The Numerical and Experimental Investigation of Particle Size Distribution Produced by an Electrical Discharge Process
Abstract
:1. Introduction
2. Numerical Methodology and Experimental Method
2.1. Model of Gaussian-Distribution Heat Source
2.2. Governing Equation
2.3. Latent Heat Analysis
2.4. Boundary Conditions
2.5. Material and Experimental Method
3. Results and Discussion
3.1. Temperature Distribution
3.2. Particle Size Distribution
3.3. Formation Mechanism of Particle During Electrical Discharge
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vaezi, M.; Seitz, H.; Yang, S. A review on 3D micro-additive manufacturing technologies. Int. J. Adv. Manuf. Technol. 2013, 67, 1721–1754. [Google Scholar] [CrossRef]
- Wu, M.; Yang, G.; Liu, J.; Yin, D.; Yang, Y. Densification mechanism of copper micro-components prepared by the micro-forming fields activated sintering technology. J. Alloy. Compd. 2017, 692, 434–439. [Google Scholar] [CrossRef]
- Ma, J.; Qin, M.; Wang, X.; Zhang, L.; Tian, L.; Zhang, X.; Li, X.; Qu, X.H. Microstructure and magnetic properties of Fe–79%Ni–4%Mo alloy fabricated by metal injection molding. Powder Technol. 2014, 253, 158–162. [Google Scholar] [CrossRef]
- Kala, S.; Rawat, P.; Kruis, F.E. Viability of spark-discharge technique to produce semiconductor nanoparticles. Mater. Today 2020, 28, 96–99. [Google Scholar] [CrossRef]
- Nguyen, P.-K.; Jin, S.; Berkowitz, A.E. MnBi particles with high energy density made by spark erosion. J. Appl. Phys. 2014, 115, 17A756. [Google Scholar] [CrossRef]
- Tseng, K.-H.; Chung, M.-Y.; Chang, C.-Y. Parameters for Fabricating Nano-Au Colloids through the Electric Spark Discharge Method with Micro-Electrical Discharge Machining. Nanomaterials 2017, 7, 133. [Google Scholar] [CrossRef] [Green Version]
- Němec, T.; Šonský, J.; Gruber, J.; De Prado, E.; Kupčík, J.; Klementova, M. Platinum and platinum oxide nanoparticles generated by unipolar spark discharge. J. Aerosol Sci. 2020, 141, 105502. [Google Scholar] [CrossRef]
- Tien, D.-C.; Tseng, K.-H.; Liao, C.-Y.; Huang, J.-C.; Tsung, T.-T. Discovery of ionic silver in silver nanoparticle suspension fabricated by arc discharge method. J. Alloy. Compd. 2008, 463, 408–411. [Google Scholar] [CrossRef]
- Zhang, H.; Zou, G.; Liu, L.; Tong, H.; Li, Y.; Bai, H.; Wu, A. Synthesis of silver nanoparticles using large-area arc discharge and its application in electronic packaging. J. Mater. Sci. 2017, 52, 3375–3387. [Google Scholar] [CrossRef]
- Peymani, R.; Poursalehi, R.; Yourdkhani, A. DC Arc discharge synthesized zirconia nanoparticles: Shed light on arc current effects on size, crystal structure, optical properties and formation mechanism. Mater. Res. Express 2019, 6, 075002. [Google Scholar] [CrossRef]
- Kumar, P.; Singh, P.K.; Kumar, D.; Prakash, V.; Hussain, M.; Das, A.K. A novel application of micro-EDM process for the generation of nickel nanoparticles with different shapes. Mater. Manuf. Process. 2017, 32, 564–572. [Google Scholar] [CrossRef]
- Kim, S.-M.; Cho, A.-R.; Lee, S.Y. Characterization and electrocatalytic activity of Pt–M (M=Cu, Ag, and Pd) bimetallic nanoparticles synthesized by pulsed plasma discharge in water. J. Nanoparticle Res. 2015, 17. [Google Scholar] [CrossRef]
- Delaportas, D.; Svarnas, P.; Alexandrou, I.; Siokou, A.; Black, K.; Bradley, J.W. γ-Al2O3nanoparticle production by arc-discharge in water:in situdischarge characterization and nanoparticle investigation. J. Phys. D Appl. Phys. 2009, 42. [Google Scholar] [CrossRef]
- Jaworski, J.A.; Fleury, E. Sub-micrometer particles produced by a low-powered AC electric arc in liquids. J. Nanosci. Nanotechnol. 2012, 12, 604–609. [Google Scholar] [CrossRef]
- Mardanian, M.; Nevar, A.A.; Nedel’Ko, M.; Tarasenko, N.V. Synthesis of colloidal CuInSe2 nanoparticles by electrical spark discharge in liquid. Eur. Phys. J. D 2013, 67, 208. [Google Scholar] [CrossRef]
- Burakov, V.S.; Butsen, A.V.; Brüser, V.; Harnisch, F.; Misakov, P.Y.; Nevar, E.A.; Rosenbaum, M.; Savastenko, N.A.; Tarasenko, N.V. Synthesis of tungsten carbide nanopowder via submerged discharge method. J. Nanoparticle Res. 2008, 10, 881–886. [Google Scholar] [CrossRef]
- Liu, Y.; Li, X.; Bai, F.; Chen, J.; Wang, Y.; Liu, N. Effect of system parameters on the size distributions of hollow nickel microspheres produced by an ultrasound-aided electrical discharge machining process. Particuology 2014, 17, 36–41. [Google Scholar] [CrossRef]
- Liu, Y.; Zhu, K.; Li, X.; Lin, F.; Li, Y. Analysis of multi-scale Ni particles generated by ultrasonic aided electrical discharge erosion in pure water. Adv. Powder Technol. 2018, 29, 863–873. [Google Scholar] [CrossRef]
- Liu, Y.; Li, X.; Li, Y.; Chen, J.; Zhao, W.; Bai, F. The formation mechanism and morphology of the nickel particles by the ultrasound-aided spark discharge in different liquid media. Adv. Powder Technol. 2016, 27, 2399–2408. [Google Scholar] [CrossRef] [Green Version]
- Lin, F.; Liu, Y.; Hou, Q.; Wang, J.; Li, X. The effect of focused ultrasonic power on particles produced by the ultrasonic-assisted electrical discharge process. Mater. Res. Express 2019, 6, 0850d1. [Google Scholar] [CrossRef]
- Hoffer, P.; Sugiyama, Y.; Hosseini, S.H.R.; Akiyama, H.; Lukes, P.; Akiyama, M. Characteristics of meter-scale surface electrical discharge propagating along water surface at atmospheric pressure. J. Phys. D Appl. Phys. 2016, 49, 415202. [Google Scholar] [CrossRef]
- Kunieda, M.; Lauwers, B.; Rajurkar, K.; Schumacher, B. Advancing EDM through Fundamental Insight into the Process. CIRP Ann. 2005, 54, 64–87. [Google Scholar] [CrossRef]
- Tang, J.; Yang, X. A novel thermo-hydraulic coupling model to investigate the crater formation in electrical discharge machining. J. Phys. D Appl. Phys. 2017, 50, 365301. [Google Scholar] [CrossRef]
- DiBitonto, D.D.; Eubank, P.T.; Patel, M.R.; Barrufet, M.A. Theoretical models of the electrical discharge machining process. I. A simple cathode erosion model. J. Appl. Phys. 1989, 66, 4095–4103. [Google Scholar] [CrossRef]
- Albinski, K.; Musiol, K.; Miernikiewicz, A.; Labuz, S.; Malota, M. The temperature of a plasma used in electrical discharge machining. Plasma Sources Sci. Technol. 1996, 5, 736–742. [Google Scholar] [CrossRef]
- Reinmann, R.; Akram, M. Temporal investigation of a fast spark discharge in chemically inert gases. J. Phys. D Appl. Phys. 1997, 30, 1125–1134. [Google Scholar] [CrossRef]
- Eubank, P.T.; Patel, M.R.; Barrufet, M.A.; Bozkurt, B. Theoretical models of the electrical discharge machining process. III. The variable mass, cylindrical plasma model. J. Appl. Phys. 1993, 73, 7900–7909. [Google Scholar] [CrossRef]
- Singh, H. Experimental study of distribution of energy during EDM process for utilization in thermal models. Int. J. Heat Mass Transf. 2012, 55, 5053–5064. [Google Scholar] [CrossRef]
- Kitamura, T.; Kunieda, M.; Abe, K. High-Speed Imaging of EDM Gap Phenomena using Transparent Electrodes. Procedia CIRP 2013, 6, 314–319. [Google Scholar] [CrossRef] [Green Version]
- Xia, H.; Hashimoto, H.; Kunieda, M.; Nishiwaki, N. Measurement of Energy Distribution in Continuous EDM Process. J. Jpn. Soc. Precis. Eng. 1996, 62, 1141–1145. [Google Scholar] [CrossRef]
- Courtois, M.; Carin, M.; Le Masson, P.; Gaied, S.; Balabane, M. A new approach to compute multi-reflections of laser beam in a keyhole for heat transfer and fluid flow modelling in laser welding. J. Phys. D Appl. Phys. 2013, 46. [Google Scholar] [CrossRef]
- Weingartner, E.; Kuster, F.; Wegener, K. Modeling and simulation of electrical discharge machining. Procedia CIRP 2012, 2, 74–78. [Google Scholar] [CrossRef]
- Brandes, E.A.; Brook, G.B. Smithells Metals Reference Book: Seventh Edition; General physical properties, 1-45; Elsevier Butterworth-Heinemann: Amsterdam, The Netherlands; Boston, MA, USA, 2013; ISBN 9780080517308. [Google Scholar]
- Wen, P.; Li, G.; Gao, J.; Li, Y.; Yamaji, A.; Yan, J. Numerical Study of Collision Behavior of Melt Drops During Fuel-Coolant Interaction. In Proceedings of the International Conference on Nuclear Engineering, Virtual, Online, 4–5 August 2020. [Google Scholar]
- Manickam, L.; Bechta, S.; Ma, W. On the fragmentation characteristics of melt jets quenched in water. Int. J. Multiph. Flow 2017, 91, 262–275. [Google Scholar] [CrossRef]
- Uršič, M.; Leskovar, M.; Bürger, M.; Buck, M. Hydrodynamic fine fragmentation of partly solidified melt droplets during a vapour explosion. Int. J. Heat Mass Transf. 2014, 76, 90–98. [Google Scholar] [CrossRef]
Attribute | Value |
---|---|
Density | 8908 kg/m³ |
Melting point | 1455 K |
Boiling point | 2730 K |
Latent heat of melting | 298 kJ/kg |
Latent heat of vaporization | 6430 kJ/kg |
Parameters | Group1 | Group2 | Group3 | ||||||
---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 3 | |
Voltage (V) | 45 | 60 | 90 | 45 | 45 | 45 | 45 | 45 | 45 |
Current (A) | 15 | 15 | 15 | 15 | 30 | 60 | 15 | 15 | 15 |
Pulse on (μs) | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 30 | 90 |
Pulse off (μs) | 12.8 | ||||||||
Dielectric medium | Pure water | ||||||||
Electrode | Nickel rods (purity better than 99.9%), density: 8.9 g/cm3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, F.; Liu, Y.; Li, X.; Bai, C. The Numerical and Experimental Investigation of Particle Size Distribution Produced by an Electrical Discharge Process. Materials 2021, 14, 287. https://doi.org/10.3390/ma14020287
Lin F, Liu Y, Li X, Bai C. The Numerical and Experimental Investigation of Particle Size Distribution Produced by an Electrical Discharge Process. Materials. 2021; 14(2):287. https://doi.org/10.3390/ma14020287
Chicago/Turabian StyleLin, Faming, Yifan Liu, Xianglong Li, and Congqiang Bai. 2021. "The Numerical and Experimental Investigation of Particle Size Distribution Produced by an Electrical Discharge Process" Materials 14, no. 2: 287. https://doi.org/10.3390/ma14020287
APA StyleLin, F., Liu, Y., Li, X., & Bai, C. (2021). The Numerical and Experimental Investigation of Particle Size Distribution Produced by an Electrical Discharge Process. Materials, 14(2), 287. https://doi.org/10.3390/ma14020287