Deformation Prediction and Experimental Study of 316L Stainless Steel Thin-Walled Parts Processed by Additive-Subtractive Hybrid Manufacturing
Abstract
:1. Introduction
2. Experiment on the Fabrication of 316L Stainless Steel Thin-Walled Parts by LMD
2.1. Experiment Setup
2.2. Experiment on Single-Pass Cladding Layer Forming
2.3. Experiments Results and Analysis
2.3.1. Analysis of Deformation of Thin-Walled Parts Manufactured by AM
2.3.2. Analysis of Temperature Change of Thin-Walled Parts Manufactured by AM
2.4. Summary
3. Finite Element Simulation of 316L Stainless Steel Thin-Walled Parts Manufactured by LMD
3.1. Establishment of Finite Element Model
3.2. Material Properties of 316L Stainless Steel
3.3. Solution and Analysis of Temperature Field of Thin-Walled Parts in AM
3.3.1. Gauss Moving Heat Source Model and Birth and Dead Element
3.3.2. Boundary Conditions
- (1)
- Initial conditions
- (2)
- Boundary conditions
3.3.3. Treatment of Latent Heat
3.3.4. Solution and Analysis of Temperature Field
3.4. Solution and Analysis of Stress Distribution and Deformation of Thin-Walled Parts in AM
3.4.1. Element Conversion and Boundary Conditions
- (1)
- Element conversion
- (2)
- Boundary conditions
3.4.2. Results and Analysis of Thermal Stress Distribution and Deformation of Thin-Walled Parts
4. Milling Experiments of 316L Stainless Steel Parts Manufactured by AM
4.1. Side Milling Experiments of Thin-Walled Parts Manufactured by AM
4.1.1. Experiment Condition
4.1.2. Experiment Results and Analysis
4.2. Side Milling Orthogonal Test of Block Specimens Manufactured by AM
5. Milling Simulation and Deformation Prediction of 316L Stainless Steel Additive Manufactured Thin-Walled Parts
6. Discussion
7. Conclusions and Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cortina, M.; Arrizubieta, J.I.; Ruiz, J.E.; Ukar, E.; Lamikiz, A. Latest Developments in Industrial Hybrid Machine Tools that Combine Additive and Subtractive Operations. Materials 2018, 11, 2583. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Luo, Z.; Su, X.; Wang, D. Study on selective laser melting manufacturing of stainless steel thin-walled parts and its influencing factors. Chin. J. Lasers 2011, 38. [Google Scholar] [CrossRef]
- Song, J.; Chew, Y.X.; Bi, G.J.; Yao, X.; Zhang, B.; Bai, J.; Moon, S.K. Numerical and experimental study of laser aided additive manufacturing for melt-pool profile and grain orientation analysis. Mater. Des. 2018, 137, 286–297. [Google Scholar] [CrossRef]
- Bai, Q.; Wu, B.; Qui, X.; Zhang, B.; Chen, J. Experimental study on additive/subtractive hybrid manufacturing of 6511 steel: Process optimization and machining characteristics. Int. J. Adv. Manuf. Tech. 2020, 108, 1389–1398. [Google Scholar] [CrossRef]
- Zhang, P.; Liu, Z. Effect of sequential turning and burnishing on the surface integrity of Cr–Ni-based stainless steel formed by laser cladding process. Surf. Coat. Technol. 2015, 276, 327–335. [Google Scholar] [CrossRef]
- Gao, M.; Zhao, Y.; Zhao, J.; Wang, Z.G.; Wang, Z.Y.; Sun, L. Effect of substrate temperature on surface quality in laser beam interaction. Chin. J. Lasers 2020, 47. [Google Scholar] [CrossRef]
- Yang, Y.; Gong, Y.; Qu, S.; Cai, M. Experimental study on macro morphology and residual stress of 316L in additive/subtractive hybrid manufacturing. J. Northeast. Uni. 2020, 41, 380–386. [Google Scholar]
- Xin, B.; Zhou, X.; Gong, Y.; Zhang, H.; Li, T. Effect of Z-axis lifting on microstructure and mechanical properties of laser cladding parts. Chin. J. Lasers 2019, 46. [Google Scholar] [CrossRef]
- Vasinonta, A.; Beuth, J.L.; Griffith, M. Process maps for predicting residual stress and melt-pool size in the laser-based fabrication of thin-walled structures. J. Manuf. Sci. Eng. 2007, 129, 101–109. [Google Scholar] [CrossRef]
- Somashekara, M.A.; Naveenkumar, M.; Kumar, A.; Viswanath, C.; Simhambhatla, S. Investigations into effect of weld-deposition pattern on residual stress evolution for metallic additive manufacturing. Int. J. Adv. Manuf. Tech. 2017, 90, 2009–2025. [Google Scholar] [CrossRef]
- Steen, W.M.; Mazumder, J. Laser Material Processing, 4th ed.; Springer: Berlin, Germany, 2010. [Google Scholar]
- Denlinger, E.R.; Michaleris, P. Mitigation of distortion in large additive manufacturing parts. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2017, 231, 983–993. [Google Scholar] [CrossRef]
- He, Y.; Wei, J.; Liu, J.; Wang, X.; Wang, Y.; Hec, L. Experimental study on the fabrication profile and mechanical properties by substrate-inclined angle using laser melting deposition (LMD) integrating with the substrate of stainless steel. Opt. Laser. Technol. 2020, 125, 106038. [Google Scholar] [CrossRef]
- Dai, D.P.; Jiang, X.H.; Cai, J.P.; Lu, F. Numerical simulation of temperature field and stress distribution in Inconel 718 Ni-base alloy induced by laser cladding. Chin. J. Lasers 2015, 42, 903005. [Google Scholar]
- Li, M.Y.; Cai, C.B.; Han, B.; Wang, Y. Numerical simulation of preheating on temperature and stress fields by laser cladding Ni-based ceramic coating. T. Mater. Heat. Treat. 2015, 36, 197–203. [Google Scholar] [CrossRef]
- Rong, Y.M.; Huang, Y.; Xu, J.J.; Zheng, H.; Zhang, G. Numerical simulation and experiment analysis of angular distortion and residual stress in hybrid laser-magnetic welding. J. Mater. Process. Tech. 2017, 245, 270–277. [Google Scholar] [CrossRef]
- Deshpande, A.A.; Tanner, D.J.W.; Sun, W.; Hyde, T.H.; McCartney, G. Combined butt joint welding and post weld heat treatment simulation using SYSWELD and ABAQUS. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2010, 225, 1–10. [Google Scholar] [CrossRef]
- Hitzler, L.; Hirsch, J.; Heine, B.; Merkel, M.; Hall, W.; Öchsner, A. On the Anisotropic Mechanical Properties of Selective Laser Melted Stainless Steel. Materials 2017, 10, 1136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hitzler, L.; Hirsch, J.; Tomas, J.; Merkel, M.; Hall, W.; Öchsner, A. In-plane anisotropy of selective laser-melted stainless steel: The importance of the rotation angle increment and the limitation window. Proc. Inst. Mech. Eng. Part. L J. Mater. Des. Appl. 2018, 233, 1419–1428. [Google Scholar] [CrossRef]
- Bian, P.; Shao, X.; Du, J. Finite Element Analysis of Thermal Stress and Thermal Deformation in Typical Part during SLM. Appl. Sci. 2019, 9, 2231. [Google Scholar] [CrossRef] [Green Version]
- Yin, J.; Zhu, H.; Ke, L.; Lei, W.; Dai, C.; Zuo, D. Simulation of temperature distribution in single metallic powder layer for laser micro-sintering. Comput. Mater. Sci. 2012, 52, 333–339. [Google Scholar] [CrossRef]
- Du, L.; Gu, D.D.; Dai, D.H.; Shi, Q.; Ma, C.; Xia, M. Relation of thermal behavior and microstructure evolution during multi-track laser melting deposition of Ni-based material. Opt. Laser Technol. 2018, 108, 207–217. [Google Scholar] [CrossRef]
- Sun, G.F.; Wang, Z.D.; Lu, Y.; Zhou, R.; Ni, Z.H.; Gu, X.; Wang, Z.G. Numerical and experimental investigation of thermal field and residual stress in laser-MIG hybrid welded NV E690 steel plates. J. Manuf. Process. 2018, 34, 106–120. [Google Scholar] [CrossRef]
- Miguelez, M.; Zaera, R.; Molinari, A.; Cheriguene, R.; Rusinek, A. Residual stresses in orthogonal cutting of metals: The effect of thermomechanical coupling parameters and of friction. J. Therm. Stresses. 2009, 32, 269–289. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Jiang, X.; Yang, J.; Liang, S. Effects of depth of cut on the redistribution of residual stress and distortion during the milling of thin-walled part. J. Mater. Process. Technol. 2015, 216, 223–233. [Google Scholar] [CrossRef]
- Zhao, Y.; Sun, J.; Li, J.; Wang, P.; Zheng, Z.; Chen, J.; Yan, Y. The stress coupling mechanism of laser additive and milling subtractive for FeCr alloy made by additive -subtractive composite manufacturing. J. Alloy. Compd. 2018, 769, 898–905. [Google Scholar] [CrossRef]
- Yang, Y.; Gong, Y.; Qu, S.; Yin, G.; Liang, C.; Li, P. Additive and Subtractive Hybrid Manufacturing (ASHM) of 316L Stainless Steel: Single-Track Specimens, Microstructure and Mechanical Properties. JOM 2021, 3, 759–769. [Google Scholar] [CrossRef]
Chemical Element Components | C | Si | Mn | P | S | O | Ni | Cr | Mo |
---|---|---|---|---|---|---|---|---|---|
(wt%) | 0.025 | 0.53 | 1.46 | 0.01 | - | 0.53 | 11.78 | 16.69 | 2.41 |
Equipment | Adjustable Parameters | Value |
---|---|---|
Laser generator | Laser power (W) | 1000, 800, 600 |
Powder feeder | Powder feed rate (g/min) | 6.271 |
Gas supply system | Carrier gas pressure (MPa) | 3.5 |
Shielding gas pressure (MPa) | 3.5 | |
Laser deposition head | Spot diameter (mm) | 2 |
Machine tool | Z-axis lifting (mm) | 0.5, 0.4, 0.3 |
Scanning interval time between layers (s) | 20, 10, 0 |
Parameters | Value |
---|---|
Laser power (W) | 600 (520) |
Scanning speed (mm/s) | 6 |
Powder feed rate (g/min) | 6.271 |
Z-axis lifting (mm) | 0.3 |
Scanning interval time between layers (s) | 0 |
Cladding length (mm) | 80 |
Cladding width (mm) | 2.2 |
The number of clad layers | 50 |
Temperature | Density | Thermal Conductivity | Specific Heat | Poisson’s Ratio | Coefficient of Thermal Expansion | Yield Strength | Young’s Modulus |
---|---|---|---|---|---|---|---|
10 | 7740 | 13.1 | 450 | 0.29 | 17.62 × 10−6 | 249 | 200 |
100 | 7710 | 14 | 500 | 0.29 | 17.87 × 10−6 | 235 | 188 |
300 | 7680 | 23 | 650 | 0.31 | 18.2 × 10−6 | 221 | 170 |
500 | 7580 | 36 | 750 | 0.32 | 19.34 × 10−6 | 210 | 164 |
800 | 7470 | 38 | 850 | 0.32 | 20.86 × 10−6 | 120 | 131 |
1200 | 7350 | 35 | 780 | 0.32 | 21.61 × 10−6 | 40 | 59.5 |
1500 | 7000 | 70 | 920 | 0.32 | 25.3 × 10−6 | 0.003 | 4.56 |
The Milling Parameters | Level 1 | Level 2 | Level 3 | Level 4 |
---|---|---|---|---|
Milling speed/() | 55.292 | 62.204 | 69.115 | 76.026 |
Feed speed/() | 108 | 121.5 | 135 | 148.5 |
/mm | 0.25 | 0.5 | 0.75 | 1 |
Test Number | Milling Speed | Feed Speed | (mm) | Milling Force (N) |
---|---|---|---|---|
1 | 55.292 | 108 | 0.25 | 324.883 |
2 | 55.292 | 121.5 | 0.75 | 487.283 |
3 | 55.292 | 135 | 1 | 608.572 |
4 | 55.292 | 148.5 | 0.5 | 428.174 |
5 | 62.204 | 108 | 0.5 | 394.971 |
6 | 62.204 | 121.5 | 1 | 523.607 |
7 | 62.204 | 135 | 0.75 | 513.708 |
8 | 62.204 | 148.5 | 0.25 | 324.572 |
9 | 69.115 | 108 | 0.75 | 458.388 |
10 | 69.115 | 121.5 | 0.25 | 302.808 |
11 | 69.115 | 135 | 0.5 | 434.568 |
12 | 69.115 | 148.5 | 1 | 565.371 |
13 | 76.026 | 108 | 1 | 497.724 |
14 | 76.026 | 121.5 | 0.5 | 404.035 |
15 | 76.026 | 135 | 0.25 | 340.161 |
16 | 76.026 | 148.5 | 0.75 | 472.565 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, X.; Zhu, W.; He, Y. Deformation Prediction and Experimental Study of 316L Stainless Steel Thin-Walled Parts Processed by Additive-Subtractive Hybrid Manufacturing. Materials 2021, 14, 5582. https://doi.org/10.3390/ma14195582
Wu X, Zhu W, He Y. Deformation Prediction and Experimental Study of 316L Stainless Steel Thin-Walled Parts Processed by Additive-Subtractive Hybrid Manufacturing. Materials. 2021; 14(19):5582. https://doi.org/10.3390/ma14195582
Chicago/Turabian StyleWu, Xuefeng, Wenbo Zhu, and Yu He. 2021. "Deformation Prediction and Experimental Study of 316L Stainless Steel Thin-Walled Parts Processed by Additive-Subtractive Hybrid Manufacturing" Materials 14, no. 19: 5582. https://doi.org/10.3390/ma14195582
APA StyleWu, X., Zhu, W., & He, Y. (2021). Deformation Prediction and Experimental Study of 316L Stainless Steel Thin-Walled Parts Processed by Additive-Subtractive Hybrid Manufacturing. Materials, 14(19), 5582. https://doi.org/10.3390/ma14195582