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Abstract: While the degradation of Polylactic Acid (PLA) has been studied for several years, results
regarding the mechanism for determining degradation are not completely understood. Through
accelerated degradation testing, data can be extrapolated and modeled to test parameters such as
temperature, voltage, time, and humidity. Accelerated lifetime testing is used as an alternative
to experimentation under normal conditions. The methodology to create this model consisted of
fabricating series of ASTM specimens using extrusion and injection molding. These specimens were
tested through accelerated degradation; tensile and flexural testing were conducted at different points
of time. Nonparametric inference tests for multivariate data are presented. The results indicate that
the effect of the independent variable or treatment effect (time) is highly significant. This research
intends to provide a better understanding of biopolymer degradation. The findings indicated that
the proposed statistical models can be used as a tool for characterization of the material regarding
the durability of the biopolymer as an engineering material. Having multiple models, one for each
individual accelerating variable, allow deciding which parameter is critical in the characterization of
the material.

Keywords: biomaterial; degradation; accelerated life testing; material testing; PLA

1. Introduction

Polylactic acid (PLA) is a bio-based biodegradable polymer that can be produced
from renewable resources including starch from corn and potatoes, as well as from sugars
derived from beets, cane, or other agricultural products. Germany, Japan, the Netherlands,
and the USA are the principal producers of PLA in the world [1]. With the ability to be easily
processed using traditional manufacturing approaches such as injection molding, blow
molding, extrusion, and thermoforming; as well as its high strength and thermo-plasticity,
PLA can be used in a wide variety of products. Gupta and Kumar [1] found that depending
on product use, PLA is well suited and commonly used due to its low molecular weight
and reduced degradation time. PLA is considered a well-behaved thermoplastic with a
reasonable shelf life for most single use packaging applications and, when disposed of
properly, it will hydrolyze to harmless natural products. There are different applications for
PLA, as a rigid plastic, biaxially oriented films, or plastic bottles; some examples are meat
trays and opaque dairy (yogurt containers), consumer displays and electronics packaging,
envelop, display carton windows, short shelf life milk bottles, and bottles used for edible
oils [2].

PLA degradation has been studied for several years, however, results regarding
the mechanism of degradation are not completely understood yet [3]. Investigation of
degradation rates of biopolymers would allow industries and researchers to predict the
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usable life span possibilities of these type of materials, and learn how to further improve a
product usable life. In terms of production costs, PLA presents advantages such as energy
usage between 25–55% less than petroleum-based materials; up to this point the challenge
is to reduce the PLA manufacturing cost to 1.0 US$/kg; lower energy use in the production
is potentially one of the keys concerning overall cost [4].

The use of PLA products continues to grow, making it increasingly necessary to better
understand the accelerated failure process; knowing the degradation rate allows for the pre-
diction of when material failure will occur. This accelerated life testing requires a model rep-
resentation to understand the parameter changes. A powerful knowledge/understanding
tool based on degradation models can be used to determine the predictability of the usable
life of PLA materials and products. In general, most polymers experience degradation
due to factors such as heat, light, oxygen, and/or water, the effects of these factors can be
appreciated in Figure 1. The level of degradation of a polymeric material depends on its
ability to absorb UV light (due to the presence of catalyst residues such as hydro peroxide
and carbonyl groups) and/or water. Exposure of polymers to UV light irradiation leads to
main chain scission causing mechanical deterioration and breaking into small pieces; this
consequently allows oxygen and microorganism to degrade the polymer [5].

In this paper, a method to predict and model the degradation of PLA and predict the
biopolymer lifetime is presented. Based on past research this model includes multiple accel-
erating factors including UV light, humidity, and temperature. To support industrial needs
the model can adjust according to biopolymer application needs and provide evidence
based data for to facilitate decision making during product design and manufacturing
phases. The experiment stated three hypotheses:

Hypothesis 1. UV light, humidity, and temperature exposure have a statistical difference in the
degradation rate of PLA after an accelerated weather exposure of 2000 h.

Hypothesis 2. The experiment evaluated the premise that UV light exposure has a significant
effect on PLA degradation rate after an accelerated weather exposure of 2000 h.

Hypothesis 3. Finally, this model evauated a third hypothesis that states: acceleration time has
effects on the PLA samples, after 250, 500, 1000, and 2000 h of accelerated condition exposure.

Background

Polylactic acid (PLA) has been widely used in many applications for the past decade
with some limitations in its durability properties. However, Farah et al. [4] commented
that in order to expand the PLA applications in a more competitive market, the mechanical
properties, thermal stability, and particularly the degradation rate must be improved.
Work has been done in this regard to improve the stiffness at elevated temperatures
as well as to reduce the production cost [4]. Particularly, Müller explained the need
for improving degradation methods focus on determining the degradation process of
the material. Biodegradability test particularly explored the evaluation of low-weight
substances and then modified to the environmental condition in which the polymer is
being exposed [6]. Previous studies and models related to biopolymers were analyzed
and used to compare the final results of this research, in the following Table 1, a brief
description of eight modeling approaches are presented.
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Table 1. Existing degradation models.

Model General Description Type of Degradation

1. Mechanic or mechanistic
models [7].

Using differential equations of the moments, de-polymerization
(chemical reaction). They analyzed the degradation in terms of
chemical composition and changes in the molecular weight, going
from a polymer to a trimer–dimer and finally a monomer.

Thermal

2. Stochastic modeling
(simulated information) [8].

They proposed that the lifetime of a system is often related or called
as continuous damage increment, assumed as Gaussian processes.
An accelerated test must be performed in order to obtain results in a
reasonable time frame

Thermal

3. Statistical models
(1 variable) [9].

Mass loss was measured as degradation indicator induced by bulk
degradation (equally in the material) Hydrolysis

4. Series of mechanical property
comparisons (not a specific
model) [10].

Focused their research on poly-caprolactone samples, with
applications in tissues engineering area. Extrusion process was
performed with the raw material followed by rapid prototyping.
Sodium hydroxide was used to accelerate the hydrolysis, during 6
weeks at 37 °C, the samples were monitored every week. Average
molecular weight tests were performed and then statistical analysis
conducted using Student’s t-test.

Hydrolysis

5. Chemical reaction model [11].

The authors gave a mathematical analysis of the chain-end polymer
degradation monomer. The analysis was made with a discrete
equation that explained the evolution of the polymer degradation.
The authors proposed an alternative “discrete-continuous” in which
the discrete part represents the oligomers, whereas the continuous
represents the larger polymers.

Not accelerating factor

6. Arrhenius model [12].
Described the temperature influence in degradation. They modeled
different temperatures and present the result of the approximation of
failure. Temperatures were used from 80 to 237 ºC

Thermal

7. Lifetime and probability
models (Bayesian
approach) [13].

analyzed degradation in complement to a failure time study; they
mentioned that degradation is often ignored in these type of models,
they only consider the final point of failure and not the influences of
the entire degradation process in the material.

Not accelerating factor.

8. Accelerated destructive
degradation testing (one
variable) [14].

They presented the statistical model for one variable, in this case the
accelerated variable was temperature. They mentioned that
degradation rate is always a linear function of time, degradation rate
might be increasing and decreasing over the course of the product
life. In their simulation they used four levels of temperature as
degradation factor through five different times going from 0 up to
60 weeks

Thermal

Previous experiments in degradation analysis were considered as baseline for this
research. Garlotta [15] described a complete study of PLA, mechanical properties, analysis
in different situation and variables (i.e., molecular weight). PLA degradation depends
on several factors, Garlotta [15] studied ways to determine weight molecular changes
with different crystallization’s temperature. Hoshino and Isono [16] experimented with
several aliphatic polyesters and their degradation behavior (PLA among them). The
experimentation was carried out for 100 days, where 2 cm × 2 cm polyester films were
placed in an enzyme solution, the samples were weighted at the beginning and at the
end of the experiment in order to evaluate the ratio loss as a biodegradability parameter.
Iwata [17] experimented with PLA, the polymer was degraded at 55 ◦C in a pH 8.5 solution
for 20 days. Degradation was documented in three stages: (1) film was rough, (2) film
was visibly broken down, (3) finally the film disappeared. PLA’ molecular weight was
analyzed for 50 days of incubation and it was concluded that degradation resulted from
two processes: chemical hydrolysis, where PLA went into oligomers; and enzymatic
hydrolysis from the oligomers to monomers. Fukushima [18] studied PLA from L-lactic
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acid, D-lactic acid and a mixture of both. They synthesized the PLA using a fermentation
process with glucose from corn. They studied the degradation mechanism of PLA and its
nanocomposites prepared with two montmorillonites at 5% weight ratio. Photodegradation
by UV exposure was also explored. It was found that an average of 2000 h of weathering
exposure could decrease the modules of elasticity by 12% and no significant change in
strength, but with similar exposure in addition with water spray cycle, it decreased flexural
and strength respectively from 52 and 34%, [19]. Kaczmarek [20] presented a study about
the accelerated photo-degradation of polymers. Photo-degradation depends not only on
the polymer’s chemical structure but also on factors such as: defects in chains (molecular);
external impurities; physical state and morphology of sample; atmosphere and temperature,
among others.

2. Materials and Methods
2.1. Degradation Testing

Accelerated lifetime (ALT) is a process where the product or material is stressed under
accelerated conditions; voltage, temperature, humidity, and UV light to obtain useful
results to predict the lifetime of a material/product [21]. Mun et al. combined ALT with
destructive characteristics when few or no failures are observed during experimentation
under normal conditions [22]. Accelerated test responses could be similar among different
models for acceleration, depending on the specific test used during experimentation. The
main difference is that using different statistical analysis approaches to the results could
lead to a different statistical model. The final goal of any accelerated degradation test when
interpreting the results is to be able to extrapolate the information collected during the
experimentation, then to process the information and be able to create a particular model.
The results of changes in these variables are fit to a statistical model to describe the effect that
the experimental variables have on the degradation/failure process [23]. Meeker et al. [12],
showed that the information provided and collected from any accelerated degradation
test could be analyzed and extrapolated through a physical reasonable statistical model to
estimate lifetime or specific time performance under lower, natural or normal conditions.
In order to achieve a good general degradation model is important to have models for the
individual degradations process, the combination of these is key to the creation of reliable
statistical/mathematical models.

2.2. Experimentation

The experimentation plan is illustrated in Table 2, where each batch is represented
as follows: batch 1 of color factor C1, batch 2 of color sample C2, and so on; flexural
batches represented by (Fn), and tensile by (Tn). The experiments were carried out under
the guidelines of ASTM’s standards (American Society for Testing and Materials). The
experiment included 10 replications on each test/code, the ASTM’s standard recommended
at least six specimens to validate the experiment and it was decided to include 10 to
minimize the variability and the chances of ending up missing important information. It
was expected that PLA would show rapid visual degradation within the first 250 h, and
then slow down the degradation rate. This leads to determine intervals of 500 h (500,
1000, 1500, and 2000). The selected times are based on the methodology and previous
experiments in the areas of degradation [3].

Poly lactic acid samples were tested for accelerated degradation using the weatherom-
eter Ci5000 Xenon-Arc Weather-Ometer, ATLAS manufacturer, Mount Prospect, IL, USA.
This test lasted for 2000 h (around 3 months). The set up parameters for the accelerated
weathering conditions were set according to the ASTM D2565-1. Cycle #1 was selected and
it is described as follows: 102 min of light exposure only followed by 18 min of light with
a water spray (102/18) cycle. Temperature of exposure was 63 ± 2 °C; the irradiance was
0.35 ± 0.02 W/m2 at 340 nm. Prior to set the samples in the weatherometer, samples were
coded and randomized in order to get more reliable statistical results.
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Table 2. Experimental sample distribution.

Time Color Flexural Tensile

0/control C0 F0 T0
250 C1 F1 T1
500 C2 F2 T2
1000 C3 F3 T3
1500 C4 F4 T4
2000 C5 F5 T5

2000 RH (90%) C6 F6 T6

2.3. Material Testing

Tensile testing was conducted at different points of time (intervals are shown in
Table 1, the machine used was a 5882 Floor Model Testing Systems,100,000 N (22,500 lb.),
INSTRON manufacturer, Norwood, MA, USA.This equipment performs tensile and com-
pression testing. Force data were collected as load (given in Newton) applied through time
until reaching a fracture point. Equation (1) shows the Ultimate Tensile Strength (UTS)
calculation for sample-7 of 250 h using the raw data, for this calculation, the maximum
load is used (842.5 N).

UTS =
Load(N)

Cross − sectional area(mm2)
=

842.5256 N
(3.18 mm × 3.20 mm)

= 82.79 Mpa. (1)

Flexural testing was performed based on a three-point test. The three-point test
involves placing the bar specimen sample between two points and then applying force in
the middle to induce the material to bend or break. The machine used was the INSTRON
5882 Floor Model Testing Systems. Maximum stress and strain were calculated on the
incremental load applied and it is the one used in the experimentation of this research.

For color testing, the L*a*b* model for colorimetry measure developed by the Commis-
sion International d’Eclairage (CIE) was used. CIE established color testing as a standard
in a technical report publication 15.2 (1986). Here, color represents the lightness and it
is described with two parameters-axis where the L* axis that runs from 100 to zero, 100
represents perfect reflecting diffuser and zero represents the black color. The a* and b* axes
are the two chromatic components (ranging from −120 to 120), the a* component goes
from green (−120) to red (120). The b* component goes from blue to yellow; blue (−120)
and yellow (120). Figure 1, illustrate the visual changes of the samples through time, from
left to right samples from times 0, 500, and 2000 h. are shown.

Figure 1. Intersection point in time and 10% of degradation.

2.4. Statistical Analysis

As stated in the Hypothesis 1, one of the things presented in this paper is a study to
determine if there is a significant difference in the multivariate analysis of variance. Here,
four different tests are presented: Wilks, Pillai, Hotelling–Lawley, and Roy test. All the
test results had a p-value < 0.005, therefore, the null hypothesis Ho was rejected. This
indicated that the multivariate analysis of variance was statistically significant. Then,
individual statistical testing for the three responses were conducted in order to identify
what variables were significant in the statistical difference of the multivariate analysis. The
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results indicated that the three of them were significant. The tensile test, the flexural test,
and the color test had p-values of 1.41 × 10−6, 5.18 × 109, and 1.52 × 10−6 respectively.

A follow-up analysis was conducted to determine if the data followed a multivariate
normal distribution. For this assessment a Skewness and Kurtosis test was conducted, the
null hypothesis for this test was that “the sample data are not significantly different than
a normal population.” In this case, probabilities > 0.05 indicated that data were coming
from a normally distributed population. Probabilities < 0.05 indicated that data were
not normally distributed. The results indicated that the effect of the independent time
variable or treatment effects was highly significant. At this point, the multivariate test was
significant among all three variables.

To test the UV light effect an extra analysis of variance was conducted only between
the batch labeled F5 (UV exposure 2000 h) vs. F6 (no UV exposure after 2000 h), see
Table 2 experimental plan. The results are presented in table 7.24. With a p-value of
0.00000225, the null hypothesis was rejected. Alternatively, a test for nonparametric
analysis of variance was presented and the conclusion regarding the null hypothesis stayed
the same, rejecting the null hypothesis with a p-value of 0.00016. It can be concluded
that there was a statistically significant effect of the UV light exposure in Poly lactic acid
degradation rate degradation rate PLA after 2000 h. of accelerated weathering exposure.

3. Results

The result of the accelerated weathering experimentation allowed for a series of degra-
dation models to be created using two different approaches, the Gaussian and Accelerated
destructive degradation test (ADDT). The models are based on each response variable
and are based on mathematical approaches as indicated by [24]; mechanical approaches
presented by Kruse et al. [7]; stochastics approached stated by Padgett et al. [8], and
chemical approached like the one presented by Kostoglou et al. [11]. Gaussian process
methodology was used for every response using R software. Gaussian approach uses an
algorithm to optimize and find the best fit for data as studied by Cheng et al. [25]. The
Gaussian approach states that let Y(t) and L(t) for t ≥ 0 denote the values for the variable
that is analyzed, therefore the model would be expressed in the following Equations (2)
and (3). When θ is the random variable representing the unit-to-unit variation and assumed
to follow N(η, σ2η); and β(t) states the Brownian motion ( also known as Wiener process),
σβ is representing the diffusion coefficient of the within the unit variability.

M0 : Y(t) = L(t) + σε, (2)

L(t) = η(t) + σβ B(t), (3)

In addition, Cheng et al. [25] proposed six different models to characterize the degra-
dation path of any materials/devices, with a combination of different setup parameters
the six models are presented in Table 3 (Y is indicating if the parameter is included in the
model). This approach can be solved by using the package iDemo within R software.

Table 3. Degradation models iDemo.

Model Variation Source
η ση σβ σε

1 µ0 Y Y Y Y
2 µ1 Y Y Y
3 µ2 Y Y
4 µ3 Y Y Y
5 µ4 Y Y
6 µ5 Y Y Y

Accelerated destructive degradation test (ADDT) was the second approach used in
this paper and it was proposed by Meeker et al, [12]. In an ADDT type of test, the measure-
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ments of the response are destructive, where the test specimens are destroyed in order to
estimate yield points. A well-known characteristic of accelerated testing is the necessity of
extrapolating data, and the experiment is usually carried out under accelerated conditions;
however, the model is to be fitted to provide information for real or natural conditions. The
destructive degradation model can be expressed as follows (in Equations (4) and (5)):

g(Y) ∼ F(µ, σ) (4)

µ = h( f (Time), X) (5)

where: g(Y) is the transformed Y variable; F is the selected probability distribution; µ is the
location parameter, defined by h; h is a function that relates the transformed time variable
and the explanatory variable X; σ is the scale parameter of the distribution; f (Time) is the
transformed time variable; X is an optional explanatory variable.

The Jmp™ software (by SAS Company) includes a procedure to solve problems for
accelerated degradation testing using Escobar and Meeker’s approach. It allows the user
to analyze data for any number of variables and to select the best degradation model
for the response variable. One particular characteristic is that different combinations of
statistical transformations such as linear, logarithmic, and square can be selected for the
response. Another characteristic is that a series of probability distribution analysis are
considered. The type of distribution used in reliability analysis depends on the behavior
of the failure rates. In this paper, a wider range of distributions was analyzed for the
failure rates of the material. The software Jmp™ created a linear path of the degradation
for each combination transformation/probability distribution; this tool is essential if data
are uncertain to follow a normal distribution; in that case, Weibull, log-normal, quadratic,
or another distribution could be a better fit. The analysis started with the selection of
the transformation and probability distributions for the response. For this analysis, all
combinations of the transformation/probability distribution were computed one by one
and a summary for the tensile response is presented in Table 4.

Table 4. Tensile model list.

Transformation Distribution Path Definition Log
Likelihood AIC’c BIC

Linear Normal µ = b0 + b1 * time 224.25 454.93 460.79
Log Normal µ = b0 + b1 * time 263.95 534.32 540.17

Quadratic Normal µ = b0 + b1 * time 199.54 405.51 411.37
Linear Logistic µ = b0 + b1 * time 207.13 420.68 426.54

Log Logistic µ = b0 + b1 * time 230.14 466.70 472.56
Quadratic Logistic µ = b0 + b1 * time 174.98 356.38 362.23

Linear Lognormal µ = b0 + b1 * time 263.95 534.32 540.17
Log Lognormal µ = b0 + b1 * time 279.12 564.66 570.52

Quadratic Lognormal µ = b0 + b1 * time 263.95 534.32 540.17
Linear Log logistic µ = b0 + b1 * time 230.14 466.70 472.56

Log Loglogistic µ = b0 + b1 * time 239.71 485.85 491.70
Sqrt Loglogistic µ = b0 + b1 * time 230.14 466.70 472.56

Linear Weibull µ = b0 + b1 * time 215.66 437.74 443.60
Log Weibull µ = b0 + b1 * time 227.38 461.19 467.05
Sqrt Weibull µ = b0 + b1 * time 230.04 466.50 472.35

Degradation Models

Table 3, as shown in Section 3, presents different degradation models, the transforma-
tion applied to the response, the probability distribution that the response was adjusted
to, and the statistical model fit indicators Akaike’s Information Criterion (AIC), Bayesian
Information Criterion (BIC), and likelihood. The model with the smallest AIC and BIC was
selected as the best fit for the tensile response. The model that best fit the data was the
quadratic transformation of the response and a logistic probability distribution, marked in
bold in Table 4. The Akaike value was 356.3 which was the smallest amongst the list of the
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models. This model was selected and further analysis is presented. The model parameters
were calculated for the tensile response and presented in Equation (6).

Sqrt(Tensile) = 9.303 − 0.000375(t) + 0.2484 (6)

The degradation path estimation for tensile response is shown in Figure 2. The 10%
value of the deg-radation rate to reach the pseudo failure time was established to test the
model. Figure 2 presents the intersection point in time-degradation; when the material
would reach this level of degradation with a mean (µ) degradation point at 1406.76 h.

Figure 2. Intersection point in time and 10% of degradation.

Figure 3 illustrates what degradation level would be reached at a certain point in time.
The graph shows that at 1406 h the tensile strength would be 77.007, which was 10% degra-
dation. Additionally, a predicted degradation rate was calculated for a 2000 h point and
the value of the tensile strength at this point was 73.14, which was 15% degradation rate.

Figure 3. Degradation prediction for tensile (left) for 10% and (right) for 2000 h.

The models were analyzed using the Gaussian process and accelerated destructive
degradation test to compare both approaches and to select the model that best fits the
degradation path of this material. Using AIC, BIC, and likelihood as statistical indicators
with an AIC value of 356 (ADDT) compared to a value of 478.076 (Gaussian), it can be
concluded that the linear model obtained using accelerated degradation test methodology
with jmp™ software was a model with a better fit for the tensile response. The flexural
strength results were analyzed with an accelerated destructive degradation test approach
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using jmp™ software. All combinations of transformation/probability distributions were
computed and a summary is presented in Table 5.

Table 5. Flexural model list.

Transformation Distribution Path Definition Log
Likelihood AIC’c BIC

Linear Normal µ = b0 + b1 * time 294.31 595.05 600.90
Log Normal µ = b0 + b1 * time 297.30 601.03 606.89
Sqrt Normal µ = b0 + b1 * time 249.72 505.86 511.72

The selected model was the one with a quadratic transformation and normal distri-
bution with the lowest AIC, BIC, and log-likelihood values, marked in bold in Table 5. It
can be concluded that with an AIC value of 505.8 (ADDT) compared to a 583.9 (Gaussian)
the linear model was a better fit for the flexural response. The linear model that repre-
sented the degradation´s path for the flexural response would be represented as follows in
Equation (7).

Sqrt(Flexural) = 11.317 − 0.003453(t) + 2.056 (7)

Figure 4 presents the estimated degradation path for the selected model. The path
was based on a previously established 10% of the flexural strength degradation rate, this
10% degradation rate was to emulate a pseudo fail time. The result is presented and the
estimated mean (µ) degradation point was at 381.58 h, meaning that the material would be
degraded in 10% of its flexural strength after roughly 381 h of exposure.

Figure 4. Intersection point in time-degradation: flexural.

Figure 5 presents the degradation level that would be reached at a certain point in
time, in Figure 5 2000 h was the time selected for the calculation. The graph presents that
at 381.58 h the flexural strength would be 100.0002 (10% degradation level). For the 2000 h’
point, the value of the flexural strength was 19.46 (82% degradation rate approximately).

Figure 5. Degradation predictions: flexural.
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Color change results were analyzed with accelerated destructive degradation test
approach using jmp™ software and the Gaussian approach using R software, and the
comparison using AICc was of 512.91 (Gaussian) and 320.61 (ADDT), similar to tensile
and flexural, ADDT was a better fit for the color response. All combinations of the trans-
formation/probability distribution were computed. The model selected has a quadratic
transformation and a normal distribution. With the lowest AIC, BIC, and log-likelihood
values. The parameters for the model are computed and presented in Equation (8), this
model represents the color´s variable degradation rate of PLA.

Sqrt(Color) = 8.6693 − 0.000411(t) + 0.39997 (8)

Figures 6 and 7 present the degradation path for the model selected for the color
variable, which was based on the 10% target established for color degradation rate to reach
the pseudo failure time. Figure 6 (left) presents the intersection point in time-degradation
when the material reaches this 10% level of degradation with a mean (µ) degradation
point at 404.094 h. An alternative degradation pseudo failure time for the color variable is
presented with an established 20% degradation rate in Figure 6 (right). Results show that
the material would be 20% degraded after 1696.09 h.

Figure 6. Intersection point in time: (left) 10% (right) 20% degradation.

Figure 7 presents what degradation level will be reached at a certain point in time. The
shows that at 402 h the color would be 72.32 (10% degradation). Additionally, a predicted
degradation rate was calculated for a 2000 h point and the value of the tensile strength at
this point was 61.58 (24% degradation rate).

Figure 7. Degradation predictions: color.

4. Discussion

Hypothesis 1 is the overall hypothesis, and perhaps the most important one in this
research. The goal is to identify if the selected response variables were significantly affected
by the accelerated degradation variables designated; UV light, humidity, and temperature
exposure have a statistical difference in the degradation rate of PLA. The test of this
hypothesis was done using the multivariate nonparametric test. Four multivariate tests
are included: ANOVA type test, McKeon approximation for the Hotelling Test, Muller
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approximation for the Bartlett–Nanda–Pillai Test, and Wilks Lambda test; all four tests
provided a p-value of 0.001. With the small p-value, the null hypothesis is rejected. It
is concluded that, “there is a statistically significant effect of UV light, humidity, and
temperature in the degradation rate PLA after 2000 h. of accelerated weather exposure”.
The results indicated that the experimentation was providing useful information to built
the models presented in the results section of this work.

This research was focused on the degradation analysis, however, there is a bigger
role of manufacturing and engineering involved; the methodology used in this research
includes two different manufacturing process: injection and extrusion molding for the
fabrication of sample materials. Several responses were selected to evaluate the changes
in the material that was exposed to accelerated weathering conditions. Mechanical and
physical tests were used to quantify the changes in the material. The changes in the material
were analyzed and used to estimate the degradation path of the biopolymer.

The models proposed are intended to be used as a tool for characterization of material
in regards to the durability as an engineering material. It is essential to understand material
behavior, especially in term of reliability and durability.The results indicate that PLA
loses flexural strength faster than tensile strength, this can be attributed to the properties
of the material. Based on the literature this biopolymer tends to be brittle. The results
of this research quantifies and models this specific characteristic. In terms of physical
characteristics, the material loses its lightness sooner that it loses weight, this changes can
be attributed to the UV light impact on the material.

Compared with previous studies presented in the introduction, this research include
several weathering condition within the experiment in order for the results to be extrap-
olated to real life conditions. One important output of this research, in comparison with
previous models cited in this paper, is that one model was created for each response, tensile,
flexural, and changes. Moreover, in comparison with the models presented in Table 1,
this research explores in the experimentation the effect of multiple factors accelerating the
degradation of the material.

The overall goal of this paper was to present a degradation model that would be able
to predict the lifetime of Polylactic acid (PLA); the objectives for this research were met.
This paper intended to provide a better understanding of biopolymer degradation. Several
responses were selected to evaluate the changes in the material exposed to accelerated
weathering conditions. Accelerated degradation destructive testing was successfully ap-
plied to the experimentation of the material, and reliable results were obtained after 2000 h
of accelerated degradation exposure.

Mechanical and physical tests were used to quantify the changes in the material. The
changes in the material were analyzed and used to estimate the degradation path of the
biopolymer. By using accelerated destructive testing and Gaussian approaches, a model for
each variable was proposed. After analyzing both approaches, the accelerated destructive
degradation test approach was a better option than the Gaussian process to model the
degradation path of the material in all of the cases studied in this paper.

The research results were successful, multiple degradation models were created. The
models can be used to accuratelly predict the lifetime of PLA. The three hypotheses, (1) UV
light, humidity, and temperature exposure have a statistical difference in the degradation
(2) UV light exposure has a significant effect on PLA degradation rate after an accelerated
weather exposure of 2000 h; and (3) acceleration time has effects in the PLA samples, after
250, 500, 1000, and 2000 h of accelerated condition exposure, were tested and each one of
them rejected the null hypothesis.
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