The Use of Neural Networks in the Analysis of Dual Adhesive Single Lap Joints Subjected to Uniaxial Tensile Test
Abstract
:1. Introduction
2. Dual Adhesive Model Description
3. Numerical Modeling
- the thickness of one of the adherends “g” (2; 4; 6; 8; 10; 12; 14; 16; 18; 20) (mm),
- the radius of the point adhesive joint “r” (1; 2.25; 3.5; 4.75; 6; 7.25; 8.5; 9.75; 11; 12.25; 13.5; 14.75) (mm).
- σn is the normal stress applied to the surface of the adhesive layer;
- σt and σs are the shear stress components along the adhesive layer;
- σnmax, σtmax and σsmax are the critical values of the normal and shear stress components corresponding to appropriate damage mode initiation.
4. Application of Neural Networks
5. Discussion of the Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Adhesive 1 | Adhesive 2 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
No. | “r” (mm) | “g” (mm) | E (MPa) | G (MPa) | σ (MPa) | τ (MPa) | E (MPa) | G (MPa) | σ (MPa) | τ (MPa) |
1 | 1 | 20 | 185 | 56 | 2.2 | 1.7 | 1213.79 | 367.42 | 14.43 | 11.81 |
2 | 2.25 | 16 | 203.50 | 61.60 | 2.42 | 1.87 | 983.17 | 297.61 | 11.69 | 9.57 |
3 | 3.5 | 12 | 223.85 | 67.76 | 2.66 | 2.06 | 1850.00 | 560.00 | 22.00 | 18.00 |
4 | 4.75 | 8 | 246.24 | 74.54 | 2.93 | 2.26 | 1092.41 | 330.67 | 12.99 | 10.63 |
5 | 6 | 4 | 270.86 | 81.99 | 3.22 | 2.49 | 884.85 | 267.85 | 10.52 | 8.61 |
6 | 7.25 | 2 | 297.94 | 90.19 | 3.54 | 2.74 | 1213.79 | 367.42 | 14.43 | 11.81 |
7 | 8.5 | 4 | 327.74 | 99.21 | 3.90 | 3.01 | 1850.00 | 560.00 | 22.00 | 18.00 |
8 | 9.75 | 6 | 360.51 | 109.13 | 4.29 | 3.31 | 1665.00 | 504.00 | 19.80 | 16.20 |
9 | 11 | 8 | 396.56 | 120.04 | 4.72 | 3.64 | 1498.50 | 453.60 | 17.82 | 14.58 |
10 | 12.25 | 10 | 436.22 | 132.05 | 5.19 | 4.01 | 1348.65 | 408.24 | 16.04 | 13.12 |
11 | 1 | 12 | 223.85 | 67.76 | 2.66 | 2.06 | 1213.79 | 367.42 | 14.43 | 11.81 |
12 | 2.25 | 14 | 297.94 | 90.19 | 3.54 | 2.74 | 1092.41 | 330.67 | 12.99 | 10.63 |
13 | 3.5 | 16 | 396.56 | 120.04 | 4.72 | 3.64 | 983.17 | 297.61 | 11.69 | 9.57 |
14 | 4.75 | 18 | 360.51 | 109.13 | 4.29 | 3.31 | 884.85 | 267.85 | 10.52 | 8.61 |
15 | 6 | 20 | 327.74 | 99.21 | 3.90 | 3.01 | 796.36 | 241.06 | 9.47 | 7.75 |
16 | 7.25 | 2 | 185.00 | 56.00 | 2.20 | 1.70 | 716.73 | 216.96 | 8.52 | 6.97 |
17 | 8.5 | 6 | 203.50 | 61.60 | 2.42 | 1.87 | 1092.41 | 330.67 | 12.99 | 10.63 |
18 | 9.75 | 10 | 223.85 | 67.76 | 2.66 | 2.06 | 884.85 | 267.85 | 10.52 | 8.61 |
19 | 11 | 14 | 246.24 | 74.54 | 2.93 | 2.26 | 1665.00 | 504.00 | 19.80 | 16.20 |
20 | 12.25 | 18 | 270.86 | 81.99 | 3.22 | 2.49 | 716.73 | 216.96 | 8.52 | 6.97 |
21 | 1 | 2 | 297.94 | 90.19 | 3.54 | 2.74 | 645.06 | 195.26 | 7.67 | 6.28 |
22 | 2.25 | 4 | 327.74 | 99.21 | 3.90 | 3.01 | 580.55 | 175.73 | 6.90 | 5.65 |
23 | 3.5 | 6 | 360.51 | 109.13 | 4.29 | 3.31 | 522.49 | 158.16 | 6.21 | 5.08 |
24 | 4.75 | 8 | 396.56 | 120.04 | 4.72 | 3.64 | 470.25 | 142.34 | 5.59 | 4.58 |
25 | 6 | 10 | 436.22 | 132.05 | 5.19 | 4.01 | 423.22 | 128.11 | 5.03 | 4.12 |
26 | 7.25 | 12 | 327.74 | 99.21 | 3.90 | 3.01 | 380.90 | 115.30 | 4.53 | 3.71 |
27 | 8.5 | 14 | 360.51 | 109.13 | 4.29 | 3.31 | 342.81 | 103.77 | 4.08 | 3.34 |
28 | 9.75 | 16 | 185.00 | 56.00 | 2.20 | 1.70 | 1850.00 | 560.00 | 22.00 | 18.00 |
29 | 11 | 18 | 203.50 | 61.60 | 2.42 | 1.87 | 1665.00 | 504.00 | 19.80 | 16.20 |
30 | 12.25 | 20 | 223.85 | 67.76 | 2.66 | 2.06 | 1498.50 | 453.60 | 17.82 | 14.58 |
31 | 1 | 20 | 246.24 | 74.54 | 2.93 | 2.26 | 1092.41 | 330.67 | 12.99 | 10.63 |
32 | 2.25 | 12 | 270.86 | 81.99 | 3.22 | 2.49 | 1092.41 | 330.67 | 12.99 | 10.63 |
33 | 3.5 | 6 | 297.94 | 90.19 | 3.54 | 2.74 | 1850.00 | 560.00 | 22.00 | 18.00 |
34 | 4.75 | 2 | 327.74 | 99.21 | 3.90 | 3.01 | 716.73 | 216.96 | 8.52 | 6.97 |
35 | 6 | 4 | 360.51 | 109.13 | 4.29 | 3.31 | 983.17 | 297.61 | 11.69 | 9.57 |
36 | 7.25 | 8 | 396.56 | 120.04 | 4.72 | 3.64 | 796.36 | 241.06 | 9.47 | 7.75 |
37 | 8.5 | 12 | 436.22 | 132.05 | 5.19 | 4.01 | 1498.50 | 453.60 | 17.82 | 14.58 |
38 | 9.75 | 20 | 297.94 | 90.19 | 3.54 | 2.74 | 1348.65 | 408.24 | 16.04 | 13.12 |
39 | 11 | 18 | 327.74 | 99.21 | 3.90 | 3.01 | 884.85 | 267.85 | 10.52 | 8.61 |
40 | 12.25 | 16 | 360.51 | 109.13 | 4.29 | 3.31 | 1213.79 | 367.42 | 14.43 | 11.81 |
41 | 1 | 10 | 396.56 | 120.04 | 4.72 | 3.64 | 983.17 | 297.61 | 11.69 | 9.57 |
42 | 2.25 | 6 | 396.56 | 120.04 | 4.72 | 3.64 | 1498.50 | 453.60 | 17.82 | 14.58 |
43 | 3.5 | 18 | 185.00 | 56.00 | 2.20 | 1.70 | 1348.65 | 408.24 | 16.04 | 13.12 |
44 | 4.75 | 14 | 203.50 | 61.60 | 2.42 | 1.87 | 884.85 | 267.85 | 10.52 | 8.61 |
45 | 6 | 10 | 223.85 | 67.76 | 2.66 | 2.06 | 1665.00 | 504.00 | 19.80 | 16.20 |
46 | 7.25 | 2 | 246.24 | 74.54 | 2.93 | 2.26 | 716.73 | 216.96 | 8.52 | 6.97 |
47 | 8.5 | 4 | 270.86 | 81.99 | 3.22 | 2.49 | 1092.41 | 330.67 | 12.99 | 10.63 |
48 | 9.75 | 4 | 297.94 | 90.19 | 3.54 | 2.74 | 1213.79 | 367.42 | 14.43 | 11.81 |
49 | 11 | 12 | 327.74 | 99.21 | 3.90 | 3.01 | 983.17 | 297.61 | 11.69 | 9.57 |
50 | 12.25 | 10 | 360.51 | 109.13 | 4.29 | 3.31 | 1665.00 | 504.00 | 19.80 | 16.20 |
51 | 1 | 8 | 396.56 | 120.04 | 4.72 | 3.64 | 1498.50 | 453.60 | 17.82 | 14.58 |
52 | 2.25 | 2 | 396.56 | 120.04 | 4.72 | 3.64 | 1348.65 | 408.24 | 16.04 | 13.12 |
53 | 3.5 | 8 | 203.50 | 61.60 | 2.42 | 1.87 | 796.36 | 241.06 | 9.47 | 7.75 |
54 | 4.75 | 4 | 223.85 | 67.76 | 2.66 | 2.06 | 1850.00 | 560.00 | 22.00 | 18.00 |
55 | 6 | 12 | 246.24 | 74.54 | 2.93 | 2.26 | 1213.79 | 367.42 | 14.43 | 11.81 |
56 | 7.25 | 2 | 223.85 | 67.76 | 2.66 | 2.06 | 1665.00 | 504.00 | 19.80 | 16.20 |
57 | 8.5 | 20 | 246.24 | 74.54 | 2.93 | 2.26 | 983.17 | 297.61 | 11.69 | 9.57 |
58 | 9.75 | 6 | 270.86 | 81.99 | 3.22 | 2.49 | 1850.00 | 560.00 | 22.00 | 18.00 |
59 | 11 | 2 | 327.74 | 99.21 | 3.90 | 3.01 | 1498.50 | 453.60 | 17.82 | 14.58 |
60 | 12.25 | 4 | 360.51 | 109.13 | 4.29 | 3.31 | 1348.65 | 408.24 | 16.04 | 13.12 |
61 | 1 | 4 | 294 | 81.99 | 3.51 | 2.71 | 1204.00 | 367.42 | 14.33 | 11.72 |
62 | 2.25 | 8 | 294 | 90.19 | 3.51 | 2.71 | 1204.00 | 297.61 | 14.33 | 11.72 |
63 | 3.5 | 14 | 294 | 56 | 3.51 | 2.71 | 1204.00 | 560.00 | 14.33 | 11.72 |
64 | 4.75 | 20 | 294 | 61.60 | 3.51 | 2.71 | 1204.00 | 330.67 | 14.33 | 11.72 |
65 | 6 | 10 | 294 | 67.76 | 3.51 | 2.71 | 1204.00 | 267.85 | 14.33 | 11.72 |
66 | 7.25 | 2 | 294 | 74.54 | 3.51 | 2.71 | 1204.00 | 367.42 | 14.33 | 11.72 |
67 | 8.5 | 4 | 294 | 81.99 | 3.51 | 2.71 | 1204.00 | 560.00 | 14.33 | 11.72 |
68 | 9.75 | 6 | 294 | 90.19 | 3.51 | 2.71 | 1204.00 | 504.00 | 14.33 | 11.72 |
69 | 11 | 8 | 294 | 99.21 | 3.51 | 2.71 | 1204.00 | 453.60 | 14.33 | 11.72 |
70 | 12.25 | 10 | 294 | 109.13 | 3.51 | 2.71 | 1204.00 | 408.24 | 14.33 | 11.72 |
71 | 13.5 | 12 | 294 | 120.04 | 3.51 | 2.71 | 1204.00 | 580.00 | 14.33 | 11.72 |
72 | 14.75 | 14 | 294 | 132.05 | 3.51 | 2.71 | 1204.00 | 600.00 | 14.33 | 11.72 |
73 | 1 | 16 | 294 | 90.19 | 3.51 | 2.71 | 1204.00 | 620.00 | 14.33 | 11.72 |
74 | 2.25 | 18 | 294 | 81.99 | 3.51 | 2.71 | 1204.00 | 640.00 | 14.33 | 11.72 |
75 | 3.5 | 20 | 294 | 56 | 3.51 | 2.71 | 1204.00 | 660.00 | 14.33 | 11.72 |
76 | 4.75 | 16 | 294 | 120.04 | 3.51 | 2.71 | 1204.00 | 680.00 | 14.33 | 11.72 |
77 | 6 | 12 | 294 | 56 | 3.51 | 2.71 | 1204.00 | 367.42 | 14.33 | 11.72 |
78 | 7.25 | 8 | 294 | 61.60 | 3.51 | 2.71 | 1204.00 | 297.61 | 14.33 | 11.72 |
79 | 8.5 | 4 | 294 | 67.76 | 3.51 | 2.71 | 1204.00 | 560.00 | 14.33 | 11.72 |
80 | 9.75 | 2 | 294 | 74.54 | 3.51 | 2.71 | 1204.00 | 330.67 | 14.33 | 11.72 |
81 | 11 | 20 | 294 | 81.99 | 3.51 | 2.71 | 1204.00 | 267.85 | 14.33 | 11.72 |
82 | 12.25 | 16 | 294 | 90.19 | 3.51 | 2.71 | 1204.00 | 367.42 | 14.33 | 11.72 |
83 | 13.5 | 18 | 294 | 99.21 | 3.51 | 2.71 | 1204.00 | 560.00 | 14.33 | 11.72 |
84 | 14.75 | 4 | 294 | 109.13 | 3.51 | 2.71 | 1204.00 | 504.00 | 14.33 | 11.72 |
85 | 1 | 8 | 294 | 120.04 | 3.51 | 2.71 | 1204.00 | 453.60 | 14.33 | 11.72 |
86 | 2.25 | 12 | 294 | 132.05 | 3.51 | 2.71 | 1204.00 | 408.24 | 14.33 | 11.72 |
87 | 3.5 | 10 | 294 | 90.19 | 3.51 | 2.71 | 1204.00 | 580.00 | 14.33 | 11.72 |
88 | 4.75 | 20 | 294 | 81.99 | 3.51 | 2.71 | 1204.00 | 620.00 | 14.33 | 11.72 |
89 | 6 | 12 | 294 | 56 | 3.51 | 2.71 | 1204.00 | 660.00 | 14.33 | 11.72 |
90 | 7.25 | 2 | 294 | 120.04 | 3.51 | 2.71 | 1204.00 | 700.00 | 14.33 | 11.72 |
91 | 8.5 | 18 | 294 | 56 | 3.51 | 2.71 | 1204.00 | 367.42 | 14.33 | 11.72 |
92 | 9.75 | 6 | 294 | 61.60 | 3.51 | 2.71 | 1204.00 | 297.61 | 14.33 | 11.72 |
93 | 11 | 12 | 294 | 67.76 | 3.51 | 2.71 | 1204.00 | 560.00 | 14.33 | 11.72 |
94 | 12.25 | 20 | 294 | 74.54 | 3.51 | 2.71 | 1204.00 | 330.67 | 14.33 | 11.72 |
95 | 13.5 | 14 | 294 | 81.99 | 3.51 | 2.71 | 1204.00 | 267.85 | 14.33 | 11.72 |
96 | 14.75 | 4 | 294 | 90.19 | 3.51 | 2.71 | 1204.00 | 367.42 | 14.33 | 11.72 |
97 | 11 | 18 | 294 | 99.21 | 3.51 | 2.71 | 1204.00 | 560.00 | 14.33 | 11.72 |
98 | 12.25 | 10 | 294 | 109.13 | 3.51 | 2.71 | 1204.00 | 504.00 | 14.33 | 11.72 |
99 | 13.5 | 14 | 294 | 120.04 | 3.51 | 2.71 | 1204.00 | 453.60 | 14.33 | 11.72 |
100 | 14.75 | 8 | 294 | 132.05 | 3.51 | 2.71 | 1204.00 | 408.24 | 14.33 | 11.72 |
References
- Moroni, F.; Musiari, F.; Favi, C. Effect of the surface morphology over the fatigue performance of metallic single lap-shear joints. Int. J. Adhes. Adhes. 2020, 97, 102484. [Google Scholar] [CrossRef]
- Hirulkar, N.; Jaiswal, P.; Alessandro, P.; Reis, P. Influence of Mechanical surface treatment on the strength of mixed adhesive joint. Mater. Today Proc. 2018, 5, 18776–18788. [Google Scholar] [CrossRef]
- Golewski, P.; Sadowski, T. Investigation of the effect of chamfer size on the behaviour of hybrid joints made by adhesive bonding and riveting. Int. J. Adhes. Adhes. 2017, 77, 174–182. [Google Scholar] [CrossRef]
- Golewski, P.; Sadowski, T. The Influence of Single Lap Geometry in Adhesive and Hybrid Joints on Their Load Carrying Capacity. Materials 2019, 12, 1884. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sadowski, T.; Golewski, P. Numerical Study of the Prestressed Connectors and Their Distribution on the Strength of a Single Lap, a Double Lap and Hybrid Joints Subjected to Uniaxial Tensile Test. Arch. Met. Mater. 2013, 58, 579–585. [Google Scholar] [CrossRef] [Green Version]
- Sadowski, T.; Golewski, P. Effect of Tolerance in the Fitting of Rivets in the Holes of Double Lap Joints Subjected to Uniaxial Tension. Key Eng. Mater. 2014, 607, 49–54. [Google Scholar] [CrossRef]
- Bouchikhi, A.; Megueni, A.; Gouasmi, S.; Boukoulda, F. Effect of mixed adhesive joints and tapered plate on stresses in retrofitted beams bonded with a fiber-reinforced polymer plate. Mater. Des. 2013, 50, 893–904. [Google Scholar] [CrossRef]
- Machado, J.; Gamarra, P.-R.; Marques, E.; Da Silva, L.F. Numerical study of the behaviour of composite mixed adhesive joints under impact strength for the automotive industry. Compos. Struct. 2018, 185, 373–380. [Google Scholar] [CrossRef]
- Da Silva, L.F.; Lopes, M.J.C. Joint strength optimization by the mixed-adhesive technique. Int. J. Adhes. Adhes. 2009, 29, 509–514. [Google Scholar] [CrossRef]
- Breto, R.; Chiminelli, A.; Lizaranzu, M.; Rodríguez, R. Study of the singular term in mixed adhesive joints. Int. J. Adhes. Adhes. 2017, 76, 11–16. [Google Scholar] [CrossRef]
- Chiminelli, A.; Breto, R.; Izquierdo, S.; Bergamasco, L.; Duvivier, E.; Lizaranzu, M. Analysis of mixed adhesive joints considering the compaction process. Int. J. Adhes. Adhes. 2017, 76, 3–10. [Google Scholar] [CrossRef]
- Kanani, A.Y.; Hou, X.; Ye, J. The influence of notching and mixed-adhesives at the bonding area on the strength and stress distribution of dissimilar single-lap joints. Compos. Struct. 2020, 241, 112136. [Google Scholar] [CrossRef]
- Machado, J.; Marques, E.A.D.S.; Da Silva, L.F. Influence of low and high temperature on mixed adhesive joints under quasi-static and impact conditions. Compos. Struct. 2018, 194, 68–79. [Google Scholar] [CrossRef]
- Marques, E.A.D.S.; Da Silva, L.; Flaviani, M. Testing and simulation of mixed adhesive joints for aerospace applications. Compos. Part B Eng. 2015, 74, 123–130. [Google Scholar] [CrossRef]
- Jairaja, R.; Naik, G.N. Numerical studies on weak bond effects in single and dual adhesive bonded single lap joint between CFRP and aluminium. Mater. Today Proc. 2020, 21, 1064–1068. [Google Scholar] [CrossRef]
- Jairaja, R.; Naik, G.N. Single and dual adhesive bond strength analysis of single lap joint between dissimilar adherends. Int. J. Adhes. Adhes. 2019, 92, 142–153. [Google Scholar] [CrossRef]
- Gajewski, J.; Golewski, P.; Sadowski, T. Geometry optimization of a thin-walled element for an air structure using hybrid system integrating artificial neural network and finite element method. Compos. Struct. 2017, 159, 589–599. [Google Scholar] [CrossRef]
- Rogala, M.; Gajewski, J.; Ferdynus, M. The Effect of Geometrical Non-Linearity on the Crashworthiness of Thin-Walled Conical Energy-Absorbers. Materials 2020, 13, 4857. [Google Scholar] [CrossRef]
- Szklarek, K.; Gajewski, J. Optimisation of the Thin-Walled Composite Structures in Terms of Critical Buckling Force. Materials 2020, 13, 3881. [Google Scholar] [CrossRef]
- Tosun, E.; Çalik, A. Failure load prediction of single lap adhesive joints using artificial neural networks. Alex. Eng. J. 2016, 55, 1341–1346. [Google Scholar] [CrossRef] [Green Version]
- Almeida, S.A.; Guner, S. A hybrid methodology using finite elements and neural networks for the analysis of adhesive anchors exposed to hurricanes and adverse environments. Eng. Struct. 2020, 212, 110505. [Google Scholar] [CrossRef]
- Zgoul, M.H. Use of artificial neural networks for modelling rate dependent behaviour of adhesive materials. Int. J. Adhes. Adhes. 2012, 36, 1–7. [Google Scholar] [CrossRef]
- Zaeri, A.R.; Googarchin, H.S. Experimental investigation on environmental degradation of automotive mixed-adhesive joints. Int. J. Adhes. Adhes. 2019, 89, 19–29. [Google Scholar] [CrossRef]
- Da Silva, L.; Adams, R. Adhesive joints at high and low temperatures using similar and dissimilar adherends and dual adhesives. Int. J. Adhes. Adhes. 2007, 27, 216–226. [Google Scholar] [CrossRef]
- Machado, J.; Marques, E.; Silva, M.; Da Silva, L.F. Numerical study of impact behaviour of mixed adhesive single lap joints for the automotive industry. Int. J. Adhes. Adhes. 2018, 84, 92–100. [Google Scholar] [CrossRef]
- Zhu, S.-P.; Liu, Q.; Peng, W.; Zhang, X.-C. Computational-experimental approaches for fatigue reliability assessment of turbine bladed disks. Int. J. Mech. Sci. 2018, 142–143, 502–517. [Google Scholar] [CrossRef]
- Pavlenko, I.; Sága, M.; Kuric, I.; Kotliar, A.; Basova, Y.; Trojanowska, J.; Ivanov, V. Parameter Identification of Cutting Forces in Crankshaft Grinding Using Artificial Neural Networks. Materials 2020, 13, 5357. [Google Scholar] [CrossRef]
- Merayo, D.; Rodríguez-Prieto, A.; Camacho, A.M. Prediction of Mechanical Properties by Artificial Neural Networks to Characterize the Plastic Behavior of Aluminum Alloys. Materials 2020, 13, 5227. [Google Scholar] [CrossRef]
- Machrowska, A.; Szabelski, J.; Karpiński, R.; Krakowski, P.; Jonak, J.; Jonak, K. Use of Deep Learning Networks and Statistical Modeling to Predict Changes in Mechanical Parameters of Contaminated Bone Cements. Materials 2020, 13, 5419. [Google Scholar] [CrossRef]
- Zhu, S.; Foletti, S.; Beretta, S. Probabilistic framework for multiaxial LCF assessment under material variability. Int. J. Fatigue 2017, 103, 371–385. [Google Scholar] [CrossRef] [Green Version]
Modulus E (MPa) | Modulus G (MPa) | Shear Strength (MPa) | Tensile Strength (MPa) | |
---|---|---|---|---|
Adhesive 1 | 185–436.22 | 56–132.05 | 1.7–4.01 | 2.2–5.19 |
Adhesive 2 | 716.73–1850 | 216.96–700 | 6.97–18 | 8.52–22 |
Adhesive 1 | Modulus E1 (MPa) | Modulus G1 (MPa) | Shear strength (k1) (MPa) | Tensile strength (k1) (MPa) |
Adhesive 2 | Modulus E2 (MPa) | Modulus G2 (MPa) | Shear strength (k2) (MPa) | Tensile strength (k2) (MPa) |
Geometrical parameters | Radius r (mm) | Thickness g (mm) |
Network | Quality (Training) | Quality (Testing) | Quality (Validation) | Training Algorithm | Error Function | Activation (Hidden) | Activation (Output) |
---|---|---|---|---|---|---|---|
MLP 10–12–3 | 0980 | 0971 | 0981 | Broyden-Fletcher–Goldfarb-Shanno | Sum ofsquares | Tanh | Linear |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gajewski, J.; Golewski, P.; Sadowski, T. The Use of Neural Networks in the Analysis of Dual Adhesive Single Lap Joints Subjected to Uniaxial Tensile Test. Materials 2021, 14, 419. https://doi.org/10.3390/ma14020419
Gajewski J, Golewski P, Sadowski T. The Use of Neural Networks in the Analysis of Dual Adhesive Single Lap Joints Subjected to Uniaxial Tensile Test. Materials. 2021; 14(2):419. https://doi.org/10.3390/ma14020419
Chicago/Turabian StyleGajewski, Jakub, Przemysław Golewski, and Tomasz Sadowski. 2021. "The Use of Neural Networks in the Analysis of Dual Adhesive Single Lap Joints Subjected to Uniaxial Tensile Test" Materials 14, no. 2: 419. https://doi.org/10.3390/ma14020419
APA StyleGajewski, J., Golewski, P., & Sadowski, T. (2021). The Use of Neural Networks in the Analysis of Dual Adhesive Single Lap Joints Subjected to Uniaxial Tensile Test. Materials, 14(2), 419. https://doi.org/10.3390/ma14020419