The Influence of Hydrated Lime and Cellulose Ether Admixture on Water Retention, Rheology and Application Properties of Cement Plastering Mortars
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Mix Proportions of Pastes and Mortars
- Total amount of binder in the mortar (96 g of binder per 1000 g of dry ingredients);
- Ratio of binder to fine aggregate (1:10);
- Consistency measured using a flow table (165 mm).
2.3. Methods
- Evaluation of application properties:
- On a 0–10 point scale (10—material with the best application properties);
- Based on a detailed descriptive assessment;
- Based on the possible method of application: manual and/or machine-assisted).
- Assessment of the ease and quality of surfacing:
- On a 0–10 point scale (10—material with the best properties);
- Based on a detailed descriptive assessment.
3. Results
3.1. Consistency and Bulk Density Measurements
3.2. Water Retention of Mortars
3.3. Rheological Properties of Pastes
3.4. Application Properties of Mortars
3.5. Correlation between Rheological Properties of Pastes and Chosen Properties of Mortars
4. Conclusions
- Modification of cement plastering mortar with both hydrated lime and cellulose ether allows obtaining a material with favorable technical and technological properties, especially for mechanical application.
- Correctly selected proportions of hydrated lime and polymer admixture with a specific viscosity ensure appropriate application properties: high efficiency, workability, and ease of plastering.
- An increase in the plastic viscosity of pastes influences the increase in WRV of the mortars.
- An increase in the amount and viscosity of cellulose ether increases the plastic viscosity and the yield stress.
- The subjective assessment of a specialist plasterer and the rheological parameters are valuable sources of information for determining the application properties of mortars. Indirectly, the results of these studies allow determining the method of mortar application.
- Providing the right consistency or obtaining a high WRV does not guarantee a high-quality material in terms of meeting the standard requirements and workability.
- The influence of cellulose ether on the tested properties of pastes and mortars (WRV, as well as rheological and application properties) is statistically more significant than the influence of hydrated lime.
- After concluding the research presented in the article, the authors propose that, related to the water retention mechanisms, the rheological properties of the mortar are inluential properties, but they should not be the main determinant in assessing the application properties of plasters or in selecting the method of mortar application.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brumaud, C.; Baumann, R.; Schmitz, M.; Radler, M.; Roussel, N. Cellulose ethers and yield stress of cement pastes. Cem. Concr. Res. 2014, 55, 14–21. [Google Scholar] [CrossRef]
- Spychał, E. The rheology of cement pastes with the addition of hydrated lime and cellulose ether in comparison with selected properties of plastering mortars. Cement Wapno Beton 2020, 25, 21–30. [Google Scholar] [CrossRef]
- Paiva, H.; Esteves, L.; Cachim, P.; Ferreira, V. Rheology and hardened properties of single-coat render mortars with different types of water retaining agents. Constr. Build. Mater. 2009, 23, 1141–1146. [Google Scholar] [CrossRef]
- Izaguirre, A.; Lanas, J.; Alvarez, J.I. Characterization of aerial lime-based mortars modified by the addition of two different water-retaining agents. Cem. Concr. Compos. 2011, 33, 309–318. [Google Scholar] [CrossRef] [Green Version]
- Vyšvařil, M.; Bayer, P. Cellulose ethers as water-retaining agents in natural hydraulic lime mortars. In Proceedings of the 13th International Conference Modern Building Materials, Structures and Techniques (MBMST 2019), Vilnius, Lithuania, 16–17 May 2019; pp. 194–200. [Google Scholar]
- Spychał, E.; Czapik, P. The influence of HEMC on cement and cement-lime composites setting processes. Materials 2020, 13, 5814. [Google Scholar] [CrossRef]
- Vyšvařil, M.; Hegrová, M.; Žižlavský, T. Influence of cellulose ethers on fresh state properties of lime mortars. Solid State Phenom. 2018, 276, 69–74. [Google Scholar] [CrossRef]
- Brachaczek, W. Influence of cellulose ethers on the consistency, water retention and adhesion of renovating plasters. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2019; Volume 471, p. 032020. [Google Scholar]
- Pichniarczyk, P.; Niziurska, M. Properties of ceramic tile adhesives modified by different viscosity hydroxypropyl methylcellulose. Constr. Build. Mater. 2015, 77, 227–232. [Google Scholar] [CrossRef]
- Spychał, E. The effect of lime and cellulose ether on selected properties of plastering mortar. Procedia Eng. 2015, 108, 324–331. [Google Scholar] [CrossRef]
- Niziurska, M.; Pichniarczyk, P. Effect of hydroxypropyl methylcellulose viscosity on the properties of adhesive mortars. In Proceedings of the VI Konferencja Naukowo-Techniczna Zagadnienia Materiałowe w Inżynierii Lądowej MATBUD 2011, Cracow, Poland, 20–22 June 2011; pp. 261–270. [Google Scholar]
- Chłądzyński, S.; Malata, G. Components of adhesive mortars. Part II – Methylcellulose. Izolacje 2008, 13, 76–79. [Google Scholar]
- Petit, J.-Y.; Wirquin, E. Evaluation of various cellulose ethers performance in ceramic tile adhesive mortars. Int. J. Adhes. Adhes. 2013, 40, 202–209. [Google Scholar] [CrossRef]
- Kotwa, A.; Spychał, E. The influence of cellulose ethers on the chosen properties of cement mortar in the plastic state. Struct. Environ. 2016, 8, 153–159. [Google Scholar]
- Brumaud, C.; Bessaies-Bey, H.; Mohler, C.; Baumann, R.; Schmitz, M.; Radler, M.; Roussel, N. Cellulose ether and water retention. Cem. Concr. Res. 2013, 53, 176–184. [Google Scholar] [CrossRef]
- Bülichen, D.; Kainz, J.; Plank, J. Working mechanism of methyl hydroxyethyl cellulose (MHEC) as water retention agent. Cem. Concr. Res. 2012, 42, 953–959. [Google Scholar] [CrossRef]
- Patural, L.; Marchal, P.; Govin, A.; Grosseau, P.; Ruot, B.; Devès, O. Cellulose ethers influence on water retention and consistency in cement-based mortars. Cem. Concr. Res. 2011, 41, 46–55. [Google Scholar] [CrossRef] [Green Version]
- Betioli, A.M.; Gleize, P.J.P.; Silva, D.A.; John, V.M.; Pileggi, R.G. Effect of HMEC on the consolidation of cement pastes: Isothermal calorimetry versus oscillatory rheometry. Cem. Concr. Res. 2009, 39, 440–445. [Google Scholar] [CrossRef]
- Žižlavský, T.; Bayer, P.; Vyšvařil, M. Bond properties of NHL-based mortars with viscosity-modifying water-retentive admixtures. Minerals 2021, 11, 685. [Google Scholar] [CrossRef]
- Seabra, M.P.; Labrincha, J.A.; Ferreira, V.M. Rheological behaviour of hydraulic lime-based mortars. J. Eur. Ceram. Soc. 2007, 27, 1735–1741. [Google Scholar] [CrossRef]
- Pourchez, J.; Grosseau, P.; Ruot, B. Current understanding of cellulose ethers impact on the hydration of C3A and C3A-sulphate systems. Cem. Concr. Res. 2009, 39, 664–669. [Google Scholar] [CrossRef] [Green Version]
- Pourchez, J.; Govin, A.; Grosseau, P.; Guyonnet, R.; Guilhot, B.; Ruot, B. Alkaline stability of cellulose ethers and impact of their degradation products on cement hydration. Cem. Concr. Res. 2006, 36, 1252–1256. [Google Scholar] [CrossRef] [Green Version]
- Pichniarczyk, P. Influence of methylcellulose on the hydration of cement. Cement Wapno Beton. 2015, 3, 186–192. [Google Scholar]
- Knapen, E.; Van Gemert, D. Cement hydration and microstructure formation in the presence of water-soluble polymers. Cem. Concr. Res. 2009, 39, 6–13. [Google Scholar] [CrossRef]
- Messan, A.; Ienny, P.; Nectoux, D. Free and restrained early-age shrinkage of mortar: Influence of glass fiber, cellulose ether and EVA (ethylene-vinyl acetate). Cem. Concr. Compos. 2011, 33, 402–410. [Google Scholar] [CrossRef]
- Gołaszewski, J.; Cygan, G. Influence of VMA admixtures on early shrinkage of the cement mortars. Civ. Environ. Eng. 2011, 2, 263–266. [Google Scholar]
- Kovalenko, Y.; Tokarchuk, V.; Poliuha, V. The effect of methyl hydroxyethyl cellulose on the cement matrix properties. East.-Eur. J. Enterp. Technol. 2020, 3, 28–33. [Google Scholar] [CrossRef]
- Zhou, S.C.; Lv, H.L.; Li, N.; Zhang, J. Effect of chemical admixtures on the working and mechanical properties of ordinary dry-mixed mortar. Adv. Mater. Sci. Eng. 2019, 2019, 5978089. [Google Scholar] [CrossRef] [Green Version]
- Pichniarczyk, P.; Niziurska, M.; Nosal, K. Influence of methylcellulose viscosity on properties of gypsum mortars. Mater. Ceram. 2012, 64, 558–562. [Google Scholar]
- Available online: https://www.cemex.pl/cem-i-42-5-r (accessed on 26 August 2021).
- Available online: http://www.alpol.pl/pl/katalog_produktow/go:28:209/ (accessed on 26 August 2021).
- Available online: http://www.grudzenlas.pl/index.php?cat=oferta&page=piaski-techniczne (accessed on 26 August 2021).
- Available online: https://www.dow.com/en-us/search.html?x11=category&q11=assets%7Cpages%7Cproducts&q=walocel&tab=all (accessed on 26 August 2021).
- Available online: https://www.hplush.pl/h-h-silikaty-produkty-podstawowe (accessed on 26 August 2021).
- Chmielewski, K.; Berczyński, S. Matematic Statistics. Laboratory Excercises Using the Statistica PL Package; Wydawnictwo Uczelniane Politechniki Szczecińskiej: Szczecin, Poland, 2002. [Google Scholar]
- Available online: http://www.itl.nist.gov/div898/handbook/pri/section3/pri3362.htm (accessed on 26 August 2021).
- Available online: https://www.statsoft.pl/Pelna-lista-programow-Statistica/?goto=statistica_enterprise#sc (accessed on 26 August 2021).
- Zając, T.; Kulig, B. Estimation of the effect of selected agro technical factors on linseed croppingin 34-1 experiment. Rośliny Oleiste-Oilseed Crop. 2001, 22, 597–608. [Google Scholar]
- PN-EN 1015-3:2000+A2:2007 Test Methods of Mortars for Walls. Determining the Consistency of Fresh Mortar (Using a Flow Table); Polish Committee for Standardization: Warszawa, Poland, 2007. (In Polish)
- PN-B-04500:1985 Mortars—Testing Physical and Strength Characteristics; Polish Committee for Standardization: Warszawa, Poland, 1985. (In Polish)
- PN-EN 1015-6:2000+A1:2007 Test Methods of Mortars for Walls. Determination of the Bulk Density of the Fresh Mortar; Polish Committee for Standardization: Warszawa, Poland, 2007. (In Polish)
- Gawlicki, M.; Pichór, W.; Brylska, E.; Brylicki, W.; Łagosz, A.; Nocuń-Wczelik, W.; Petri, M.; Pytel, Z.; Roszczynialski, W.; Stolecki, J.; et al. Podstawy Technologii Materiałów Budowlanych i Metody Badań; Małolepszy, J., Ed.; Wydawnictwo AGH: Kraków, Poland, 2013. [Google Scholar]
- Ponikiewski, T. The pasticity mortar with fibres and her rheological properties. Zesz. Nauk. Politech. Śląskiej Ser. Bud. 2002, 95, 465–474. [Google Scholar]
- Gołaszewski, J.; Szwabowski, J. Influence of superpalsticizers on rheological behaviour of fresh cement mortars. Cem. Concr. Res. 2004, 34, 235–248. [Google Scholar] [CrossRef]
- Grzeszczyk, S. Reologia Zawiesin Cementowych; Polska Akademia Nauk: Warsaw, Poland, 1999. [Google Scholar]
- Spychał, E. Evaluation of Selected Properties of Plastering Mortar Modified with Hydrated Lime and Cellulose Ether. Ph.D. Thesis, Kielce University of Technology, Kielce, Poland, 2016. [Google Scholar]
- Nocuń-Wczelik, W.; Trybalska, B. Effect of admixtures on the rate of hydration and microstructure of cement paste. Cement Wapno Beton 2007, 6, 284–289. [Google Scholar]
- Gantner, E.; Chojczak, W. Materiały Budowlane. Ćwiczenia Laboratoryjne. Spoiwa, Kruszywa, Zaprawy, Betony; Oficyna Wydawnicza Politechniki Warszawskiej: Warsaw, Poland, 2013. [Google Scholar]
- Chen, N.; Wang, P.; Zhao, L.; Zhang, G. Water retention mechanism of HPMC in cement mortar. Materials 2020, 13, 2918. [Google Scholar] [CrossRef] [PubMed]
- Paszkowski, L. Wpływ Proszkowej Fazy Nf-Fe-B w Formowanych Wtryskowo Kompozytach Magnetycznych o Osnowie Polimerowej na ich Właściwości Magnetyczne i Mechaniczne. Ph.D. Thesis, Warsaw University of Technology, Warsaw, Poland, 2008. [Google Scholar]
- Sébaibi, Y.; Dheilly, R.M.; Quéneudec, M. A study of the viscosity of lime—Cement paste: Influence of the physic-chemical characteristics of lime. Constr. Build. Mater. 2004, 18, 653–660. [Google Scholar] [CrossRef]
Chemical Composition (wt.%) | Physical Properties | ||
---|---|---|---|
SiO2 | 20.22 | Water requirement of normal consistency (%) | 28.8 |
Al2O3 | 4.43 | Initial setting (min) | 173 |
Fe2O3 | 3.65 | Final setting (min) | 237 |
CaO | 64.06 | Specific surface area (m2/kg) | 387.9 |
Na2O | 0.29 | 2 day compressive strength (MPa) | 28.9 |
MgO | 1.24 | 28 day compressive strength (MPa) | 59.5 |
SO3 | 3.31 | 2 day flexural strength (MPa) | 5.1 |
Cl | 0.093 | 28 day flexural strength (MPa) | 8.4 |
K2O | 0.54 | Loss on ignition (%) | 3.81 |
Free CaO | 1.83 |
Chemical Composition (wt.%) | |
---|---|
CaO + MgO | 95.17 |
MgO | 0.80 |
CO2 | 1.86 |
SO3 | 0.41 |
Water absorption (%) | 14 ± 2 |
Compressive strength (MPa) | 15.0 |
Bond strength with PN-EN 998-2 standard, GPM 1 (MPa) | 0.15 |
Bond strength with PN-EN 998-2 standard, TLM 2 (MPa) | 0.30 |
Heat conductivity (W/m·K) | 0.46 |
Average block weight (kg) | 9.5 |
No. | Experiment Plan | Experiment Plan | ||||
---|---|---|---|---|---|---|
X1 | X2 | X3 | X1 Amount of Hydrated Lime 1 % | X2 Amount of Cellulose Ether 2 % | X3 Viscosity of Cellulose Ether mPa·s | |
1 | −1 | −1 | −1 | 0 | 0.52 | 25,000 |
2 | −1 | 1 | 0 | 0 | 3.12 | 25,000 |
3 | −1 | 0 | −1 | 0 | 1.82 | 3000 |
4 | −1 | 0 | 1 | 0 | 1.82 | 45,000 |
5 | 1 | −1 | 0 | 50 | 0.52 | 25,000 |
6 | 1 | 0 | 1 | 50 | 1.82 | 45,000 |
7 | 1 | 1 | 0 | 50 | 3.12 | 25,000 |
8 | 1 | 0 | −1 | 50 | 1.82 | 3000 |
9 | 0 | −1 | −1 | 25 | 0.52 | 3000 |
10 | 0 | 1 | −1 | 25 | 3.12 | 3000 |
11 | 0 | −1 | 1 | 25 | 0.52 | 45,000 |
12 | 0 | 1 | 1 | 25 | 3.12 | 45,000 |
13 | 0 | 0 | 0 | 25 | 1.82 | 25,000 |
14 | 0 | 0 | 0 | 25 | 1.82 | 25,000 |
15 | 0 | 0 | 0 | 25 | 1.82 | 25,000 |
Abbreviation of Mortar (Paste) | Amount of Binder (Cement + Lime) (g) | Amount of Sand 0.1–0.5 mm (g) | Amount of Sand 0.2–0.8 mm (g) | Amount of Cellulose Ether (g) |
---|---|---|---|---|
C0 1 | 96 | 437 | 467 | - |
C-0.52MV | 96 | 437 | 467 | 0.50 |
C-3.12MV | 96 | 437 | 467 | 3.00 |
C-1.82LV | 96 | 437 | 467 | 1.75 |
C-1.82HV | 96 | 437 | 467 | 1.75 |
C50L-0.52MV | 48 + 48 | 437 | 467 | 0.50 |
C50L-1.82HV | 48 + 48 | 437 | 467 | 1.75 |
C50L-3.12MV | 48 + 48 | 437 | 467 | 3.00 |
C50L-1.82LV | 48 + 48 | 437 | 467 | 1.75 |
C25L-0.52LV | 72 + 24 | 437 | 467 | 0.50 |
C25L-3.12LV | 72 + 24 | 437 | 467 | 3.00 |
C25L-0.52HV | 72 + 24 | 437 | 467 | 0.50 |
C25L-3.12HV | 72 + 24 | 437 | 467 | 3.00 |
C25L-1.82MV | 72 + 24 | 437 | 467 | 1.75 |
C25L-1.82MV | 72 + 24 | 437 | 467 | 1.75 |
C25L-1.82MV | 72 + 24 | 437 | 467 | 1.75 |
Symbol of Mortar | Amount of Water (g) | Consistency (cm) | Bulk Density (kg/m3) |
---|---|---|---|
C0 | 195 | 6.1 | 1950 |
C-0.52MV | 148 | 6.8 | 1670 |
C-3.12MV | 220 | 9.0 | 1210 |
C-1.82LV | 142 | 8.8 | 1450 |
C-1.82HV | 185 | 9.3 | 1310 |
C50L-0.52MV | 176 | 8.5 | 1570 |
C50L-1.82HV | 195 | 8.5 | 1390 |
C50L-3.12MV | 225 | 9.1 | 1240 |
C50L-1.82LV | 144 | 8.9 | 1470 |
C25L-0.52LV | 165 | 6.8 | 1790 |
C25L-3.12LV | 170 | 9.8 | 1210 |
C25L-0.52HV | 165 | 9.0 | 1610 |
C25L-3.12HV | 250 | 9.9 | 1250 |
C25L-1.82MV | 175 | 8.8 | 1330 |
C25L-1.82MV | 175 | 9.0 | 1330 |
C25L-1.82MV | 175 | 8.8 | 1330 |
Symbol of Mortar | WRV10 (%) | WRV30 (%) | WRV60 (%) |
---|---|---|---|
C0 | 85.0 | 78.8 | 76.5 |
C-0.52MV | 95.7 | 90.0 | 89.7 |
C-3.12MV | 99.7 | 99.2 | 98.8 |
C-1.82LV | 99.5 | 98.4 | 98.8 |
C-1.82HV | 99.7 | 98.9 | 99.2 |
C50L-0.52MV | 94.5 | 86.9 | 86.2 |
C50L-1.82HV | 99.7 | 99.2 | 99.1 |
C50L-3.12MV | 99.7 | 99.2 | 99.2 |
C50L-1.82LV | 99.8 | 99.2 | 99.2 |
C25L-0.52LV | 92.1 | 87.7 | 84.2 |
C25L-3.12LV | 99.7 | 99.2 | 99.1 |
C25L-0.52HV | 95.0 | 91.6 | 89.5 |
C25L-3.12HV | 99.7 | 99.5 | 99.4 |
C25L-1.82MV | 99.7 | 99.3 | 99.2 |
C25L-1.82MV | 99.7 | 99.2 | 99.2 |
C25L-1.82MV | 99.7 | 99.2 | 99.2 |
Abbreviation of Paste | Yield Stress after 10 min, g (N·mm) | Yield Stress after 60 min, g (N·mm) | Plastic Viscosity after 10 min, h (N·mm·s) | Plastic Viscosity after 60 min, h (N·mm·s) |
---|---|---|---|---|
C0 | 0.09 | 0.08 | 0.43 | 0.43 |
C-0.52MV | 0.48 | 0.35 | 2.17 | 2.13 |
C-3.12MV | 11.78 | 14.38 | 10.26 | 13.58 |
C-1.82LV | 1.43 | 0.62 | 6.32 | 5.89 |
C-1.82HV | 2.02 | 4.22 | 3.66 | 5.73 |
C50L-0.52MV | 1.31 | 1.07 | 2.60 | 2.43 |
C50L-1.82HV | 15.06 | 16.33 | 9.19 | 12.07 |
C50L-3.12MV | 31.81 | 26.89 | 20.39 | 19.21 |
C50L-1.82LV | 3.48 | 2.43 | 10.54 | 9.40 |
C25L-0.52LV | 0.32 | 0.46 | 1.32 | 1.30 |
C25L-3.12LV | 5.47 | 6.29 | 11.31 | 13.78 |
C25L-0.52HV | 1.61 | 0.97 | 3.82 | 3.31 |
C25L-3.12HV | 22.86 | 22.98 | 13.42 | 12.79 |
C25L-1.82MV | 12.13 | 10.97 | 11.98 | 12.18 |
C25L-1.82MV | 12.88 | 11.15 | 11.86 | 12.75 |
C25L-1.82MV | 12.13 | 12.14 | 11.95 | 12.43 |
Abbreviation of Mortar | The First Stage of the Assessment | The Second Stage of the Assessment | Manual Method of Application | Machine-Assisted Method of Application |
---|---|---|---|---|
C0 | 2 | 0 | + | − |
C-0.52MV | 8.5 | 8 | + | − |
C-3.12MV | 3 | 1 | + | − |
C-1.82LV | 3 | 6 | + | − |
C-1.82HV | 9 | 8 | + | − |
C50L-0.52MV | 2 | 6 | + | − |
C50L-1.82HV | 8 | 8 | + | + |
C50L-3.12MV | 3.5 | 3.5 | − | + |
C50L-1.82LV | 3.5 | 8 | + | − |
C25L-0.52LV | 2 | 6 | + | − |
C25L-3.12LV | 4 | 1 | + | − |
C25L-0.52HV | 4 | 1 | + | − |
C25L-3.12HV | 4 | 1 | − | + |
C25L-1.82MV | 7 | 8 | − | + |
C25L-1.82MV | 7 | 8 | − | + |
C25L-1.82MV | 7 | 8 | − | + |
Symbol of Mortar | Evaluation of Workability | Evaluation of Processing Quality |
---|---|---|
C0 | Wet sand consistency; low viscosity | Lack of processing capabilities |
C-0.52MV | Consistency good for manual coating; low efficiency of plaster; good workability properties | Plaster binds evenly, with good processing time |
C-3.12MV | The consistency is very fluid, sticks too much to the float, and runs off the wall after a long time | Plaster is dry on top, wet inside, and characterized by a false bonding, along with difficult processing |
C50L-1.82HV | Material with the best application properties and easy application; plaster clings to the float; consistency is very good; plaster is efficient | Plaster does not need water for final treatment |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spychał, E.; Dachowski, R. The Influence of Hydrated Lime and Cellulose Ether Admixture on Water Retention, Rheology and Application Properties of Cement Plastering Mortars. Materials 2021, 14, 5487. https://doi.org/10.3390/ma14195487
Spychał E, Dachowski R. The Influence of Hydrated Lime and Cellulose Ether Admixture on Water Retention, Rheology and Application Properties of Cement Plastering Mortars. Materials. 2021; 14(19):5487. https://doi.org/10.3390/ma14195487
Chicago/Turabian StyleSpychał, Edyta, and Ryszard Dachowski. 2021. "The Influence of Hydrated Lime and Cellulose Ether Admixture on Water Retention, Rheology and Application Properties of Cement Plastering Mortars" Materials 14, no. 19: 5487. https://doi.org/10.3390/ma14195487
APA StyleSpychał, E., & Dachowski, R. (2021). The Influence of Hydrated Lime and Cellulose Ether Admixture on Water Retention, Rheology and Application Properties of Cement Plastering Mortars. Materials, 14(19), 5487. https://doi.org/10.3390/ma14195487