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Abstract: Vibration suppression, as well as its generation, is a common subject of scientific investi-
gations. More and more often, but still rarely, shape memory alloys (SMAs) are used in vibrating
systems, despite the fact that SMA springs have many advantages. This is due to the difficulty of the
mathematical description and the considerable effortfulness of analysing and synthesising vibrating
systems. The article shows the analysis of vibrating systems in which spring elements made of SMAs
are used. The modelling and analysis method of vibrating systems is shown in the example of a
vibrating system with a dynamic vibration absorber (DVA), which uses springs made of a shape
memory alloy. The formulated mathematical model of a 2-DOF system with a controlled spring,
mounted in DVA suspension, uses the viscoelastic model of the SMA spring. For the object, a control
system was synthesised. Finally, model tests with and without a controller were carried out. The
characteristics of the vibrations’ transmissibility functions for both systems were determined. It was
shown that the developed DVA can tune to frequency excitation changes of up to ±10%.

Keywords: modelling; vibration; shape memory alloys

1. Introduction

Due to its advantages, SMAs are materials that are increasingly used in many areas of
our life. They are widely used in engineering, as various types of actuators, connecting ele-
ments, clamps and springs, and in medicine to create, e.g., stents, occluders, artificial heart
valves, dental burs and many others. There are many applications using all effects that oc-
cur in SMAs (one-way, two-way shape memory or pseudoelasticity) in medicine, aerospace
and general engineering. In this paper, we focus on SMA applications in vibrating systems
and problems with their modelling. As these are materials with complex temperature- and
stress-induced phase transformations depending on many factors, their usage is preceded
by more or less labourious calculations using various types of mathematical models. De-
pending on the phenomenon we want to analyse, macroscopic, mesoscopic or microscopic
models are used. Khandelwal and Buravalla in [1] made a valued review of various types
of models developed, among others, by Birman [2], Bernardini and Pence in [3] and Paiva
and Savi [4], Smith [5] and Lagoudas [6], Achenbach [7], Müller [8], Seelecke [9–11] and
many others. They mainly focused on continuum models to describe phenomena that
occur in SMAs. The second group of models describing SMAs is input-output models
describing SMAs as a black box. These models usually describe the hysteresis phenomenon
that occurs in SMAs. Such models are useful when the macroscopic effects of phenomena
occurring in SMAs are the thing we are interested in the most. There are two main models
of this type: Preisach [12–14] and Duhem–Madelung models [5]. These models describe the
hysteresis phenomenon and are applicative in the description of one-dimensional SMA ob-
jects with lumped parameters. Both of them are usually used to obtain the time responses
of the SMA object. However, if we want to get the object’s response in the frequency
domain, they are very labourious because each point of the chart should be determined
separately. It is not easy to use these input-output models in frequency analyses, similar to
the phenomenological models too. Thus, such analyses, due to their labour consumption,
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are rarely carried out; however, they are the fundamental tool in the design of vibrating
systems such as vibration reduction systems or generators.

Vibration Systems with SMA Modelling

The need of a SMA description in vibrating systems concerns many authors. The
problem with the description of the vibrating system concerns authors in [15]. They
describe the 1-DOF system with a SMA spring modelled by the constitutive model. They
obtain time responses of the object. Moreover, Seelecke in [9] considers the 1-DOF with
the constitutive model and obtained time courses as well as very valuable phase diagrams.
The very interesting problem of energy dissipation in SMAs is described in work by [11].
Dissipative properties of SMAs can be applied in reduction systems. In this paper, the
authors analysed the problem using a constitutive model as well. In all these works, the
authors did not demonstrate frequency characteristics because they are difficult to obtain
using constitutive models as mentioned above.

In the case of vibration reduction systems, their primary purpose is to minimise
acceleration or displacement amplitudes [16–20]. Sometimes the goal is a reduction in
monoharmonic vibrations. They can be caused by external excitation or result from object
properties, structure, etc., such as natural frequency. Special active vibration reduction
systems can mitigate such excitations. Sibielak et al. in [21–23] proposed one of the most
interesting solutions. The authors developed a controller to reduce selected monoharmonic
excitations to a requested level. Another well-known method is using DVA for the vibration
mitigation of monoharmonic excitation. DVAs are designed for a single frequency of
disturbance. The effectiveness of vibration reduction is most significant when damping
in the absorber’s system is zero. In such a case, the vibration reduction bandwidth is the
narrowest. When the frequency of disturbance changes, additional damping broadens the
frequency bandwidth of the absorber’s operation instead of its effectiveness. Therefore,
controlled absorbers are an alternative method to compensate for the influence of the
changes in the frequency of disturbance vibrations. Such absorbers are adjusted to the
actual disturbance frequency by modifying parameters such as the suspension spring
stiffness, the damping coefficient or mass. Such a controlled DVA is named the adaptive
vibration absorber (AVA).

Springs with controllable stiffness are constructed, e.g., from materials with a change-
able Young’s modulus; often, this is SMA. The change in the stiffness of a SMA element is
related to the modification of Young’s modulus caused by external factors such as heat or
magnetic energy [24–27]. SMAs are materials in which a phase transition occurs, caused by
supplied heat energy and/or external stress. Springs with a controllable stiffness coefficient
are used in various vibration applications such as DVAs, AVAs [28,29], the resonant sieving
screen [30] and others [31,32]. Generally, spring elements made of SMAs can be used in
active, semi-active or passive systems [33]. Because active elements are made of SMAs
and are characterised by considerable time constants amounting to 1 s or more, their use
in active reduction systems is limited to very low-frequency vibrations. Therefore, they
are more frequently used in semi-active, adaptive systems as elements with controllable
parameters. In such cases, changes in their properties, such as stiffness and damping, could
be relatively slow against frequency. In such a case, using springs with controlled stiffness
in a DVA or AVA is an excellent idea, which is considered in few papers. For example,
Williams et al. [34] used the SMA spring to control the suspension stiffness of an AVA.
They built a physical model of such an absorber and performed its laboratory tests. They
labouriously determined the frequency characteristics of the AVA for various temperatures,
including the characteristics of the AVA with a "manually" tuned absorber. Then, in [35],
Williams et al. formulated a mathematical model of the SMA spring absorber. In the
model, SMA spring parameters are determined based on laboratory tests and tabulated.
In the paper [36], Williams et al. proposed a controller for an AVA and performed its
time characteristics. The authors presented the time characteristics because obtaining the
frequency characteristics using constitutive models is very labour-intensive and therefore
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not used. This is the fundamental problem in designing and analysing vibration systems
using SMAs, both those that generate vibrations or those that reduce them. The same
problem occurs in the synthesis and analysis of control systems with actuators made of
SMAs.

The development of a SMA modelling method to facilitate the frequency analysis was
the primary motivation behind developing the viscoelastic SMA model described in [27].
The model of the SMA spring was formulated on the basis of the analysis of the spring static
characteristics [27]. It was observed that such a spring has significant damping. Hence,
it was hypothesised that the spring reaction force can be described by the Formula (1).
The spring is made of NiTi (Ni 48%, Ti 46%, Cu 6% and C 0.05%). The characteristic
temperatures of the alloy are Ms = 45 ◦C, M f = 30 ◦C, As = 50 ◦C, A f = 70 ◦C. The
spring tests showed that its characteristic not only depends on the temperature but also
varies depending on the frequency of excitation [27]. It turned out that the coefficients k
and c of the spring depend not only on the temperature but also on the frequency, which
can be seen in Figures 1 and 2. These figures show the values of the spring coefficients
k and c as a function of the frequency for selected temperatures. We can see that with a
higher frequency, the stiffness rate and damping coefficients decrease. This phenomenon is
examined by Piedboeuf et al. [37], Guher et al. [38] and Karakalas et al. [39] too. Formula (1)
is a SMA spring model described in [27]. The model is written in the form (2) after taking
into account (3) and (4). The values of the determination methods of the coefficients and
the approximating functions (3) and (4) are presented in the article, [27].

F = kz + c
.
z (1)

where:
F = k(T, ω)z + c(ω)

.
z (2)

where:
k(T, ω)—SMA spring stiffness rate function,
c(ω)—SMA spring damping function,
F—SMA spring reaction force,
z—SMA spring deflection,
T—SMA spring temperature,
ω—frequency of excitation.
The stiffness rate function k(T, ω) is explained using the following formula:

k(T, ω) = a1 + a2ω + a3ω2 + a4T (3)

where the coefficients a1, a2 and a3 are determined using the least-squares method and
equal: a1 = 70, 952, a2 = −213.01, a3 = −5.214, a4 = 1148.8.

The damping function c(ω) is approximated using the following formula.

c(ω) = b1 + b2
1
ω

(4)

where the coefficients b1, b2, b3 and b4 are determined using the least-squares method and
equal: b1 = −1.91, b2 = 17, 100.

This viscoelastic model of SMAs, widely described in the article [27], enables the
frequency analysis of vibrating systems with spring elements made of SMAs.

In this paper, the use of the model is shown in the example of the controlled AVA
vibration absorber. Since the viscoelastic model of the SMA spring was used to formulate
the mathematical model of the absorber, it was possible to perform a frequency analysis of
both the passive and active systems. The results of the system tests are presented below
in a graphic form. An AVA with a controlled spring made of a SMA was proposed due
to the fact that the properties of the SMA spring can be controlled by controlling only its
temperature. Thanks to this, the resonant frequency of the absorber can be easily controlled.
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Figure 2. The spring rate k as a function frequency for selected temperatures.

2. Materials and Methods

The mathematical model (5), (6) of the AVA with a controlled dynamic damper was
formulated based on its diagram shown in Figure 3. The absorber in the form of a mass
m2 = 12 kg is suspended by a SMA spring and protects the main mass m1 = 25 kg. The
SMA spring is represented by two elements, a controlled spring k2 and a controlled damper
c2 connected in parallel. The protected mass m1 is excited by the kinematic excitation
zw = Asin (ωt). For the sake of the notation simplification, the symbols z1 = z1(t) and
Z1 = Z1(s) were adopted.

k1(zw − z1) + c1
( .
zw −

.
z1
)
= m1

..
z1 + k2(z1 − z2) + c2

( .
z1 −

.
z2
)

(5)

k2(z1 − z2) + c2
( .
z1 −

.
z2
)
= m2

..
z2 (6)

The SMA spring was described using a viscoelastic model with variable parameters
(2), (3), (4) and is described above. After a Laplace transformation of the system of
Equations (5) and (6), we obtained:

k1(Zw − Z1) + c1(Zw − Z1)s = m1Z1s2 + k2(Z1 − Z2) + c2(Z1 − Z2)s (7)

k2(Z1 − Z2) + c2(Z1 − Z2)s = m2Z2s2 (8)
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Figure 3. Calculation diagram of the vibration reduction system.

Equations (7) and (8) were written in matrix form:

Ax = Bu (9)

where:

A =

[ (
−m1s2 − c1s− k1 − k2 − c2s

)
(k2 + c2s)

(k2 + c2s) −
(
m2s2 + c2s + k2

) ] (10)

B =

[
−(k1 + sc1)

0

]
(11)

x =

[
z1
z2

]
(12)

u = zw (13)

To solve the system of Equation (9), we calculate determinants. The Formula (14) gives
the principal determinant of A:

det(A) =
(

m1s2 + c1s + k1 + k2 + c2s
)(

m2s2 + c2s + k2

)
− (k2 + c2s)2 (14)

Determinant Az1 is written in the form:

det(Az1) = zw(k1 + c1s)
(

m2s2 + c2s + k2

)
(15)

Determinant Az2 is written in the form:

det(Az2) = zw(k1 + c1s)(k2 + c2s) (16)

The transfer function Gz1zw for input zw and output z1 is:

Gz1zw(s) =
(k1 + c1s)

(
m2s2 + c2s + k2

)
(m1s2 + c1s + k1 + k2 + c2s)(m2s2 + c2s + k2)− (k2 + c2s)2 (17)

The transfer function Gz2zw for input zw and output z2 is:

Gz2zw(s) =
(k1 + c1s)(k2 + c2s)

(m1s2 + c1s + k1 + k2 + c2s)(m2s2 + c2s + k2)− (k2 + c2s)2 (18)

The transfer function Gz2z1 for input z1 and output z2 is:

Gz2z1(s) =
(k2 + c2s)

(m2s2 + c2s + k2)
(19)
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Thus, the spectral transmittances of such an object for input displacement zw and
output displacements z1 and z2 are given by Equations (20) and (21), respectively.

Gz1zw(jω) =
−m2c1 jω3−P1ω2+P2 jω+k1k2

m1m2ω4−(m2c1+Mc2)jω3−( P1+Mk2)ω2+P2 jω+k1k2
(20)

Gz2zw(jω) =
−c1c2ω2 + P2 jω + k1k2

m1m2ω4 − (m2c1 + Mc2)jω3 − ( P1 + Mk2)ω2 + P2 jω + k1k2
(21)

where:
M = m2 + m1,
P1 = m2k1 + c1c2,
P2 = c1k2 + k1c2.
The spectral transmittance of the absorber for the input z1 protected the mass displace-

ment, and the output z2 damper displacement is given by the Equation (22).

Gz2z1(jω) =
(c2 jω + k2)

(−m2ω2 + c2 jω + k2)
(22)

3. Results

Figure 4 shows the vibration transmissibility function of the absorber with the mass
m2 described by the transfer function (22) as a function of the frequency of the displacement
signal z1 and the temperature of the SMA spring. The resonance frequency of the absorber
increases with an increasing temperature from 11.1 Hz in the temperature 25 ◦C up to
14.5 Hz in the temperature 80 ◦C. It is a result of SMA spring features described by
Equations (3) and (4). Thus, by controlling the spring temperature, we control the resonant
frequency of the absorber in the range 11.1 Hz to 14.5 Hz. This means that by changing
only the temperature of the SMA spring, we can tune the absorber to the frequency of
disturbance zw. Then, Figure 5 shows the phase shift between the displacements z1 and z2
for the absorber. Figures 6 and 7 show the vibration transmissibility functions and phase
shifts of the absorber for selected temperatures (25 ◦C, 60 ◦C, 80 ◦C).

Figures 8–11 show similar graphs for the protected mass m1. In turn, Figures 12–15
show the vibration transmissibility functions and the phase shifts between the displace-
ments zw and z2 for the entire 2-DOF system described by the transmittance Gz2zw.
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Figure 4. Vibration transmissibility function of the absorber as a function of frequency and tempera-
ture, the transfer function Gz2z1.
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Materials 2021, 14, 5905 83 of 138 
 

 

  hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 

  4rNCHbWexLMBbXgBd9gzLbvyNv2CaeHbl7mZLdGeaGqiVCI8FfYJH8 

  YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=J 

  Hqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaaca 

  qabeaadaqaaqaafaGcbaaeaaaaaaaaa8qacaWGhbWdamaaBaaaleaa 

  peGaamOEaiaaikdacaWG6bGaaGymaaWdaeqaaaaa@43D2@ 

  </annotation> 

 </semantics> 

</math> 

<!-- MathType@End@5@5@ --> 

. 

 
Figure 7. The absorber phase shifts as a function of frequency for selected temperatures 25 °C, 60 
°C, 80 °C, the transfer function <!-- MathType@Translator@5@5@MathML2 (no 
namespace).tdl@MathML 2.0 (no namespace)@ --> 

<math> 

 <semantics> 

  <mrow> 

   <msub> 

    <mi>G</mi> 

    <mrow> 

     <mi>z</mi><mn>2</mn><mi>z</mi><mn>1</mn></mrow> 

   </msub> 

Figure 7. The absorber phase shifts as a function of frequency for selected temperatures 25 ◦C, 60 ◦C,
80 ◦C, the transfer function Gz2z1.
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Figure 8. Vibration transmissibility function of disturbance zw to the protected mass m1 as a function
of frequency and temperature, the transfer function Gz1zw.
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Figure 9. The phase shift of protected mass as a function of frequency and temperature, the transfer
function Gz1zw.
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Figure 10. Vibration transmissibility functions of disturbance zw to the protected mass m1 as a
function of frequency for selected temperatures 25 ◦C, 60 ◦C, 80 ◦C, the transfer function Gz1zw.
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80 ◦C, the transfer function Gz2zw.
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Figure 13. Protect mass phase shift between displacements zw and z2 as a function of frequency and
temperature, the transfer function Gz2zw.
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Figure 14. Vibration transmissibility functions of disturbance zw to the absorber mass m2 as a function
of frequency for selected temperatures 25 ◦C, 60 ◦C, 80 ◦C, the transfer function Gz2zw.
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Figure 15. Absorber phase shift functions between displacements <!-- MathType@Transla-
tor@5@5@MathML2 (no namespace).tdl@MathML 2.0 (no namespace)@ --> 

Figure 15. Absorber phase shift functions between displacements zw and z2 as a function of frequency
for selected temperatures 25 ◦C, 60 ◦C, 80 ◦C, the transfer function Gz2zw.

Figure 12 shows the vibration transmissibility function of the system described by
the transfer function (21), with the input zw, the displacement of excitation and the output
z2 and the displacement of the mass of the absorber m2. Figure 12 shows the significant
change in the resonant frequency of the absorber due to the change in the stiffness and
damping of the SMA spring caused by the change in its temperature. Then, Figure 16
shows the change in the natural frequency of the absorber (solid line) as a function of the
spring temperature within the allowable range. The value of the natural frequency fn of the
dynamic damper can be calculated from the Formula (23). For comparison, in the figure,
the change in the resonance frequency fr of the absorber as a function of the temperature is
shown too.

fn = 2π
a2 +

√
a22 + 4(m− a3)(a1 + a4T)

2(m− a3)
(23)



Materials 2021, 14, 5905 11 of 15

Materials 2021, 14, 5905 106 of 138 
 

 

  <annotation encoding='MathType-MTEF'>MathType@MTEF@5@5@+= 

  feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn 

  hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 

  4rNCHbWexLMBbXgBd9gzLbvyNv2CaeHbl7mZLdGeaGqiVCI8FfYJH8 

  YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=J 

  Hqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaaca 

  qabeaadaqaaqaafaGcbaaeaaaaaaaaa8qacaWGMbWdamaaBaaaleaa 

  peGaamOBaaWdaeqaaOWdbiabg2da9iaaikdacqaHapaCdaWcaaWdae 

  aapeGaamyya8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qacqGHRaWk 

  daGcaaWdaeaapeGaamyya8aadaWgaaWcbaWdbiaaikdaa8aabeaakm 

  aaCaaaleqabaWdbiaaikdaaaGccqGHRaWkcaaI0aWaaeWaa8aabaWd 

  biaad2gacqGHsislcaWGHbWdamaaBaaaleaapeGaaG4maaWdaeqaaa 

  GcpeGaayjkaiaawMcaamaabmaapaqaa8qacaWGHbWdamaaBaaaleaa 

  peGaaGymaaWdaeqaaOWdbiabgUcaRiaadggapaWaaSbaaSqaa8qaca 

  aI0aaapaqabaGcpeGaamivaaGaayjkaiaawMcaaaWcbeaaaOWdaeaa 

  peGaaGOmamaabmaapaqaa8qacaWGTbGaeyOeI0Iaamyya8aadaWgaa 

  WcbaWdbiaaiodaa8aabeaaaOWdbiaawIcacaGLPaaaaaaaaa@60C3@ 

  </annotation> 

 </semantics> 

</math> 

<!-- MathType@End@5@5@ --> 
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Figure 16. Chart of the natural frequency fn (solid line) and the resonance frequency fr (dashed line).

The ability to change the resonant frequency of the absorber enables it to be adjusted
to the changing frequency of the disturbance zw. Such tuning is rational if it is performed
automatically. For this purpose, the control system shown in Figure 17 was proposed.
The goal of the control system is to adjust the resonant frequency of the absorber to the
disturbance frequency zw. In this case, the control system uses the fact that the resonant
frequency of the absorber can be estimated with the natural frequency, and the phase shift
ϕz2z1 between the displacement z1 and the displacement z2 is −90◦. For this reason, it
was decided that the feedback signal would be the cosine of the phase shift angle ϕz2z1.
This signal is estimated in the "phase detector" block based on the Formula (25). In this
case, the estimation error for the observation time To being multiple periods of forced
oscillation is equal to zero. In general, the estimation error of the estimate is always
inversely proportional to the observation time To.
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Figure 17. Control system block scheme.

In this example, it was assumed that the nominal natural frequency of the absorber
is fno = 12.9 Hz, and is equal to the nominal frequency of disturbance zw. A circle in
Figure 16 marks this value. This frequency is obtained in the SMA spring temperature
Tn = 52.5 ◦C in the considered AVA. In this case, for an operating spring temperature range
of 25 ◦C to 80 ◦C, the damper operating frequency range is 11.1 Hz to 14.5 Hz. The natural
frequency can therefore be varied by more than ±10% from its nominal value fno.

After the above consideration, the nonlinear controller was proposed in the form:

T = sat(K·cos(ϕz2z1)) (24)
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where:

sat(v) =


80 f or v > 80

v
25 f or v < 25

(25)

cos(ϕz2z1) =
1
To

∫ t
t−To

zw(τ)z2(τ)dτ√
1
To

∫ t
t−To

z2
2(τ)dτ

√
1
To

∫ t
t−To

z2
1(τ)dτ

(26)

Equation (26) follows directly from the definition of the dot product (27) between
vectors in the functional space L2([0, T], R).

〈v, w〉 = 1
T

∫ T

0
v(τ)w(τ)dτ (27)

The norm in the vector space L2([0, T], R) generated by this dot product is expressed
by the following formula:

||v|| =
√
〈v, v〉 (28)

In this case, the cosine of the angle ϕ between the two vectors v and w is expressed
as follows:

cos(ϕ) =
〈v, w〉
||v||·||w || (29)

If vectors v and w are harmonic functions of the same frequency, and the time T is
a multiple of the period, then the angle ϕ corresponds to the phase shift angle between
these functions.

Spectral transmittances of the 2-DOF with the controller are given by Formulas (20)–
(22) and (30), (31) formulas describing the SMA spring.

k2(T, ω) = a1 + a2ω + a3ω2 + a4sat(Kcos(ϕz2z1)) (30)

c2(ω) = b1 + b2
1
ω

(31)

The frequency response functions of the 2-DOF system with the controller for K = 50
are presented in Figures 18–20. The frequency characteristics of the closed system in the
figures are marked in black. An analysis of these figures shows that the control system
protects the mass m1 the best. The reduction in mass m1 vibrations (z1) is better in a broader
range than in controlled systems. Thanks to changing its parameters, the controlled system
can tune to the disturbance and, therefore, reduce vibration better.
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Figure 18. Vibration transmissibility functions of the passive absorber for selected temperatures of 
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Figure 18. Vibration transmissibility functions of the passive absorber for selected temperatures of
25 ◦C, 60 ◦C, 80 ◦C and the controlled absorber (black). The transfer function Gz2z1 describes the object.



Materials 2021, 14, 5905 13 of 15

Materials 2021, 14, 5905 131 of 138 
 

 

  YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=J 

  Hqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaaca 

  qabeaadaqaaqaafaGcbaaeaaaaaaaaa8qacaWGhbWdamaaBaaaleaa 

  peGaamOEaiaaikdacaWG6bGaaGymaaWdaeqaaaaa@43D2@ 

  </annotation> 

 </semantics> 

</math> 

<!-- MathType@End@5@5@ --> 

 describes the object. 

 
Figure 19. Vibration transmissibility functions of disturbance <!-- MathType@Transla-
tor@5@5@MathML2 (no namespace).tdl@MathML 2.0 (no namespace)@ --> 
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Figure 19. Vibration transmissibility functions of disturbance zw to the protected mass m1 of the
passive absorber for selected temperatures of 25 ◦C, 60 ◦C, 80 ◦C and the controlled absorber (black).
The transfer function Gz1zw describes the object.
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Figure 20. Vibration transmissibility functions of disturbance zw to the mass m2 of the passive
absorber for selected temperatures of 25 ◦C, 60 ◦C, 80 ◦C and the controlled absorber (black). The
transfer function Gz2zw describes the object.

4. Conclusions

The paper presents the developed mathematical model of the AVA system using
a viscoelastic model of the SMA spring. The developed mathematical model enables
numerical simulations in the frequency domains. The AVA was only an example of the
application of this viscous model because, thanks to the use of the SMA spring, the AVA
system can be tuned in real-time to the changing frequency of the disturbance in order to
minimise the vibrations of the protected mass. As one can see, the viscous model enables
the effective analysis of vibrating systems equipped with the SMA spring elements. Its
characteristics can be easily determined using standard analytical methods. The results of
the simulation tests of the model in the form of frequency characteristics are easy to obtain.
Therefore, the work on the synthesis of the system is practical.

Additionally, it was shown that control systems can also be efficiently synthesised. For
this purpose, a nonlinear control system was proposed and modelled. The tests of the AVA
working in open and closed systems showed that thanks to the use of a controlled SMA
spring, it is possible to perform an AVA which adjusts itself to the disturbance frequency
on an ongoing basis, and it is better than passive systems because it operates in the broader
frequency range.
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