Exploring Dielectric Constant and Dissipation Factor of LTCC Using Machine Learning
Abstract
:1. Introduction
2. Methods
2.1. Data Set
2.2. Machine Learning Modeling
2.3. Model Assessment
3. Results and Discussion
3.1. Model Development
3.2. Model Assessment
3.3. Dk and Df Exploration
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marley, P.M.; Tormey, E.S.; Yang, Y.; Gleason, C. Low-K LTCC Dielectrics: Novel High-Q Materials for 5G Applications. In Proceedings of the 2019 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), Bochum, Germany, 16–18 July 2019; pp. 88–90. [Google Scholar]
- Sebastian, M.T. Chapter Twelve—Low Temperature Cofired Ceramics. In Dielectric Materials for Wireless Communication; Sebastian, M.T., Ed.; Elsevier: Amsterdam, The Netherlands, 2008; pp. 445–512. [Google Scholar] [CrossRef]
- Sebastian, M.T.; Wang, H.; Jantunen, H. Low temperature co-fired ceramics with ultra-low sintering temperature: A review. Curr. Opin. Solid State Mater. Sci. 2016, 20, 151–170. [Google Scholar] [CrossRef]
- Mahon, S. The 5G Effect on RF Filter Technologies. IEEE Trans. Semicond. Manuf. 2017, 30, 494–499. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, W.; Chen, X.; Mao, H. Synthesis and characterization of low CTE value La2O3-B2O3-CaO-P2O5 glass/cordierite composites for LTCC application. Ceram. Int. 2019, 45, 7203–7209. [Google Scholar] [CrossRef]
- Ohsato, H.; Varghese, J.; Vahera, T.; Kim, J.S.; Sebastian, M.T.; Jantunen, H.; Iwata, M. Micro/Millimeter-Wave Dielectric Indialite/Cordierite Glass-Ceramics Applied as LTCC and Direct Casting Substrates: Current Status and Prospects. J. Korean Ceram. Soc 2019, 56, 526–533. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J. Towards rational design of low-temperature co-fired ceramic (LTCC) materials. J. Adv. Ceram. 2012, 1, 89–99. [Google Scholar] [CrossRef] [Green Version]
- Yu, M.; Zhang, J.; Li, X.; Liang, H.; Zhong, H.; Li, Y.; Duan, Y.; Jiang, D.L.; Liu, X.; Huang, Z. Optimization of the tape casting process for development of high performance alumina ceramics. Ceram. Int. 2015, 41, 14845–14853. [Google Scholar] [CrossRef]
- Ren, L.; Zhou, H.; Li, X.; Xie, W.; Luo, X. Synthesis and characteristics of borosilicate-based glass–ceramics with different SiO2 and Na2O contents. J. Alloys Compd. 2015, 646, 780–786. [Google Scholar] [CrossRef]
- Shang, Y.; Zhong, C.; Xiong, H.; Li, X.; Li, H.; Jian, X. Ultralow-permittivity glass/Al2O3 composite for LTCC applications. Ceram. Int. 2019, 45, 13711–13718. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, W.; Chen, X.; Mao, H.; Liu, Z.; Bai, S. Low temperature sintering and characterization of La2O3-B2O3-CaO glass-ceramic/LaBO3 composites for LTCC application. J. Eur. Ceram. Soc. 2020, 40, 2382–2389. [Google Scholar] [CrossRef]
- Sebastian, M.T.; Jantunen, H. Low loss dielectric materials for LTCC applications: A review. Int. Mater. Rev. 2008, 53, 57–90. [Google Scholar] [CrossRef]
- Peng, R.; Su, H.; An, D.; Lu, Y.; Tao, Z.; Chen, D.; Shi, L.; Li, Y. The sintering and dielectric properties modification of Li2MgSiO4 ceramic with Ni2+-ion doping based on calculation and experiment. J. Mater. Res. Technol. 2020, 9, 1344–1356. [Google Scholar] [CrossRef]
- Peng, R.; Su, H.; Li, Y.; Lu, Y.; Yu, C.; Shi, L.; Chen, D.; Liao, B. Microstructure and microwave dielectric properties of Ni doped zinc borate ceramics for LTCC applications. J. Alloys Compd. 2021, 868, 159006. [Google Scholar] [CrossRef]
- Liu, Y.-c.; Afflerbach, B.; Jacobs, R.; Lin, S.-k.; Morgan, D. Exploring effective charge in electromigration using machine learning. MRS Commun. 2019, 9, 567–575. [Google Scholar] [CrossRef] [Green Version]
- Qin, J.; Liu, Z.; Ma, M.; Li, Y. Machine learning approaches for permittivity prediction and rational design of microwave dielectric ceramics. J. Mater. 2021. [Google Scholar] [CrossRef]
- Morita, K.; Davies, D.W.; Butler, K.T.; Walsh, A. Modeling the dielectric constants of crystals using machine learning. J. Chem. Phys. 2020, 153, 024503. [Google Scholar] [CrossRef] [PubMed]
- Morgan, D.; Jacobs, R. Opportunities and challenges for machine learning in materials science. Annu. Rev. Mater. Res. 2020, 50, 71–103. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. 2011, 12, 2825–2830. [Google Scholar]
- Jacobs, R.; Mayeshiba, T.; Afflerbach, B.; Miles, L.; Williams, M.; Turner, M.; Finkel, R.; Morgan, D. The Materials Simulation Toolkit for Machine learning (MAST-ML): An automated open source toolkit to accelerate data-driven materials research. Comput. Mater. Sci. 2020, 176, 109544. [Google Scholar] [CrossRef] [Green Version]
- Waskom, M.L. Seaborn: Statistical data visualization. J. Open Source Softw. 2021, 6, 3021. [Google Scholar] [CrossRef]
Feature | Maximum | Minimum | Average | Standard Deviation | Unit | Category |
---|---|---|---|---|---|---|
Dielectric constant (Dk) at 1 GHz | 7.8 | 2.71 | 5.33 | 1 | - | Target feature |
Dissipation factor (Df) at 1 GHz | 16.7 × 10−3 | 0.07 × 10−3 | 2.7 × 10−3 | 3.4 × 10−3 | - | Target feature |
Al2O3 (Alumina) | 50 | 0 | 8.5 | 16.1 | wt.% | Ceramic filler |
Mg2Al4Si5O18 (Cordierite) | 72.9 | 0 | 9.9 | 19.8 | wt.% | Glass-ceramic |
Borosilicate glass + filler (BGF) | 100 | 0 | 3.7 | 18.4 | wt.% | Glass phase |
MgO-Al2O3-SiO2 glass (MASG) | 100 | 0 | 7.7 | 26.7 | wt.% | Glass phase |
CaO-B2O3-SiO2 glass (high SiO2, CBSG-S) | 100 | 0 | 25.8 | 31.6 | wt.% | Glass phase |
Borosilicate glass (BG) | 55 | 0 | 6.7 | 14.4 | wt.% | Glass phase |
CaO-B2O3-SiO2 glass (high B2O3, CBSG-B) | 100 | 0 | 26.5 | 39.6 | wt.% | Glass phase |
MgO-Al2O3-SiO2-based ceramic (MAS) | 100 | 0 | 5.6 | 15.6 | mol% | Glass phase |
First stage calcination temperature (T1) | 1650 | 27 | 373.7 | 386.0 | °C | Processing parameter |
Second stage calcination temperature (T2) | 750 | 27 | 599.3 | 263.8 | °C | Processing parameter |
Third stage calcination temperature (T3) | 1200 | 27 | 852.0 | 85.6 | °C | Processing parameter |
First stage calcination time (time_1) | 3 | 0 | 2.7 | 0.7 | h | Processing parameter |
Second stage calcination time (time_2) | 2 | 0 | 1.6 | 0.8 | h | Processing parameter |
Third stage calcination time (time_3) | 2 | 0 | 1.3 | 0.8 | h | Processing parameter |
Feature | Maximum | Minimum | Average | Standard Deviation | Unit | Category |
---|---|---|---|---|---|---|
Dielectric constant (Dk) at 1 GHz | 7.8 | 2.79 | 5.3 | 0.97 | - | Target feature |
Dissipation factor (Df) at 1 GHz | 17.6 × 10−3 | 0.34 × 10−3 | 2.74 × 10−3 | 3.57 × 10−3 | - | Target feature |
Al2O3 (Alumina) | 50 | 0 | 20.16 | 19.6 | wt.% | Ceramic filler |
Mg2Al4Si5O18 (Cordierite) | 70 | 0 | 14.29 | 21.27 | wt.% | Glass-ceramic |
MgO-Al2O3-SiO2 glass (MASG) | 100 | 0 | 7.94 | 27.03 | wt.% | Glass phase |
CaO-B2O3-SiO2 glass (high SiO2, CBSG-S) | 100 | 0 | 37.6 | 30.61 | wt.% | Glass phase |
Borosilicate glass (BG) | 55 | 0 | 7.72 | 14.88 | wt.% | Glass phase |
CaO-B2O3-SiO2 glass (high B2O3, CBSG-B) | 75 | 0 | 7.54 | 19.6 | wt.% | Glass phase |
MgO-Al2O3-SiO2-based ceramic (MAS) | 100 | 2 | 8.49 | 20.54 | mol% | Glass phase |
Second stage calcination temperature (T2) | 760 | 650 | 711.1 | 42.5 | °C | Processing parameter |
Third stage calcination temperature (T3) | 1200 | 27 | 848.8 | 116.0 | °C | Processing parameter |
Second stage calcination time (time_2) | 2 | 0.5 | 1.93 | 0.32 | h | Processing parameter |
Third stage calcination time (time_3) | 2 | 0 | 1.60 | 0.71 | h | Processing parameter |
Second stage calcination reaction product (T2_R) | 2 | 0.5 | 1.93 | 0.32 | h/K | Processing parameter |
Third stage calcination reaction product (T3_R) | 2 | 0 | 1.6 | 0.71 | h/K | Processing parameter |
Second stage calcination temperature and time product (T2_time) | 2400 | 0 | 1382.54 | 613.73 | °C × h | Processing parameter |
Third stage calcination temperature and time product (T3_time) | 1500 | 375 | 1368.65 | 237.04 | °C × h | Processing parameter |
Model | α | γ |
---|---|---|
Dk model | 0.0012 | 0.3530 |
Df model | 0.0420 | 3.2551 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.-c.; Liu, T.-Y.; Huang, T.-H.; Chiu, K.-C.; Lin, S.-k. Exploring Dielectric Constant and Dissipation Factor of LTCC Using Machine Learning. Materials 2021, 14, 5784. https://doi.org/10.3390/ma14195784
Liu Y-c, Liu T-Y, Huang T-H, Chiu K-C, Lin S-k. Exploring Dielectric Constant and Dissipation Factor of LTCC Using Machine Learning. Materials. 2021; 14(19):5784. https://doi.org/10.3390/ma14195784
Chicago/Turabian StyleLiu, Yu-chen, Tzu-Yu Liu, Tien-Heng Huang, Kuo-Chuang Chiu, and Shih-kang Lin. 2021. "Exploring Dielectric Constant and Dissipation Factor of LTCC Using Machine Learning" Materials 14, no. 19: 5784. https://doi.org/10.3390/ma14195784
APA StyleLiu, Y. -c., Liu, T. -Y., Huang, T. -H., Chiu, K. -C., & Lin, S. -k. (2021). Exploring Dielectric Constant and Dissipation Factor of LTCC Using Machine Learning. Materials, 14(19), 5784. https://doi.org/10.3390/ma14195784