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Abstract: The aim of the scientific contribution is to point out the possibility of applicability of
cylindrical shells with a constant elliptical cross-sectional shape for stability loss analysis. The solution
to the problem consists of two approaches. The first approach is the experimental measurement of
critical force levels, where the work also describes the method of production of the sample and jigs
that cause the desired elliptical shape. The second approach is solving the problem in the use of
numerical methods—the finite strip method together with the finite element method.

Keywords: thin-walled shells; stability loss; tensile test; FEM

1. Introduction

In the introduction, it should be emphasized that the problem of loss of stability for
thin-walled shells with an elliptical cross-sectional area has gradually evolved over the past
and present centuries. With the advent of more innovative experimental and numerical
methods, more accurate results can be achieved. Below, in the article in the historical and
current overview of the development of the loss of stability survey, the researched issue is
described with individual gradual solutions.

One of the first works that dealt with the issue of shell elements with elliptical cross-
section is a work published by the author Brown in 1936 [1]. His work describes and
conducts the dependencies between stress and strain for shell elements with an elliptical
cross-section, which are subjected to internal compressive loads. During this period, many
scientists and researchers have focused their attention primarily on shells with a circular
cross-section. The obvious reason for this is that structural elements of this type occur very
frequently.

The rapid development of society, which occurred in the late 40s of the 20th century,
brought many problems, especially in the field of aviation. One of the unexplored areas of
aviation was the increase in the speed of aircraft, which approached the speed of sound
or overcoming it. A serious problem that occurred was the effect of compressive stress on
the leading edges of the fighter wings. This type of problem connected with the nose of
the wing, whose stability is affected by the changing curvature of the shell, was solved by
Marguerre in 1951 [2].

In the study [3], the authors present the derived knowledge for the solution of cylin-
drical shells using the energy method for the problem of oval or elliptical cylindrical shells.
The authors consider precisely defined geometric dimensions of the elliptical cross-section
of the shell and defined boundary conditions. Another important contribution for the
given issue of elliptical shells was published by the same authors in [4]. This contribution
is mainly based on a dissertation thesis by Chen published in 1964 [5]. In a subsequent
paper [6], the authors describe energy expressions and related differential equations for
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non-circular cylindrical shells that are analogous to the relationships with Donnell derived
for circular cylindrical shells. In 1966, a large symposium was held to address this issue,
where Kempner and Chen presented their achievements to date, which are reported in the
paper [7]. One of the other authors who dealt with the problem of stability loss in elliptical
shells was Hutchinson, who presented his findings in an extensive work [8] in 1968. The
study [9], brings an extension of the problem in the nonlinear area. The work [10], deals
with the problem of the loss of stability of oval shells, examining the induced state of the
shell due to fit. For this case, the authors have chosen the fixed boundary condition of the
shell and in the development of this issue they define a relatively precise state of pre-stress
in the boundary condition. To solve the stability equations, they use the Fourier method
with a combination of higher order differential techniques. Subsequently, the authors
in [11], experimentally verify the developed theory described in [10]. Their findings indi-
cate that there is sufficient similarity in the negative impact of the geometric imperfections
of the shell surface, as in the case of circular cylindrical shells. Other authors who dealt
with this negative phenomenon (the effect of geometric imperfections) published their
findings in [12], addressing the dependence and the effect of magnitude of eccentricity
on the resulting value of the critical force. An interesting contribution is the work of the
authors [13], where they use a laser interferometer to determine the magnitude of the
deformation of the casing caused by the loss of stability.

The experimental results obtained are compared on the basis of the theory derived by
Bresse and MacAlpine. 1974 is a turning point for authors [14]. In the work they published,
they extensively described the condition of the elliptical shell, which is subjected to a
clear bending load and a combination of axial compressive load and bending. The first
and second order stability equations are derived from Donnell’s assumptions because
they have proven to be sufficiently accurate. A subsequent important finding is the fact
that some types of elliptical shells are able to carry higher or lower load values than the
reference circular cylindrical shell. However, the known fact has been confirmed that if the
shells of both types of elliptical shells contain initial geometric imperfections, this has a
major effect on the resulting shells bearing capacity, as in the case of a circular cylindrical
shell. The greater the geometric imperfection the lower the bearing capacity of shell is.
The authors thoroughly describe the condition of the oval shell under the influence of
compressive load and axial-symmetric bending in [15]. In 1994, the authors [16] solved the
issue of laminate elliptical shells. The subject of their research was the change of the natural
frequency of the vibration, based on the different method of laminating. The equations of
motion were derived on the basis of the Lagrangian (Hamilton) principle. The author of
the work [17] deals with the problem of loss of stability of an elliptical cylindrical shell,
which is created with the composite materials. A large publication is the author’s work [18],
which deals with the use of various elliptical cylindrical shells for general construction use.
Two methods of loading were considered in the experimental measurements. Geometric
imperfections, material properties and recorded history of loading cycles are considered
as input parameters that negatively affect the resulting shell strength. The experimentally
determined values were subsequently verified using the numerical calculation program
ABAQUS®. Another author who used numerical methods to solve stability loss of elliptical
shell due to local loss of shell surface was [19]. In the past, there were not many options for
implementing the advantages of elliptical shell elements into the design. The problem is
that there was no exact design-defined procedure for these types of structural elements. For
this reason, the authors in [20] describe and implement the overall design of elliptical shells
according to the valid Eurocode 3, BS 5950-1, AISC 360-05, and AS 4100 (the validity of
these approaching applies to the then current and valid standards, year 2008). The author’s
text [21] describes the procedure for determining the shape of the collapsed shell surface,
while his theoretical knowledge is based on the presented works of the authors mentioned
above. An interesting contribution is the work of authors [22] in the field of biomedical
engineering. In their study, they examine the effect of the cross-sectional shape of an artery
and the relationship between an increase in blood pressure and an artery collapse. At
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present, the author deals with the issue of geometric imperfections of the elliptical shell
surface in [23]. Subsequent interesting work from the discussed field is presented by the
authors [24,25].

The aim of this paper is to present experimental and numerical procedures for solving
the stability problem of axially loaded thin-walled shells with elliptical cross-sections. The
first part of the experimental measurements consists of determining the wall thickness of
the shell used and identifying the material properties. The results of these measurements
served as input data for the numerical computations. The second group of measurements
was oriented toward the measurement of critical axial forces for shells with different degrees
of eccentricity of the elliptical cross-section. For the numerical simulation performed in
the linear domain, two methods were used: the finite element method and the finite
strip method.

2. Stability Concept of Thin-Walled Shells, Proposal of Fixture with Elliptical
Cross-Section, and Manufacturing Shell Specimen

Consider a theoretically perfect case of a shell element with both ends which are
simply supported and on which acts a uniform axial compressive load. Its loss of stability
diagram can then be represented by Figure 1.
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The OABD curve represents a perfect case of a shell element. The load F is applied
statically so that the initial equilibrium configuration of the shell is in the membrane state
of stress f = 0. The equilibrium part of the OABD consists of growing branches OA
and BD, which correspond to equilibrium stability states, and the descending branch AB
corresponds to an unstable equilibrium configuration. Point A on the OABD curve can also
be interpreted as a bifurcation point. The peculiarity of shell elements, in contrast to other
thin-walled structural elements, is the assumption that no new adjacent deformed stable
equilibrium configurations, located in the infinite proximity of point A, are created [26–28].
Stable deformed equilibrium configurations are defined from the originals at finite distances
on the BD branch. Thus, the transition from the original equilibrium configuration on
the OA branch to the new stable deformed equilibrium configuration on the BD branch
is performed by jumping from the steady state A through the static unstable state given
by the branch AB to the new steady state F on the branch BD. Such a phenomenon with
a corresponding jump at point F is referred to as a loss of shell stability. In the case of a
real shell element, the stability loss diagram can then be described as follows. The area
of shell instability for a given real shell is shown by the dashed line in Figure 1. It can
be seen, that due to the initial imperfections, the actual shell begins to deviate from the
original equilibrium configuration at the beginning of the load. Therefore, it is not possible
to assume that this shell is in the original membrane state of stress. The branch OA, during
the increase of the load does not coincide with the axis F. Therefore, the transition from the
original steady state to the deformed one also occurs by a jump, but at the level of the limit
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point A′ [26,29–31]. It follows from the above that there are three different critical load
values that characterize the properties of thin-walled shells when a loss of stability occurs:

• F(1)
cr is the upper critical load and can be defined as the largest load to which the

original shell equilibrium configuration remains stable with respect to minimal imper-
fections;

• F(2)
cr is the upper critical load and can be defined as the lowest load to which the

original shell equilibrium configuration of the shell remains stable with respect to
minimal imperfections;

• Fcr is the critical load of the real shell element, referred to as the buckling load, and
can be defined as a load with a certain value at which the deflection of the actual shell
surface occurs, i.e., such a critical load value for which the original equilibrium state
of the shell ceases to be stable [26].

Cylindrical thin-walled shell elements can be divided into three classes in terms of
their length and radius ratio. Each of these classes has its own specifics of establishing the
loss of stability under the influence of axial compressive load. The first class represents
shells of short lengths. The onset of loss of stability is accompanied by the phenomenon
where the collapse of the casing is formed mostly by only one sinusoidal half-wave in
the axial direction. The second class represents shells of medium lengths. The onset of
loss of stability can be assumed in two variants. The collapse of the shell can be caused
by a local loss of stability induced on the shell surface as a result of various geometric
and material imperfections, or by a global loss of stability as a result of loading processes
and the way the structure as a whole is laid. From the point of view of the study of loss
of stability, this class of shells is the most difficult to solve. The third class represents
long shells. The establishment of a loss of stability is accompanied by the phenomenon in
which the shell behaves as a buckling of a long rod. The induced collapse of the shell then
generally looks like a bend in the radial direction without damaging the cross-sectional
area of the surface [32]. All three types are shown in Figure 2 and mathematical division
into individual classes is defined by the form

Z =
L2

Rh

√
(1− µ2) (1)

where, Z represents the dimensionless form factor which represents the measure of the
ratio of the shell length to its radius, L represents the shell length, R represents the shell
radius, h represents the shell surface thickness, and µ represents the Poisson’s ratio [32].
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If the magnitude is acquired
Z < 2.85 (2)

then the shell represents a short length class, and if

Z > 2.86 (3)

then the shell represents a class of medium and long lengths.
The field of investigation for the loss of stability of thin-walled shells focuses on

cylindrical shells with an elliptical cross-section. The task is to determine the influence
of the elliptical cross-sectional area on the achieved critical force value. Four fixtures are
designed to provide the desired elliptical cross-section along the entire length of the test
specimen. The size of the ellipses examined was defined by a parameter referred to as
eccentricity e. The relation determining e is defined as

e =

√
1− b2

a2 (4)

where, the designations a, b represent the ellipse arms.
Thin-walled shell elements are specific in that they can carry significantly higher loads

than other thin-walled elements. In order to minimize this positive property of the shells,
a can designed for storing carbonated beverages with a volume of 0.5 L, was chosen for
the production of test specimens. In order to make a correct test specimen from the can, it
was necessary to remove both ends of the can in precisely defined places. These points are
located behind the can rounding, where the shell has constant diameter and cross-sectional
surface thickness is identical, Figure 3.
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The sample thus produced can be considered as a thin-walled shell with a circular
cross-section. By applying mechanical fixtures, it is possible to create the desired elliptical
cross-sectional areas. The geometric dimensions of the test specimen are:

• Total length of specimen is Lc = 120 mm,
• Length of surface working part is L = 100 mm,
• Specimen radius is R = 33 mm.

Figure 4 shows a schematic representation of a test specimen with areas indicated.
Label 1 represents the functional part of the specimen surface that is subject to stability loss
investigation, and Label 2 represents the part of the surface that attaches to mechanical
fixtures which are causing elliptical cross-section of specimens.
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2.1. Static Tensile Test for Determining Material Parameters of Aluminium Alloy

The test specimens were made from a can intended for storing carbonated beverages.
As is known, such cans are mostly made of deep-drawn aluminum alloy. In order to
make the numerical calculation as accurate as possible and at the same time to correspond
as closely as possible to the actual state of the can material affected by the production
technology, it was decided to obtain basic material parameters directly from the can and
not to apply aluminum alloy material data from its material sheet. Based on currently
valid standard [33], a variant of the specimen intended for the tensile test was proposed
in Figure 5. For validation process of static tensile test, it is necessary that the produced
samples meet geometric and dimensional tolerances. The main dimension to be monitored
is the functional width of the test specimen 12.5± 0.1 mm, which is closely connected with
the functional length dimension 50 mm.

Figure 5. Proposed specimen for static tensile test, all dimensions are in mm.

The production of specimen was made by a wire cutter. Due to the manufacturing pro-
cess, it was necessary to develop a mechanical fixture, whose function is fixing developed
can surface, Figure 6.
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Figure 6. Manufactured specimen for static tensile test, blue mark = axial orientation of material fiber,
red mark = radial orientation of material fiber.

Cutting the desired shape of the test specimen into the developed can surface caused
the release of residual stresses in the materials that were as a result of the can manufactur-
ing technology process. This factor negatively affected the functional dimensions of the
manufactured specimen, which had to be followed in order for the samples to be used for
the static tensile test. Subsequent modification of the fixing of the developed can surface
in the mechanical fixture and adjustment of the cutting parameters of the production tool
significantly eliminated this negative factor for specimens which are marked by red color.
For specimens marked by blue color, this negative effect was only partially eliminated,
confirming the performed control measurement of the produced specimen. A control mea-
surement of the functional width dimension specimen was performed at 10 locations. The
control measurement points are shown in Figure 7. In this way, specimens were produced
whose fiber orientation of the material is in the axial direction of the can, which means that
the fiber orientation is along the length of the can, and in the radial direction of the can,
meaning that the fiber orientation is circumferential direction. Introduced color marking,
divides individual types of manufactured specimen, Figure 6. Specimens with material
fibers having axial orientation are marked in blue and specimen with material fibers having
a radial orientation are marked in red. The reason for the production of these two specimen
variants is the assumed anisotropic state of the can material.
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2.2. Proposed Numerical Solution for Finite Strip Method

Section 2.2 deals with the theoretical background of FSM and the creation of stiffness
matrices, transformation matrices and transformations from a local coordinate system to a
global one.

The possibilities of the finite strip method were used to solve the given problem. At
present, this method does not have such an extensive presence among the commercial
computing software currently available on the market, but the simple nature of the method
allows it to be programmed in standard programming languages i.e., MATLAB®. For the
current study of the loss of stability of the cylindrical shell with elliptical cross-section,
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a lower order strip—Lo2 was used, Figure 8. This type of finite strip is characterized in
that each of its nodal lines can move freely in the direction of the z-axis and rotate about
the y-axis.
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This specific property of the strip results in a pair of coordinate systems for each nodal
line and four coordinate systems for one strip. The appropriate displacement function can
be written as

w = N q =
r

∑
m=1

Nmqm =
r

∑
m=1

Ym[C1C2]qm (5)

where, Ym represents polynomial function and its shape is determined by series and based
on end condition of strip. Ym is defined in lit. [34] for Lo2 strip variant.

C1, C2 can be defined as

C1 =
[(

1− 3x2 + 2x3
)

x
(

1− 2x + x2
)]

(6)

C2 =
[(

3x2 − 2x3
)

x
(

x2 − x
)]

(7)

where x = x/b, b is the thickness of the strip and

qT
m = (w1mθ1mw2mθ2m)

T (8)

are the displacement and rotation parameters in the two longitudinal edges of the strip for
the mth order of sum [34,35]. The above functions ensure the compatibility of displacement
values as well as their first partial derivatives at the strip interface, from which a convergent
solution can be expected. Equations (6)–(10) for Ym (summation part of displacement
functions) can be used for static analysis, although all five basic sum functions must be
used for dynamic analyses. A comprehensive derivation of the relationships for the Lo2
strip is given in [34–36].

C1 = (1− x); C2 = x, (9)

C1 =
[(

1− 10x3 + 15x4 − 6x5
)

x
(

1− 6x2 + 8x3 − 3x4
)

x2(0.5x− 1.5x + 1.5x2 − 0.5x3)],
C2 =

[(
10x3 − 15x4 + 6x5

)
x
(
−4x2 + 7x3 − 3x4

)
x2(0.5x− x2 + 0.5x3)]. (10)

After deriving individual stiffness matrices for a specific case of shell boundary condition,
it is necessary to assemble individual blocks of stiffness matrices. In the first block of
matrices, the matrices are referred to as the elasticity matrix ke. Each such block of matrices
consists of two components. These components are referred to as the kmn

em bending and
kmn

eb membrane stress sub-matrices. Both sub matrices contain corresponding longitudinal
expressions for the sinusoidal half wave m and n [36,37]. The constructed block of stiffness
matrix has the form

kmn
e =

[
kmn

em 0
0 kmn

eb

]
(11)
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where the sub matrices are determined

kem =
∫
V

BT
m D BmdV

keb =
∫
V

BT
b D BbdV (12)

The second type is matrices of geometric stiffness kg. Similarly, the elastic matrix
ke, kg contain expressions for m and n, and it corresponds to one block of the geometric
stiffness matrix, so for kg it is possible to write

kmn
g =

[
kmn

gM 0
0 kmn

gB

]
(13)

where 0 is the matrix containing zero elements and its size is 4× 4.
Each matrix constructed in this way (11) and (13) takes the dimension 8 × 8 and

in [34,38] the derived elements for each matrix are listed.
The next step is to transform the individual elements into a global coordinate system.

For this purpose serves the transformation matrix whose form is written as

Γ =

[
r 0
0 r

]
(14)

where 0 represents a zero matrix of dimension 4× 4 and r is defined as

r =


a ∗ cosβ 0 −(b ∗ sinβ) 0

0 1 0 0
b ∗ sinβ 0 a ∗ cosβ 0

0 0 0 1

 (15)

where a with b represents the ellipse arms.
For correct transformation of all elements and its coordinate systems is used the form

Ke = ΓeT ke Γe (16)

where Ke represents the eth stiffness matrix in global coordinates, Γe represents the trans-
formation matrix of the eth, and ke represents eth matrix of stiffness in the local coordinate
system. Subsequently, if all stiffness matrices are correctly transformed into a global
coordinate system, it is possible to assemble these matrices and thus create the main stiff-
ness matrix K for the investigated structure, which in our case represents a thin-walled
cylindrical shell. The other step of the solution is the calculation of eigenvalues and
eigenvectors with

det[K + λKσref] = 0 (17)

3. Proposed Elliptical Cross-Section Shapes and Its Solid Mechanical Fixtures, Results
of Experimental and Numerical Measurements

Based on Formula (1), the five values of the eccentricity, which form an elliptical shape,
were determined. The values of the eccentricity magnitude together with the dimensions
of the individual ellipses are listed in Table 1. It should be noted that the ellipses shown in
Table 1 are sized to fit the needs of the table and are for illustration only.
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Table 1. Proposed elliptical shapes.

Value of e Ellipse Shape Dimension of a, b [mm]

e = 0
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a = 38.48
b = 26.4

The primary task of the mechanical fixtures is to provide the required elliptical cross-
section of the test specimen over its entire length. The secondary task is to properly stabilize
the specimen in the test device. Standard structural steel was used to make fixtures and
the fixture were made by laser cutting technology. Due to used technology, a continuous
thickness of cut was achieved over the entire height of the fixtures, while manufactur-
ing tolerances allow us to consider that fixture produced in this way form a fixed-fixed
boundary condition. Figure 9 shows the individual variants of the produced fixtures.
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3.1. Result of Dimensional Measurement for Surface Wall Thickness and Specimen Width Used for
Static Tensile Test

Section 3.1 deals with the evaluation of the wall thickness of the test specimens and
the control measured width of the produced specimen for the tensile test (geometric control
of the functional dimensions)—specimens that were out of tolerance were not used for the
tensile test [39–43].

The first step is to divide the produced test specimen into the correct class in terms of
length. Before the application of Equation (2), it was necessary to determine the average
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thickness of the shell. About 100 randomly selected cans have been allocated for this task.
Measurement of the thickness of the shell surface was made using a micrometer. The
measured values were processed using standard statistical methods. Figure 10 shows the
scattering of the shell thicknesses of the individual samples. Based on measured values is
the constructed histogram (Figure 11).
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quantities are given.

Table 2. Processed and evaluated measured quantities.

Standard deviation [mm] 0.006014595

Arithmetic mean [mm] 0.111

Median [mm] 0.111

The biggest value [mm] 0.128

The lowest value [mm] 0.094
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Thus, by applying Equation (2), using µ = 0.33 [26], the value of the shape factor
was calculated as Z = 2600, since relation (4) applies, the test specimens produced can be
considered as a class of medium and long length shells.

The functional dimension defined by the standard [33] was measured at 10 locations
at precisely defined points as shown in Figure 7. This measurement was performed to
determine if the cutting conditions of the production technology are set correctly. In the
case of non-compliance with the dimensional tolerance, the specimens produced cannot
be used for the static tensile test. In Figures 12 and 13, the measured values are displayed
and measured points from 1 to 10 represent measured points on first specimen, 11 to
20 represent measured points on second specimen, 21 to 30 represent measured points on
third specimen, and etc.
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Statistically processed and evaluated data are given in Table 3.

Table 3. Processed data for measuring the functional dimension of the sample width.

Specimens with Axial Orientation of the
Material Fibers

Specimens with Radial Orientation of the
Material Fibers

Standard deviation [mm] 0.0302 Standard deviation [mm] 0.0079

Arithmetic mean [mm] 12.496 Arithmetic mean [mm] 12.483

Median [mm] 12.503 Median [mm] 12.460

The lowest measured
value [mm] 12.38 The lowest measured

value [mm] 12.43

The biggest measured
value [mm] 12.70 The biggest measured

value [mm] 12.57

3.2. Experimental Results of Critical Force Measurement

For the needs of experimental measurement and setting of parameters of production
technology, approx. 200 test pieces were produced. In order to be able to process and eval-
uate the critical force measurement performed, it was necessary to repeat the measurement
20 times for each variant of the elliptical cross-sectional area of the test sample. Figure 14
shows randomly selected critical force measurements for the individual elliptical variants
of the cross-sectional areas of the test specimens.
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Figure 15 shows the measured values of the critical force level and shows the resulting
decreasing levels of critical force determined by linear regression. In Table 4 the processed
measurement data are written.
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Figure 15. Measurement of critical force Fcr for each variant of e and decreasing levels of critical force determined by
linear regression.

Table 4. Processed data from the measurement of critical force levels Fcr.

Statistical Parameters Standard Deviation [N] Arithmetic Mean [N] Median [N]

Ref. variant e = 0 120.2447 805.891 783.580

Variant e = 0.05 150.7167 799.594 773.765

Variant e = 0.1 112.8161 780.684 754.933

Variant e = 0.15 84.3076 743.717 736.544

Variant e = 0.2 103.1899 687.421 688.285

3.3. Result of Static Tensile Test

The task of the static tensile test was to ensure the basic material parameters necessary
for the input data of the numerical computation. In order to be able to correctly evaluate
the data, it was necessary to repeat the measurement under identical state conditions. As
stated in the valid technical standard [33], the specified minimum number for verification
measurements is to repeat the measurement using at least 10 new samples. The observed
basic material parameters are considered to be the Young’s modulus of elasticity E, the
modulus of elasticity in shear of the material G, and the Poisson’s ratio µ. Due to the
extensive plastic deformations by which the material of the test specimen is adversely
affected, it was not possible to determine the Poisson’s ratio on the basis of the static
tensile test. This value was chosen from the literature [26]. The evaluation of the material
parameters is based on the assumption that the examined sample, with respect to its
geometric dimensions, width to thickness ratio, can in some respects represent one of the
layers of composite with unidirectional defined fibers in the material matrix, Figure 16.
Thus, the assumed anisotropy of the material, caused as a result of the deep drawing
production technology, is simplified for the case of the properties of the orthotropic material.
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By introducing a new designation, for E0 = E1, E90 = E2 and µ = µ12, the determi-
nation of individual material parameters is approached. The value of µ21 is defined by
the relation

µ21 = µ12
E1

E2
(18)

The shear modulus of elasticity in the direction of G12, is defined as

G12 =

√
E1E2

2
(
1 +
√

µ12µ21
) (19)

Plane elasticity tensor of fourth order for a UD-layer in the ξ1′, ξ2′ coordinate system
is defined as

Eαβγδ =

 E1′1′1′1′ E1′1′2′2′ E1′1′1′2′

E2′2′1′1′ E2′2′2′2′ E2′2′1′2′

E1′2′1′1′ E1′2′2′2′ E1′2′1′2′

=


E1
1−µ12µ21

µ21E1
1−µ12µ21

0
µ12E2

1−µ12µ21

E2
1−µ12µ21

0
0 0 G12

 (20)

By solving the relation (19) and (20), the values are obtained, which are in Table 5.

Table 5. Statistically processed and evaluated material characteristics of test specimens.

Specimens with Axial Orientation of the
Material Fibers 1

Specimens with Radial Orientation of the
Material Fibers 2

E1 [GPa] G12 [MPa] µ12 [-] E2 [GPa] G21 [MPa] µ21 [-]

20.53 5632 0.33 12.51 5632 0.54

The standard deviation for measured modulus G in the axial orientation is 2.048 GPa
and in the radial orientation is 0.479 GPa.

3.4. Computed Numerical Solutions

In the numerical solution of the loss of stability, the finite element method was also
used, to verify the computed values by the finite strip method, and to draw the correspond-
ing collapsed shapes, for each examined cross-section of the test specimens. To verify the
calculated values of the finite strip method, the commercial software package NX-Nastran
was used (FEM). The accuracy of the calculation of the finite strip method is achieved by
the increase of the sinusoidal half-waves. When using the count of approx. 87 sinusoidal
half-waves, the calculated value of the critical force for each variant of the test sample
changed only at 4 or 5 decimal places. Thus, the solution can be considered convergent for
the respective number of sinusoidal half-waves. In the Table 6, the calculated values of the
critical forces determined by both numerical methods and the percentage difference in the
results are written. It should be noted that both methods had identical material input data
and boundary conditions.
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Table 6. Computed values of critical forces by FSM and FEM.

Variant FSMFcr [N] FEMFcr [N] % Difference

Ref. e = 0 898.4 922.8 2.6

e = 0.05 868.5 884.5 1.8

e = 0.1 845.4 867.6 2.5

e = 0.15 825.4 850.7 2.9

e = 0.2 809.2 832.3 2.7

In the following Figure 17 are shown the collapsed shapes for the individual variants
of the test specimen.
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4. Discussion

One of the main positive properties of thin-walled shell elements, compared to other
thin-walled elements, is the ability to carry higher operating loads. From the point of
view of the safety of the experiment, together with the lack of suitable elliptical cylindrical
profiles currently on the market, it was decided to produce a test specimen from a can
intended for storing various carbonated beverages. Based on the relationship describing
the division of a cylindrical shell in terms of its length into the correct class, it showed that
during the experimental measurement, certain induced properties of these types of shells
were assumed. One of the negative properties, which manifested itself in all investigated
variants with an elliptical cross-sectional area and a reference sample, was the establishment
of a local loss of stability of the specimen surface [44–48]. This was manifested by the fact
that the individual samples collapsed at the minimum applied compressive load. The
following are considered to be circumstances which have caused a local loss of stability of
the test specimens:

• Geometric deviations of the test specimen surface,
• Geometric deviations of the mechanical fixtures,
• Incorrect placed of the test specimen in the mechanical fixtures,
• Inconsistency of the manufacturing tolerances of the roundness of the casing of the

test specimen and the mechanical fixtures,
• Hidden material damage and residual stresses caused by the can manufacturing process,
• Unknown impact.

The test specimens which collapsed did not enter the evaluation process. Another
negative factor that was demonstrated was the large variance of the measured critical
force levels Fcr. Using a mechanical fixture, where the size of the elliptical cross-sectional
area was determined by e = 0.05 the largest variance of the measured critical force levels
was recorded. In contrast, when the cross-sectional area was controlled by an eccentricity
value of e = 0.15, the narrowest variance of the critical force levels was recorded. The
presumed cause, which causes such a significant scattering of critical force levels in the
case of only one fixture, is considered to be quality and finishing of mechanical fixtures.
In the Table 7 are listed the minimum, maximum, and average values together with the
values determined by the linear regression.
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Table 7. Processed values of the determined critical force by experimental measurement.

Variant Minimal Measured
Fcr [N]

Maximal Measured
Fcr [N]

1 Linear Regression
of Fcr [N]

Arithmetic Mean
Fcr [N]

% Difference
between 1 and 2

Ref. e = 0 605.4 1051.3 841.6 805.8 4.4

e = 0.05 534.9 1285.5 804.4 799.5 0.6

e = 0.1 548.8 1003.8 771.1 780.6 1.2

e = 0.15 603.7 849.4 741.5 743.7 0.3

e = 0.2 535.1 927.3 715.8 687.4 4.2

Table 8 describes the achieved solutions for determining the levels of critical forces by
individual methods of solution.

Table 8. Determining the levels of critical forces by individual methods of solution.

Variant Linear Regresion 1

Fcr

2 FSM
Fcr [N]

3 FEM
Fcr [N]

% Difference
between 1 and 2

% Difference
between 2 and 3

Ref. e = 0 841.6 898.4 922.8 6.3 2.6

e = 0.05 804.4 868.5 884.5 7.3 1.8

e = 0.1 771.1 845.4 867.6 8.7 2.5

e = 0.15 741.5 825.4 850.7 10.1 2.9

e = 0.2 715.8 809.2 832.3 11.5 2.7

Based on Table 8, these conclusions can be drawn. By increasing the value of the ec-
centricity, which creates an elliptical shape from a circular cross-sectional shape, a decrease
is caused in the achieved level of critical force compared to the reference sample. This
decrease between the individual variants of eccentricity is about 5%, and the maximum
difference is up to 15%, if the reference sample e = 0 is compared with the variant e = 0.2.
The difference between the computed values of the critical force using the finite strip
method and the finite element method did not exceed the limit value of 5%. Therefore, the
computed values of both methods can be considered correct. In the subsequent comparison
between the values of the finite strip method and experimental measurement, the largest
difference was approx. 14%. Thus, it is possible to consider the numerical solution to be
applicable to the solved problem and corresponding to the solution using the experimental
method. In the Figure 18, linear regression values were chosen to plot the decreasing
tendency of the critical force due to the increasing value of the elliptical cross-sectional
size of the sample [49–52]. The calculated values and % differences between the individual
methods are given in Table 8.
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5. Conclusions

In the introduction, the article deals with a historical overview of the solution of
the problem of loss of stability of thin-walled cylindrical shell elements with an elliptical
cross-sectional area. Subsequently, the concept of loss of stability for shell elements and a
proposal for solving a given problem are presented in a following second chapter named
theoretical background of shell stability and proposed solution of solving stability problem.
For the experimental measurement of critical forces, it was necessary to design a suitable
test specimen, together with the design of the mechanical fixtures, which will ensure a
constant circular and elliptical shape of the casing along its entire length. The size of
the ellipses according to which said preparations were made was determined by means
of eccentricity. A total of 5 variants were designed in this way, of which one variant
represented a reference sample with a circular cross-section. For the need of input material
data, both used numerical computation programs, a static tensile test was performed, for
which the samples were directly produced from a can blank. In this way, the most accurate
material characteristics of the investigated aluminum alloy were ensured. During the
experimental measurement, certain characteristic properties of the used shell elements
were manifested, which were mentioned in the evaluation part of the article (4. Discussion).
The accuracy of the achieved numerical solution of the loss of stability was directly affected
by the state of the material, which results in the difference of the calculated values to the
values determined experimentally.

It is an indisputable fact that experimental measurements of critical force are critical
in the practice of engineering. Practice is the criterion of truth. Indeed, in determining the
critical force, there are many factors that can be decisive for its resulting value, which can
vary considerably with subtle changes in parameters. Obviously, this type of problem is
extremely sensitive to changes in dimensions, material properties, local geometric imper-
fections, material defects, or boundary conditions. In fact, different types of nonlinearities
related to material, geometry, or boundary conditions may be present, which are important
not only for the structure as a whole, but especially in certain local parts. From this point of
view, this paper is only an approximation in the part related to numerical procedures and
does not allow to capture the phenomena related to the ongoing deformation processes of
the structure, the so-called postbuckling.
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26. Trebuňa, F.; Šimčák, F. Robustness of Elements of Mechanical Systems; Emilena: Košice, Slovakia, 2004.
27. Samuelson, L.Å.; Eggwertz, S. Shell Stability Handbook; Elsevier Science Publishers LTD: London, UK, 1992; p. 283,

ISBN 1-85166-954-X.
28. Koiter, W.T. Elastic Stability of Solid and Structures; Cambridge University Press: New York, NY, USA, 2009; p. 229,

ISBN 978-0-511-43674-1.
29. Singer, J.; Arbocz, J.; Weller, T. Buckling Experiments: Experimental Methods in Buckling of Thin-Walled Structures; John Wiley & Sons:

New York, NY, USA, 2002; p. 1707, ISBN 0-471-97450-1.
30. Bigoni, D. Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability; Cambridge University Press: Cambridge, UK, 2012;

p. 527, ISBN 978-1-107-02541-7.
31. Chen, D.H. Crush Mechanics of Thin-Walled Tubes; CRC Press: Boca Raton, FL, USA, 2016; p. 329, ISBN 978-1-4987-5518-4.
32. Narayanan, R. Shell Structures, Stability and Strength; Elsevier: London, UK, 1985.
33. International Standard ISO 6892-1. Metallic Material-Tensile Testing-Part 1: Method of Test at Room Temperature. Reference Number,

ISO 6892-1:2009(E), 1st ed.; ISO: Geneva, Switzerland, 2009.
34. Li, Z.; Schafer, B.W. Buckling analysis of cold-formed steel members with general boundary conditions using cufsm: Conventional

and constrained finite strip method. In Proceedings of the 20th International Specialty Conference on Cold-Formed Steel
Structures, Saint Luis, MO, USA, 3 November 2010.

35. Cheung, Y.K. Finite Strip Method in Structural Analysis; Paramount Press: Budapest, Hungary, 1976; p. 233. ISBN 0-08-018308-5.
36. Zinkiewich, O.C.; Cheung, Y.K. The Finite Element Method in Structural and Continuum Mechanics; McGraw-Hill: New York, NY,

USA, 1967.
37. Schafer, B.W.; Ádány, S. Buckling analysis of cold-formed steel members using CUFSM: Conventional and constrained finite strip

methods. In Proceedings of the 18th International Specialty Conference on Cold-Formed Steel Structures: Recent Research and
Developments in Cold-Formed Steel Design and Construction, Orlando, FL, USA, 26–27 October 2006.

38. Maláková, S.; Urbanský, M.; Fedorko, G.; Molnár, V.; Sivak, S. Design of geometrical parameters and kinematical characteristics
of a non-circular gear transmission for given parameters. Appl. Sci. 2021, 11, 1000. [CrossRef]

39. Maláková, S.; Puškár, M.; Frankovský, P.; Sivák, S.; Palko, M.; Palko, M. Meshing Stiffness—A Parameter Affecting the Emission
of Gearboxes. Appl. Sci. 2020, 10, 8678. [CrossRef]

40. Blatnický, M.; Sága, M.; Dizo, J.; Bruna, M. Application of Light Metal Alloy EN AW 6063 to Vehicle Frame Construction with an
Innovated Steering Mechanism. Materials 2020, 13, 817. [CrossRef] [PubMed]

41. Sága, M.; Blatnická, M.; Blatnický, M.; Dižo, J.; Gerlici, J. Research of the fatigue life of welded joints of high strength steel S960
QL created using laser and electron beams. Materials 2020, 13, 2539. [CrossRef]
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