q2
s
)
SfSs cos Γ

+ 1
2 pqs cos(2β)QfQsSfSs sinγ sin Γ,

(6)

where Γ and γ are the phase differences introduced by the sample and the quarter-wave
plate, respectively, and p, q, s take values −1 or +1 depending on the azimuths α, θ, ψ.
Namely: p = sgn(α), q = sgn(θ), and s = +1 for ψ = 0◦ or s = −1 for ψ = 90◦.

The Jones calculus does not allow for partial interference of the two waves emerging
from the sample. However, we can describe cases of total interference and no transmission
of one of the two waves in the sample. Now, we will determine the effective intensity of
the light emerging from the optical system (i.e., integrated over the entire cross-section of
the beams), according to the approach proposed in Ref. [24] for double-refracted partially
overlapping light beams:

I = If + Is + (Im − If − Is)D, (7)

where If is the intensity in the zone in which only the fast wave propagates and Ss = 0, Is is
the intensity in the zone in which the slow wave propagates and Sf = 0, Im is the intensity
in the zone of full interference, in which neither of the two coefficients Sf or Ss is zeroed,
and D ∈ [0, 1] is the relative overlap of the two beams. Substitution of Formula (6) into
(7) yields

I/Ip = 1
8
(
Q2

f + Q2
s
)(

S2
f + S2

s
)

+ 1
4 pqD

(
Q2

f −Q2
s
)
SfSs cos Γ

+ 1
8 q sin(2β)

(
Q2

f −Q2
s
)(

S2
f + S2

s
)

+ 1
4 s cos(2β)QfQs

(
S2

f − S2
s
)

cosγ
+ 1

4 pD sin(2β)
(
Q2

f + Q2
s
)
SfSs cos Γ

+ 1
2 pqsD cos(2β)QfQsSfSs sinγ sin Γ.

(8)

In practice, measuring the light intensity behind the polarizer Ip could disturb the
polarization of the light incident on the sample. To avoid this, we measure the intensity
Iin of the light beam reflected by a beam-splitting mirror placed in front of the polarizer.
It must be taken into account, however, that the light transmission through the polarizer
P = Iin/Ip may depend on its azimuth α due to possible deviations from the intended
circular polarization of the incident light.
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The transmission of light through the system I/Iin is a function of three azimuths, α, θ,
and β, which can be changed easily during measurements. All of the terms in Formula (8)
that contain the difference Q2

f −Q2
s or S2

f − S2
s can be eliminated by calculating the average

light transmission T for the following two settings of q and β:

T(p, q, β) def
=

1
2

[
I(p, q, β)

Iin(p, q, β)
+

I(p,− q, 90◦ − β)
Iin(p,− q, 90◦ − β)

]
. (9)

Since the intensity of the laser light may change slightly during measurements involving
various orientations of the optical elements, we consider Iin as a function of the orientations
of all movable elements at the moment of measurement. Substitution of Formula (8) into (9)
and the use of identities sin(x) = sin(180◦ − x) and cos(x) = −cos(180◦ − x) yields

T(p, q, β) = 1
8 P
(
Q2

f + Q2
s
)(

S2
f + S2

s
)

+ 1
4 pDP sin(2β)

(
Q2

f + Q2
s
)
SfSs cos Γ

+ 1
2 pqsDP cos(2β)QfQsSfSs sinγ sin Γ.

(10)

The total phase difference Γ introduced by the sample is the sum of the difference
resulting from the natural birefringence ∆n0 and the changes induced by an applied
electric field

Γ =
2πL
λ

(
∆n0 + rE + gE2

)
, (11)

where L is the length of the light path in the sample, λ is the wavelength of light, and r and
g are the effective coefficients of the linear and quadratic electro-optic effects, respectively.
In this work, we use a sinusoidal low-frequency modulating electric field

E(t) = E0 sinωt. (12)

The average transmission T (10) can be decomposed into the sum of the DC component
T0, the first harmonic Tω, the second harmonic T2ω, and other higher harmonics. The
dependencies of T0, Tωand T2ω on β can be treated as a sum of Fourier series, in which
only the a00, a02, b02, a12, b12, a22, and b22 components can take non-zero values. In practice,
the ratio I/Iin in Equation (9) is measured by photodetectors, which produce output
voltages proportional to the respective light intensities Uin~Iin and U~I. The voltage
waveform U(t) can be resolved into the U0 component, measured by a DC voltmeter, and
the Uω and U2ω components detected by a DSP lock-in amplifier at the reference frequency
ω and its second harmonic. Using the measured voltages to describe the light intensities in
Equation (9), we obtain

ujω(p, q, β) =
1
2

[
Ujω(p, q, β)
Uin(p, q, β)

+
Ujω(p,− q, 90◦ − β)
Uin(p,− q, 90◦ − β)

]
= aj0 + aj2 cos 2β+ bj2 sin 2β, (13)

where the values j = 0, 1 and 2 correspond to three different series. If the voltages are read
for 2n azimuths β = kπ/n, the coefficients in series (13) are given by

aj0 =
1

2n

2n−1

∑
k=0

ujω(p, q, kπ/n), (14)

aj2 =
1
n

2n−1

∑
k=0

ujω(p, q, kπ/n) cos(2kπ/n), (15)

bj2 =
1
n

2n−1

∑
k=0

ujω(p, q, kπ/n) sin(2kπ/n). (16)
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Following the convention typical for lock-in amplifiers, we assume that the readings
show the RMS voltages |Uω| and |U2ω| and the phases φω and φ2ω ∈ (−180◦; +180◦],
defined as

U(t) = U0 +
√

2|Uω| sin(ωt +φω) +
√

2|U2ω| sin(2ωt +φ2ω) + . . . (17)

Due to the form of Equations (8), (11), and (12), the phase φω can take only two values:
0◦ or 180◦. The phase φ2ω can also take only +90◦ or −90◦. Therefore, both phases can be
eliminated by considering the RMS voltages in Equations (13)–(16) as signed values

sgn(Uω) =

{
+1, for φω = 0◦,
−1, for φω = 180◦,

(18)

sgn(U2ω) = sgn(φ2ω). (19)

Knowing the experimental values of the coefficients a02, b02, a22, and a22, we are able
to eliminate the terms D, P, Sf, Ss, and the contribution of the linear electro-optic effect
described by the coefficient r. The transformations shown in Appendix A lead to the
following formula for the effective coefficient of the quadratic electro-optic effect:

g = −qs
√

2λ
πLE2

0

a22b02 − b22a02

a2
02/C + b2

02C
, (20)

where C is the calibration factor for the quarter-wave plate used in the measuring system.
The factor takes the value 1 only for a perfect quarter-wave plate, or a value less than 1 for
each imperfect element. The factor is given by

C =
2QfQs

Q2
f + Q2

s
sinγ =

1− (∆Q/Q)2

1 + (∆Q/Q)2 sinγ, (21)

where ∆Q = (Qf − Qs)/2 and Q = (Qf + Qs)/2. The value of the factor (21) must be known
on the basis of other measurements made without a sample in the optical path. A review
of methods for calibrating a quarter-wave plate is beyond the scope of this work.

We performed measurements of two KDP crystals for the following directions of the
light and modulating field:

s = (0, 0, 1), E = (E, 0, 0), (22)

s = (1, 0, 0), E = (0, 0, E). (23)

Both crystals were cut in the form of right parallelepipeds with the dimensions
6.19 × 29.14 × 38.60 mm (X × Y × Z) for the crystal used in configuration (22) and
39.83 × 39.79 × 5.24 mm for configuration (23). In order to apply an electric field, two
faces of each crystal were coated with silver conductive paint.

According to the matrices of linear and quadratic electro-optic tensors for 42m sym-
metry [6,25], the effective coefficient r = 0 for both configurations (22) and (23). The g
coefficient in configuration (22) means

g = 0.5n3
o|g1111 − g1122|, (24)

and the sign of g1111 − g1122 can be determined from its relation to the azimuth of the fast
wave in the sample. Assuming that the azimuth 0◦ is defined as the direction of the applied
electric field, we obtain

s = sgn(g1111 − g1122). (25)

Formulas (20), (24), and (25) allow us to calculate the coefficient n3
o(g1111 − g1122).

In the case of configuration (23),

g = 0.5
(

n3
eg3333 − n3

og1133

)
, (26)
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and
s = sgn(no − ne). (27)

For no > ne, as in the case of KDP crystals, s = 1.

3. Experiment

The measurements were performed in the system shown in Figure 1. A Melles Griot
05-LHP-991 He-Ne laser was used as the light source, with a wavelength of λ = 632.8 nm.
The light beam, reflected from a 50% beam-splitting mirror, was directed at a Thorlabs
PDA36A-EC photodetector. The second light beam, which passed straight through the
mirror, a quarter-wave plate, and an electro-optic modulator, was measured by a Thorlabs
PDA100A-EC photodetector. An additional quarter-wave plate was placed in front of the
polarizer to change the linear polarization, of the light emitted by the laser, to circular
polarization. The electro-optic modulator consisted of a polarizer, the sample placed
in the measuring chamber, a quarter-wave plate, and an analyzer. The orientations of
the polarizer, quarter-wave plate, and analyzer were controlled by Thorlabs NR360S/M
rotation stages, connected to a Thorlabs BSC203 three-channel controller. Two EG&G 7265
DSP lock-in amplifiers were used to split the voltage from the output photodetector into
|Uω| and |U2ω| components and their phases φω and φ2ω. One of the two amplifiers
was also used as a modulating waveform generator. To obtain a modulating voltage of
up to about 3000V RMS, a TELTO TSZ 90 VA high voltage transformer was used, driven
by a Yamaha A-S501 amplifier. The Uin and U0 DC voltages, the modulating AC voltage,
and the resistance of the temperature sensor were measured using four Keithley 2000
multimeters. As the modulating voltage exceeded the range of the multimeter, a Tektronix
P6015A high voltage probe 1000:1 was used.
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Figure 1. Block diagram of the measurement system.

The measuring system included two serially produced multiorder quarter-wave plates
made of quartz (Melles Griot, model 02WRQ001/632.8). The parameters of the plate behind
the mirror can be omitted here, as they are irrelevant to the accuracy of the electro-optic
measurements. With a quarter-wave plate placed between the sample and the analyzer,
γ = 84.2693◦ and |∆Q|/Q = 0.0157, which gives a calibration factor of C = 0.9945. It is
worth noting that the deviation of C from the ideal value of 1 is mainly due to the inaccuracy
of the phase difference γ. Such a large deviation from the value of 90◦ is not uncommon,
and even greater inaccuracies have been reported in the case of commercially available
quarter-wave plates (e.g., up to 10◦, according to Ref. [26]).



Materials 2021, 14, 5435 8 of 16

Prior to the measurements, a selected crystal was placed in a 50 mm glass cuvette
filled with methyl silicone oil with a viscosity of 50 cSt (OM50). The methyl silicone oil
protected the hygroscopic crystal from moisture, reduced light reflection at the crystal
faces, and improved heat transport. The cuvette was placed in the measuring chamber,
which ensures a stable temperature with a maximum temperature error of ±0.2 ◦C and
fluctuations of less than ±0.03 ◦C.

When the crystal, used in configuration (22), was placed on the bench, its optical axis
was oriented along the laser beam with an accuracy of 0.05◦ by observing a conoscopic cross.
As this method could not be used for configuration (23), the faces perpendicular to the Y
and Z axes of the second crystal were oriented parallel to the light beam. Due to possible
inaccuracies during cutting of the crystal, it can be expected that the actual orientations of
the light and the applied field may differ from those intended in Equation (23) by up to ±1◦.

The results of preliminary measurements, obtained for a single temperature of 25 ◦C,
showed no significant dependence on the frequency of modulating voltage in the range
from 217 to 1017 Hz (higher frequencies were not tested). A single frequency of 417 Hz
was selected for further multi-temperature measurements. This value was chosen as a
compromise between the noise level in the detection path and the load of the high voltage
transformer, which show different frequency dependencies. It should also be noted that
the selected frequency differs from all harmonics of the 50 Hz supply.

The measurements began at 25 ◦C, and the temperature was then increased by incre-
ments of 5 ◦C. The results presented in this paper are limited to maximum temperatures,
at which we obtained stable readings, namely up to 85 ◦C for the crystal measured in
configuration (22) and up to 90 ◦C in configuration (23). We observed a large increase in
the electrical conductance of both KDP crystals at higher temperatures, which resulted in
destabilization of the readings. This destabilization was due to the heat released in the
crystals when subjected to high voltage.

The measurement procedure was as follows: after each temperature change, the
computer program waited 10 h for the temperature measured in the oil to stabilize. The
program then set all combinations of the analyzer azimuth from 0◦ to 355◦ in 5◦ steps, with
two polarizer azimuths +45◦ and −45◦ and two quarter-wave plate azimuths +45◦ and
−45◦. After each change of the azimuths, the voltages Uin, U0, Uω, U2ω, and the phases
φω and φ2ω were measured for 16 constant levels of modulating voltage, increasing from
about 750 to 3000 V RMS. The measurements were repeated 15 times for each modulating
voltage, and the results were averaged. To apply Formula (20) to the results obtained
at various voltage levels, we used the least squares method to fit the a coefficient in the
relation (a22b02 − b22a02)/

(
a2

02C−1 + b2
02C
)
= a E2

0.
The measurement procedure described above required about 24 h for each temperature

level. This time-consuming procedure can certainly be accelerated, but in the present study,
the priority was to achieve the highest accuracy.

4. Results and Discussion

The Formulas (20), (24), and (25) enable calculation of the coefficient n3
o(g1111 − g1122).

To find the values of g1111 − g1122, we used the temperature dependence of no given by
Ghosh and Bhar [27]. The averaged results obtained for the two polarizer azimuths−45◦ and
+45◦ are shown in Figure 2. The value g1111 − g1122 = (−3.07 ± 0.03) × 10−20 m2V−2, found
in this work for the KDP crystal at 25◦C, and the 632.8 nm He-Ne laser is in good agreement
with the previously reported values of g1111 − g1122 = (−3.1 ± 0.3) × 10−20 m2 V−2 [14] and
|g1111 − g1122| = 2.5 × 10−20 m2V−2 [28] obtained by employing the polarimetric method,
and with the values for the single coefficients g1111 = (−3.4 ± 0.5) × 10−20 m2V−2 and
g1122 = (−0.2 ± 0.4) × 10−20 m2V−2, measured with an actively stabilized Michelson inter-
ferometer [29]. The temperature dependence obtained in this work cannot be compared
with the results of previous studies due to the lack of data in the literature.
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Figure 2. Temperature dependence of the quadratic electro-optic coefficient g1111 − g1122 with second-
order polynomial interpolation g1111 − g1122 [10−20 m2 V−2] = −3.356 + 0.01215 T − 0.000027 T2 for T given 
in [°C]. 
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Figure 2. Temperature dependence of the quadratic electro-optic coefficient g1111 − g1122 with second-
order polynomial interpolation g1111 − g1122 [10−20 m2 V−2] = −3.356 + 0.01215 T − 0.000027 T2 for
T given in [◦C].

For optical frequencies ε11 = n2
o, ε33 = n2

e and in Equation (3), we used the tem-
perature dependencies of the ordinary no and extraordinary ne refractive indices deter-
mined by Ghosh and Bhar [23]. The values of the low-frequency dielectric constants
in Equations (2) and (3), for the paraeletric phase, can be expressed by a Curie-Weiss
type formula:

εkk = ε∞
kk +

Ckk
T − Tkk

, (28)

where, according to Deguchi and Nakamura, ε∞
11 = 12, C11 = 1.66 × 104 K, T11 = −182 K

and ε∞
33 = 7.00, C33 = 2780 K, T33 = 125.6 K [30]. As the value of T11 seemed surprising, we

verified that the values for ε11, calculated from Equation (28), were in very good agreement
with our own measurements made with the LCR meter GW INSTEK LCR-6100.

The absolute values of the intrinsic coefficients f1111− f1122 and δ1111− δ1122 presented
in Figure 3 decrease, almost linearly, with the temperature increase. However, the changes
are so small that we can notice a lower temperature coefficient of δ1111 − δ1122, which
results from the temperature dependence of ε11 at optical frequencies, included only in
the Miller’s approach. Due to the lack of relevant data in the literature, we can only
compare the value of −3.67 × 10−4 K−1 obtained here for the temperature dependence of
the f1111 − f1122 intrinsic coefficient in the KDP crystal with the value of −9.0 × 10−4 K−1

for ADP crystal [12]. It is worth noting that the use of the method described in [12] for KDP
crystal would make it difficult to observe such a weak temperature dependence against the
scatter of individual values.

Configuration (23) was used to perform measurements of the n3
eg3333 − n3

og1133 effec-
tive coefficient. The averaged results obtained for the two polarizer azimuths −45◦ and
+45◦ are shown in Figure 4. To our knowledge, the temperature dependence of the effective
coefficient n3

eg3333 − n3
og1133 in KDP crystal has not been reported previously. We can

only compare our result n3
eg3333 − n3

og1133 = (+1.60 ± 0.04) × 10−20 m2 V−2 at 25 ◦C with
the value

∣∣n3
eg3333 − n3

og1133
∣∣ = 3.1 × 10−17 m2 V−2 obtained using the static polarimetric

technique [31], which means a difference of 3 orders of magnitude. However, many results
obtained using the static method are known to differ enormously from newer data, as
discussed in [29].
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Figure 3. Temperature dependence of the intrinsic quadratic electro-optic coefficients with the linear
interpolations f 1111 − f 1122 = f 0(1 + af T) and δ1111 − δ1122 = δ0(1 + aδ T), where the values at T = 0 ◦C
are f 0 = −0.19019(15) m4 C−2 and δ0 = 1.1868(10) × 10−23 m2V−2, and the temperature coefficients
are af = −3.67(13) × 10−4 K−1 and aδ = −2.91(13) × 10−4 K−1.
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Figure 4. Temperature dependence of the quadratic electro-optic coefficient n3

eg3333 − n3
og1133

[10−20 m2 V−2] = 2.139 − 0.02492 T + 0.000109 T2 for T given in [◦C].

If we divide the coefficient n3
eg3333 − n3

og1133 by ε2
0(ε33 − 1)2, we could arrive at

n3
e f 3333 − n3

o f 1133. However, it seems more advantageous to consider the temperature
dependence of fef = f3333 − n3

on−3
e f1133, where n3

on−3
e takes values close to 1 and changes

only slightly from 1.0852 to 1.0835 in the temperature range from 25 to 90 ◦C [27]. Similarly,
to reduce the impact of changes in the refractive indices, it is worth considering the effec-
tive intrinsic coefficient δef = δ3333 − nen−1

o
(
n2

o − 1
)2(n2

e − 1
)−2

δ1133. The absolute values
of both coefficients, f ef and δef, presented in Figure 5 decrease, almost linearly, with the
temperature increase. However, the absolute values of the temperature coefficients here
are 1 order of magnitude greater than those obtained for f1111 − f1122 and δ1111 − δ1122.

The scatter of individual results presented in Figures 4 and 5 is clearly greater than
those in Figures 2 and 3. The two most important reasons are as follows:

(1) we do not have a method that would allow for such a precise orientation of the light
beam along the X axis, as is possible in the case of the Z optical axis,

(2) in configuration (23), even slight changes in the crystal temperature lead to significant
changes in the phase difference Γ, due to the temperature dependence of the natural
birefringence ∆n0 and the length of the sample L.
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e f1133 and δef = δ3333 − nen−1
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(
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o − 1
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e − 1
)−2

δ1133 with the linear interpolations
f ef = f 0(1 + af T) and δef = δ0(1 + aδ T), where the values at T = 0 ◦C are f 0 = 0.1420(12) m4 C−2 and
δ0 = −0.9708(80) × 10−23 m2 V−2, and the temperature coefficients are af = −3.44(14) × 10−3 K−1

and aδ = −3.40(14) × 10−3 K−1.

If the direction of the light differs slightly from that assumed in configurations (22)
and (23), the linear effect is not completely eliminated. As the linear effect is much stronger
than the quadratic effect, even small inaccuracies of 1◦ mean that the light modulation at
the second harmonic of the modulating field must be measured against the background of
the much stronger fundamental harmonic, as shown in Figure 6. Furthermore, both the
linear and quadratic effects contribute to the modulation at the second harmonic, and the
ratio of these contributions determines how precisely they can be separated.
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= a + b sin(2β + φ). 

Since the mathematical model of the measurement system proposed in this paper is 
relatively complex compared to previous works, it is worth considering whether the ac-
curacy of the results justifies its use. Let us consider the substitutions γ = 90°, Q = Qf = Qs 
and S = Sf = Ss, which simplify the Formula (8) to 

I Ip⁄ = 1
2 Q2S2ൣ1 + pD sin൫2β+ qsΓ൯൧. (29) 

The form of Equation (29) shows that we no longer need to average the data as we 
did in formula (13). Thus, the coefficients a02, b02, a22, b22 can be calculated from the Formu-
las (15) and (16) with the voltage ratios U0/Uin and U2ω/Uin substituted directly instead of 
u0 and u2ω. The value of the effective electro-optic coefficient follows from Formula (20), 
but now the simplifications lead to C = 1. Using this simplified model, four values of g can 
be calculated for each temperature, which result from the data obtained for four combi-
nations of polarizer and quarter-wave plate orientations. In the case of the more accurate 
model presented in Section 2, averaging the data obtained for the two quarter-wave azi-
muths in Formula (13) reduces the number of results to two for each temperature. The 
standard deviations σ4 and σ2, calculated from these values, are obviously unreliable. 
Therefore, we calculate the root mean square values σ4RMS and σ2RMS from the deviations 
σ4 and σ2, obtained for the individual temperatures. In the case of measurements of the 
g1111 − g1122 coefficient, we obtain σ4RMS = 0.116 × 10−20 m2 V−2 and σ2RMS = 0.010 × 10−20 m2 

V−2, and for ne
3g3333 − no

3g1133 we obtain σ4RMS = 0.090 × 10−20 m2 V−2 and σ2RMS = 0.010 × 10−20 
m2 V−2. The σ2RMS/σ4RMS ratio is in both cases much less than the value 2−0.5 ≈ 0.7 that would 
be expected if only doubling the number of data used to calculate one value of g was 
significant. The achieved improvement is, therefore, mostly the result of removing the 
assumptions γ = 90°, Qf = Qs, and Sf = Ss, which were widely used in previous studies. 

The accuracy of the traditional measurement method, based on the Sénarmont sys-
tem [4,5,20–22], is limited both by the use of a simplified mathematical model of the meas-
urement system and by the measurement procedure, which uses only one specific oper-
ating point on the transmission characteristic. If this is the maximum linearity point, then 
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Figure 6. Example of experimental data obtained in the configuration (23) for T = 30◦C, α = −45◦,
θ = −45◦, and modulating voltage 3060 V RMS. The solid lines show interpolations of the type
UX/Uin = a + b sin(2β + ϕ).

Changes in the phase difference, due to unstable temperature, disturb the 180◦ period
assumed in Section 2 for the dependence of U0, Uω, and U2ω on β. Our experiments
show that the accuracy of the temperature stabilization is limited, mainly, due to the heat
generated in the crystal by the applied alternating voltage. The impact of this phenomenon
on the accuracy of the measurements can be reduced by repeating a certain fixed cycle of
the modulating voltage after each change of the temperature set in the thermostat. We start
to collect data for calculation of the electro-optic coefficient only when the U0 change cycle
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stabilizes. As can be seen in Figure 6, the period of the dependencies obtained in this way
does not differ significantly from 180◦, even for the more difficult configuration (23).

Since the mathematical model of the measurement system proposed in this paper
is relatively complex compared to previous works, it is worth considering whether the
accuracy of the results justifies its use. Let us consider the substitutions γ = 90◦, Q = Qf = Qs
and S = Sf = Ss, which simplify the Formula (8) to

I/Ip =
1
2

Q2S2[1 + pD sin(2β+ qsΓ)]. (29)

The form of Equation (29) shows that we no longer need to average the data as we
did in Formula (13). Thus, the coefficients a02, b02, a22, b22 can be calculated from the
Formulas (15) and (16) with the voltage ratios U0/Uin and U2ω/Uin substituted directly
instead of u0 and u2ω. The value of the effective electro-optic coefficient follows from
Formula (20), but now the simplifications lead to C = 1. Using this simplified model, four
values of g can be calculated for each temperature, which result from the data obtained for
four combinations of polarizer and quarter-wave plate orientations. In the case of the more
accurate model presented in Section 2, averaging the data obtained for the two quarter-wave
azimuths in Formula (13) reduces the number of results to two for each temperature. The
standard deviations σ4 and σ2, calculated from these values, are obviously unreliable. There-
fore, we calculate the root mean square values σ4RMS and σ2RMS from the deviations σ4 and
σ2, obtained for the individual temperatures. In the case of measurements of the g1111− g1122
coefficient, we obtain σ4RMS = 0.116 × 10−20 m2 V−2 and σ2RMS = 0.010 × 10−20 m2 V−2,
and for n3

eg3333 − n3
og1133 we obtain σ4RMS = 0.090 × 10−20 m2 V−2 and σ2RMS = 0.010 ×

10−20 m2 V−2. The σ2RMS/σ4RMS ratio is in both cases much less than the value 2−0.5 ≈ 0.7
that would be expected if only doubling the number of data used to calculate one value of
g was significant. The achieved improvement is, therefore, mostly the result of removing
the assumptions γ = 90◦, Qf = Qs, and Sf = Ss, which were widely used in previous studies.

The accuracy of the traditional measurement method, based on the Sénarmont sys-
tem [4,5,20–22], is limited both by the use of a simplified mathematical model of the
measurement system and by the measurement procedure, which uses only one specific op-
erating point on the transmission characteristic. If this is the maximum linearity point, then
the traditional method is highly sensitive. However, the procedure for finding this point is
neither easy nor precise. Our measurements performed for configuration (22) show that the
total measurement inaccuracy of the traditional method is about one order of magnitude
higher than that achieved using the improved approach proposed in this paper. For exam-
ple, the traditional method leads to the result g1111 − g1122 = (−3.0 ± 0.3) × 10−20 m2 V−2

for T = 25 ◦C, whereas the improved method gives (−3.07 ± 0.03) × 10−20 m2 V−2. In
the case of the FDEOM method, the minimum transmission point can be found relatively
accurately, but the sensitivity is insufficient to detect a weak quadratic electro-optic effect
when the linear effect cannot be effectively eliminated.

5. Conclusions

We have measured the temperature dependencies of the quadratic electro-optic coef-
ficients g1111 − g1122 and n3

eg3333 − n3
og1133 in KDP crystals for temperatures above room

temperature. To our knowledge, this is the first study of its type for KDP crystals at temper-
atures far above the paraelectric-ferroelectric phase transition temperature. The absolute
values of the coefficients g1111 − g1122 and n3

eg3333 − n3
og1133 decrease significantly with

increasing temperature. These changes are due, mainly, to the temperature dependence of
the dielectric constants at low frequencies. The changes are, therefore, much smaller when
we use intrinsic electro-optic coefficients, defined in terms of induced electric polarization,
instead of the traditional applied electric field. The temperature dependence observed
for the field along the X crystallographic axis is so weak that there is a visible difference
between the temperature coefficients −3.67 × 10−4 and −2.91 × 10−4 K−1, relating to the
intrinsic coefficients f1111 − f1122 and δ1111 − δ1122 defined according to the Pockels and
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Miller approaches, respectively. The temperature coefficients, however, are one order of
magnitude greater when the field is applied along the Z axis. These results suggest that the
electron and lattice contribution to the quadratic electro-optic effect has different weights
for the field applied along the X and Z axes.

The study of temperature dependences, of the intrinsic coefficients, required an ac-
curacy that could not be achieved using methods described in the literature. To improve
accuracy and reduce the scatter of results, we developed a method based on the Sénarmont
configuration, where measurements are made at multiple operating points on the trans-
mission characteristic of the modulator, instead of at only one specific point. A further
improvement was achieved by using a more realistic model of the measurement system.
The model proposed in this paper takes into account possible differences in the trans-
mission of fast and slow waves in the sample, and in the quarter-wave plate, as well as
inaccuracy in the phase difference introduced by the quarter-wave plate, partial inter-
ference between two waves passing through the sample, and the linear and quadratic
electro-optic effects that can occur simultaneously. The approach proposed in this paper
could be applied to study the bulk properties of many other electro-optic materials, in-
cluding various monocrystals, materials containing nano-crystals, and liquids that do not
exhibit high unstable birefringence.
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Appendix A. Derivation of Equation (20)

The phase Γ resulting from Equations (11) and (12) can be decomposed into DC and
AC components. To simplify further formulas, however, it is worth considering, not the Γ
itself, but the DC and AC components of qsΓ + (1− p)π/2:

ϕ = (1− p)
π

2
+ qs

πL
λ

(
2∆n0 + gE2

0

)
, (A1)

∆Γ = qs
πL
λ

(
2rE0 sinωt− gE2

0 cos 2ωt
)

. (A2)

Equation (10) can now be rewritten as

T(p, q,β)
= 1

8 P
(
Q2

f + Q2
s
)(

S2
f + S2

s
)

+ 1
4 DPSfSs

[(
Q2

f + Q2
s
)

sin(2β) cosϕ+ 2QfQs sinγ cos(2β) sinϕ
]

cos ∆Γ
+ 1

4 DPSfSs
[
−
(
Q2

f + Q2
s
)

sin(2β) sinϕ+ 2QfQs sinγ cos(2β) cosϕ
]

sin ∆Γ.

(A3)

As can be seen in Equation (A3), the Assumptions 1–3 made in Section 2 make it
impossible to use the sum 2β + ϕ instead of individual values for 2β and ϕ. However, it
seems useful to use the slightly different sums 2β + ϕ′ and 2β + ϕ′′, which differ from
2β + ϕ due to the imperfections of the quarter-wave plate:

T(p, q,β) = 1
8 P
(
Q2

f + Q2
s
)(

S2
f + S2

s
)

+ 1
2 DPSfSs

[
A′ sin(2β+ϕ′) cos ∆Γ + A′′ cos(2β+ϕ′′ ) sin ∆Γ

]
,

(A4)
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where
A′ =

1
2

√(
Q2

f + Q2
s
)2 cos2ϕ+ 4Q2

f Q2
s sin2 γ sin2ϕ (A5)

A′′ =
1
2

√(
Q2

f + Q2
s
)2 sin2ϕ+ 4Q2

f Q2
s sin2 γ cos2ϕ, (A6)

tanϕ′ =
2QfQs sinγ

Q2
f + Q2

s
tanϕ, (A7)

tanϕ′′ =
Q2

f + Q2
s

2QfQs sinγ
tanϕ. (A8)

Since the relationships (A7) and (A8) are ambiguous for ϕ, ϕ′, ϕ′′ ∈ (−180◦, +180◦],
it should be noted that the angles ϕ, ϕ′, ϕ′′ lie in the same quadrant of the Cartesian
coordinate system when sin γ > 0 (in practice γ takes values close to 90◦). The expansions
into power series cos ∆Γ ≈ 1 − ∆Γ2/2 + ∆Γ4/24 and sin ∆Γ ≈ ∆Γ − ∆Γ3/6 allow the
average transmission T to be written as the sum of the DC component T0, the first harmonic
Tω, the second harmonic T2ω, and higher harmonics, which will be omitted in further
considerations. Neglecting very small terms, we find that

T0 ≈
1
8

P
(

Q2
f + Q2

s

)(
S2

f + S2
s

)
+

1
2

DPSfSs A′ sin
(
2β+ϕ′

)(
1− R2

)
, (A9)

Tω ≈ DPSfSs A′′ cos(2β+ϕ′′ )R
(

1− R2/2
)

sinωt (A10)

T2ω ≈ 1
2 DPSfSs

[
A′ sin(2β+ϕ′)R2(1− R2/3

)
−A′′ cos(2β+ϕ′′ )G

(
1− R2)] cos 2ωt,

(A11)

where
R = qs(πL/λ)rE0, (A12)

G = qs(πL/λ)gE2
0. (A13)

As can be seen from Equation (A11), the modulation at the second harmonic has, as
its sources, both the quadratic electro-optic effect and the square of the linear electro-optic
effect. The latter contribution is extinguished for β = −ϕ′/2 and β = −ϕ′/2 + 180◦. In
the former case, we obtain

T2ω
(
β = −ϕ′/2

)
≈ −1

2
DPSfSs A′′ cos

(
ϕ′′ −ϕ′

)
G
(

1− R2
)

cos 2ωt. (A14)

The term DPSf Ss(1 − R2) can be eliminated using the magnitude of changes in the T0
component given by Equation (A9) for the variable azimuth β

T0,max − T0,min ≈ DPSfSs A′′
(

1− R2
)

. (A15)

Dividing the sides of Equation (A14) by (A15) we obtain

2
T2ω(β = −ϕ′/2)

T0,max − T0,min
≈ −A′′

A′
cos
(
ϕ′′ −ϕ′

)
G cos 2ωt. (A16)

The condition β = −ϕ′/2 in Equation (A16) corresponds to the transition of the T0
component, given by Equation (A9) through its mean value when dT0/dβ > 0. In practice,
however, a measurement method based on readings taken only in this particular situation
does not seem to be the key to achieving the best accuracy. Moreover, the requirement
for meeting the condition β = −ϕ′/2 can be avoided by using a precise stepper motor to
repeat readings for many β azimuths. This allows us to find the coefficients a02, b02, a22,
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and b22 in series (13). Comparison of Equation (A9) with the series (13) for j = 0 shows that
the angle ϕ′ can be found as

sinϕ′ = a02/
(

a2
02 + b2

02

)−1/2
and cosϕ′ = b02/

(
a2

02 + b2
02

)−1/2
. (A17)

Using the series (13) for j = 0 and j = 2 in the place of light transmissions, we can
rewrite Equation (A16) in the form:

√
2

a22b02 − b22a02

a2
02 + b2

02
= −A′′

A′
cos
(
ϕ′′ −ϕ′

)
G. (A18)

Substitution of Equations (A5)–(A8), (A13), and (A17) into (A18) finally leads to
Formula (20), which allows us to find the value of the effective coefficient g of the quadratic
electro-optic effect.
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