Influence of Temperature on Characteristics of Particulate Matter and Ecological Risk Assessment of Heavy Metals during Sewage Sludge Pyrolysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Pretreatment of the Sewage Sludge Samples
2.2. Sludge Pyrolysis Devices and Collection of PM
2.3. Testing of PM Characteristics
2.4. Analysis of Heavy Metals
2.4.1. Concentrations and Chemical Forms of Heavy Metals
2.4.2. Ecological Risk Index (RI) of Heavy Metals
2.5. Statistical Analyses
3. Results and Discussion
3.1. Analysis of Pyrolysis and PM Generation of Sewage Sludge
3.2. Scanning Electron Microscopy (SEM) Analysis
3.3. Heavy Metal Analysis
3.3.1. Content of Heavy Metals in PM
3.3.2. Chemical Morphology Analysis of Heavy Metals in PM
3.3.3. Ecological Risk Assessment of Heavy Metals
4. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xia, Y.; Tang, Y.; Shih, K.; Li, B. Enhanced phosphorus availability and heavy metal removal by chlorination during sewage sludge pyrolysis. J. Hazard. Mater. 2020, 382, 121110. [Google Scholar] [CrossRef]
- Fan, H.; Lv, M.; Wang, X.; Xiao, J.; Mi, X.; Jia, L. Effect of Cr on the Mineral Structure and Composition of Cement Clinker and Its Solidification Behavior. Materials 2020, 13, 1529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomsen, T.P.; Sárossy, Z.; Ahrenfeldt, J.; Henriksen, U.B.; Frandsen, F.J.; Müller-Stöver, D. Changes imposed by pyrolysis, thermal gasification and incineration on composition and phosphorus fertilizer quality of municipal sewage sludge. J. Environ. Manag. 2017, 198, 308–318. [Google Scholar] [CrossRef] [Green Version]
- Xu, Q.; Tang, S.; Wang, J.; Ko, J.H. Pyrolysis kinetics of sewage sludge and its biochar characteristics. Process. Saf. Environ. Prot. 2018, 115, 49–56. [Google Scholar] [CrossRef]
- Jin, J.; Li, Y.; Zhang, J.; Wu, S.; Cao, Y.; Liang, P.; Zhang, J.; Wong, M.H.; Wang, M.; Shan, S.; et al. Influence of pyrolysis temperature on properties and environmental safety of heavy metals in biochars derived from municipal sewage sludge. J. Hazard. Mater. 2016, 320, 417–426. [Google Scholar] [CrossRef]
- Jin, H.; Renato, O.; Arazo, J.G. Leaching of heavy metals from fast pyrolysis residues produced from different particle sizes of sewage sludge. J. Anal. Appl. Pyrolysis 2014, 109, 168–175. [Google Scholar] [CrossRef]
- Fonts, I.; Gea, G.; Azuara, M.; Ábrego, J.; Arauzo, J. Sewage sludge pyrolysis for liquid production: A review. Renew. Sustain. Energy Rev. 2012, 16, 2781–2805. [Google Scholar] [CrossRef]
- Méndez, A.; Paz-Ferreiro, J.; Araujo, F.; Gascó, G. Biochar from pyrolysis of deinking paper sludge and its use in the treatment of a nickel polluted soil. J. Anal. Appl. Pyrolysis 2014, 107, 46–52. [Google Scholar] [CrossRef]
- Wang, X.; Li, C.; Li, Z.; Yu, G.; Wang, Y. Effect of pyrolysis temperature on characteristics, chemical speciation and risk evaluation of heavy metals in biochar derived from textile dyeing sludge. Ecotoxicol. Environ. Saf. 2019, 168, 45–52. [Google Scholar] [CrossRef]
- Devi, P.; Saroha, A.K. Risk analysis of pyrolyzed biochar made from paper mill effluent treatment plant sludge for bioavailability and eco-toxicity of heavy metals. Bioresour. Technol. 2014, 162, 308–315. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Wang, Z.; Deng, X.; Zhao, J.; Luo, Y.; Novak, J.; Herbert, S.; Xing, B. Characteristics and nutrient values of biochars produced from giant reed at different temperatures. Bioresour. Technol. 2013, 130, 463–471. [Google Scholar] [CrossRef]
- Yuan, X.; Leng, L.; Huang, H.-J.; Chen, X.; Wang, H.; Xiao, Z.; Zhai, Y.; Chen, H.; Zeng, G. Speciation and environmental risk assessment of heavy metal in bio-oil from liquefaction/pyrolysis of sewage sludge. Chemosphere 2015, 120, 645–652. [Google Scholar] [CrossRef]
- Zhai, Y.; Chen, H.; Xu, B.; Xiang, B.; Chen, Z.; Li, C.; Zeng, G. Influence of sewage sludge-based activated carbon and temperature on the liquefaction of sewage sludge: Yield and composition of bio-oil, immobilization and risk assessment of heavy metals. Bioresour. Technol. 2014, 159, 72–79. [Google Scholar] [CrossRef]
- Sánchez, M.; Menéndez, J.; Domínguez, A.; Pis, J.; Martínez, O.; Calvo, L.; Bernad, P. Effect of pyrolysis temperature on the composition of the oils obtained from sewage sludge. Biomass Bioenergy 2009, 33, 933–940. [Google Scholar] [CrossRef]
- Khanmohammadi, Z.; Afyuni, M.; Mosaddeghi, M.R. Effect of pyrolysis temperature on chemical and physical properties of sewage sludge biochar. Waste Manag. Res. 2015, 33, 275–283. [Google Scholar] [CrossRef]
- Liu, T.; Liu, Z.; Zheng, Q.; Lang, Q.; Xia, Y.; Peng, N.; Gai, C. Effect of hydrothermal carbonization on migration and environmental risk of heavy metals in sewage sludge during pyrolysis. Bioresour. Technol. 2018, 247, 282–290. [Google Scholar] [CrossRef] [PubMed]
- Schuhmacher, M.; Nadal, M.; Domingo, J.L. Environmental monitoring of PCDD/Fs and metals in the vicinity of a cement plant after using sewage sludge as a secondary fuel. Chemosphere 2009, 74, 1502–1508. [Google Scholar] [CrossRef]
- Huang, H.-J.; Yuan, X.-Z. The migration and transformation behaviors of heavy metals during the hydrothermal treatment of sewage sludge. Bioresour. Technol. 2016, 200, 991–998. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Xue, X.; Chen, D.; He, P.; Dai, X. Application of biochar from sewage sludge to plant cultivation: Influence of pyrolysis temperature and biochar-to-soil ratio on yield and heavy metal accumulation. Chemosphere 2014, 109, 213–220. [Google Scholar] [CrossRef]
- Collier, S.; Zhou, S.; Kuwayama, T.; Forestieri, S.; Brady, J.; Zhang, M.; Kleeman, M.; Cappa, C.; Bertram, T.; Zhang, Q. Organic PM Emissions from Vehicles: Composition, O/C Ratio, and Dependence on PM Concentration. Aerosol Sci. Technol. 2015, 49, 86–97. [Google Scholar] [CrossRef] [Green Version]
- Han, Y.; Hwang, G.; Kim, D.; Park, S.; Kim, H. Porous Ca-based bead sorbents for simultaneous removal of SO2, fine particulate matters, and heavy metals from pilot plant sewage sludge incineration. J. Hazard. Mater. 2015, 283, 44–52. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, Y.; Liu, L.; Wang, X.; Zhang, Z. Environmental investigation on co-combustion of sewage sludge and coal gangue: SO2, NOx and trace elements emissions. Waste Manag. 2016, 50, 213–221. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, R.; Gomez, M.E.; Yang, L.; Zamora, M.L.; Hu, M.; Lin, Y.; Peng, J.; Guo, S.; Meng, J.; et al. Persistent sulfate formation from London Fog to Chinese haze. Proc. Natl. Acad. Sci. USA 2016, 113, 13630–13635. [Google Scholar] [CrossRef] [Green Version]
- Ko, J.H.; Wang, J.; Xu, Q. Characterization of particulate matter formed during sewage sludge pyrolysis. Fuel 2018, 224, 210–218. [Google Scholar] [CrossRef]
- Ko, J.H.; Wang, J.; Xu, Q. Impact of pyrolysis conditions on polycyclic aromatic hydrocarbons (PAHs) formation in particulate matter (PM) during sewage sludge pyrolysis. Chemosphere 2018, 208, 108–116. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Oleszek, S.; Shiota, K.; Oshita, K.; Takaoka, M. Comparison of sewage sludge mono-incinerators: Mass balance and distribution of heavy metals in step grate and fluidized bed incinerators. Waste Manag. 2020, 105, 575–585. [Google Scholar] [CrossRef] [PubMed]
- Zha, J.; Huang, Y.; Clough, P.T.; Dong, L.; Xu, L.; Liu, L.; Zhu, Z.; Yu, M. Desulfurization using limestone during sludge incineration in a fluidized bed furnace: Increased risk of particulate matter and heavy metal emissions. Fuel 2020, 273, 117614. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, C.; Wang, J.; Liu, L.; Ge, X.; Zhang, Z. Investigation of formation mechanism of particulate matter in a laboratory-scale simulated cement kiln co-processing municipal sewage sludge. J. Clean. Prod. 2019, 234, 822–831. [Google Scholar] [CrossRef]
- Li, B.; Ding, S.; Fan, H.; Ren, Y. Experimental Investigation into the Effect of Pyrolysis on Chemical Forms of Heavy Metals in Sewage Sludge Biochar (SSB), with Brief Ecological Risk Assessment. Materials 2021, 14, 447. [Google Scholar] [CrossRef] [PubMed]
- Method 3050B: Acid Digestion of Sediments, Sludges, and Soils; Revision 2; EPA: Washington, DC, USA, 1996.
- Hakanson, L. An ecological risk index for aquatic pollution control.a sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
Ultimate Analysis (wt%) | Proximate Analysis (wt%) | |||||||
---|---|---|---|---|---|---|---|---|
C | H | N | S | O | M | A | V | FC |
31.77 ± 0.04 | 4.30 ± 0.36 | 2.78 ± 0.06 | 0.61 ± 0.01 | 21.69 ± 0.53 | 3.04 ± 0.05 | 38.85 ± 0.10 | 53.38 ± 0.23 | 4.73 |
Heavy Metal (mg·kg−1) | Ash Component (%) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Cd | Cr | Cu | Ni | Pb | Zn | SiO2 | Al2O3 | Fe2O3 | CaO | MgO | K2O | Na2O |
7.05 ± 0.01 | 124.15 ± 0.86 | 134.70 ± 0.88 | 14.29 ± 0.06 | 121.78 ± 0.23 | 1341.73 ± 6.25 | 47.01 ± 0.16 | 14.29 ± 0.13 | 9.55 ± 0.08 | 6.98 ± 0.10 | 3.06 ± 0.02 | 2.82 ± 0.09 | 1.72 ± 0.01 |
Fraction | Extraction Reagents | Extraction Conditions | |
---|---|---|---|
F1: | acid soluble and exchangeable states | 20 mL, 0.01 M HAc | Oscillating, 22 ± 5 °C, 16 h |
F2: | reducible states | 20 mL, 0.50 M NH2OH·HCl | Oscillating, 22 ± 5 °C, 16 h |
F3: | oxidisable states | First, 5 mL, 30% (v/v) H2O2, Next, 5 mL, 30% (v/v) H2O2, Last, 25 mL, 1.0 M CH2COONH4 | First, water bath, 85 ± 5 °C, 1 h, Next, water bath, 85 ± 5 °C, 1 h, Last, Oscillating, 22 ± 5 °C, 16 h |
F4: | residual states | 5 mL, HNO3, 3 mL, HClO4, 5 mL, HF | Heating of heating plate |
Position | C/wt% | N/wt% | O/wt% | Al/wt% | Si/wt% | S/wt% | Ca/wt% | Cu/wt% | Zn/wt% |
---|---|---|---|---|---|---|---|---|---|
a-1 | 14.53 ± 0.27 | 1.56 ± 0.20 | 8.59 ± 0.37 | 3.87 ± 0.17 | 9.98 ± 0.18 | 1.07 ± 0.03 | 48.96 ± 0.48 | 0.13 ± 0.01 | 0.49 ± 0.02 |
b-2 | 65.76 ± 0.46 | 1.17 ± 0.03 | 18.09 ± 0.18 | 0.68 ± 0.01 | 7.12 ± 0.09 | 0.54 ± 0.02 | 1.85 ± 0.05 | 0.01 ± 0.01 | 0.74 ± 0.02 |
c-3 | 63.26 ± 0.10 | 2.05 ± 0.10 | 17.37 ± 0.05 | 0.87 ± 0.06 | 9.97 ± 0.13 | 1.11 ± 0.03 | ND | 0.01 ± 0.00 | 0.92 ± 0.03 |
d-4 | 68.92 ± 0.09 | 3.32 ± 0.02 | 17.62 ± 0.05 | 0.68 ± 0.01 | 6.18 ± 0.03 | 0.45 ± 0.03 | 0.30 ± 0.02 | 0.02 ± 0.01 | 0.94 ± 0.02 |
e-5 | 40.07 ± 0.16 | 1.22 ± 0.01 | 21.90 ± 0.67 | 2.09 ± 0.11 | 19.48 ± 0.11 | 1.61 ± 0.03 | 3.11 ± 0.04 | 0.02 ± 0.01 | 1.87 ± 0.03 |
f-6 | 32.07 ± 0.19 | 0.64 ± 0.04 | 19.36 ± 0.08 | 2.80 ± 0.12 | 32.50 ± 0.10 | 0.33 ± 0.04 | 4.29 ± 0.10 | 0.03 ± 0.01 | 1.92 ± 0.03 |
Samples | Heavy Metals (mg·kg−1) | |||||
---|---|---|---|---|---|---|
Cd | Cr | Cu | Ni | Pb | Zn | |
PM-300 | 16.28 ± 0.61 | 149.15 ± 0.77 | 110.15 ± 3.82 | ND | 137.38 ± 2.94 | 7447.94 ± 40.56 |
PM-400 | 17.61 ± 0.38 | 166.51 ± 1.20 | 150.49 ± 3.04 | ND | 139.50 ± 2.03 | 8412.14 ± 150.31 |
PM-500 | 19.22 ± 0.46 | 181.88 ± 0.73 | 154.51 ± 4.45 | ND | 156.60 ± 1.55 | 11,011.31 ± 257.27 |
PM-600 | 25.03 ± 1.39 | 204.38 ± 1.43 | 175.18 ± 1.07 | ND | 187.90 ± 10.34 | 15,202.34 ± 165.55 |
PM-700 | 57.65 ± 2.89 | 236.87 ± 1.20 | 190.15 ± 3.31 | ND | 335.50 ± 18.16 | 16,665.07 ± 261.35 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, B.; Fan, H.; Ding, S.; Luan, Y.; Sun, Y. Influence of Temperature on Characteristics of Particulate Matter and Ecological Risk Assessment of Heavy Metals during Sewage Sludge Pyrolysis. Materials 2021, 14, 5838. https://doi.org/10.3390/ma14195838
Li B, Fan H, Ding S, Luan Y, Sun Y. Influence of Temperature on Characteristics of Particulate Matter and Ecological Risk Assessment of Heavy Metals during Sewage Sludge Pyrolysis. Materials. 2021; 14(19):5838. https://doi.org/10.3390/ma14195838
Chicago/Turabian StyleLi, Binbin, Haihong Fan, Songxiong Ding, Yixuan Luan, and Yiming Sun. 2021. "Influence of Temperature on Characteristics of Particulate Matter and Ecological Risk Assessment of Heavy Metals during Sewage Sludge Pyrolysis" Materials 14, no. 19: 5838. https://doi.org/10.3390/ma14195838
APA StyleLi, B., Fan, H., Ding, S., Luan, Y., & Sun, Y. (2021). Influence of Temperature on Characteristics of Particulate Matter and Ecological Risk Assessment of Heavy Metals during Sewage Sludge Pyrolysis. Materials, 14(19), 5838. https://doi.org/10.3390/ma14195838