Physicochemical Properties of Two Generations of MTA-Based Root Canal Sealers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Fourier Transform Infrared (FTIR) Analysis
2.3. Solubility
2.4. pH Changes
2.5. Released Elements
2.6. Scanning Electron Microscopy (SEM) and Energy-Dispersive X-Ray (EDX) Analysis
2.7. Flowability and Film Thickness
2.8. Statistical Analysis
3. Results
3.1. FTIR Analysis
3.2. Solubility %
3.3. pH Changes
3.4. Calcium, Phosphate, and Silicon Ions Released
3.5. SEM/EDX Analysis
3.5.1. Characterization of Sealers before Solubility Test
3.5.2. Characterization of Sealers after Solubility Test
3.6. Flow/Film Thickness
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ørstavik, D. Materials used for root canal obturation: Technical, biological and clinical testing. Endod. Top. 2005, 12, 25–38. [Google Scholar] [CrossRef]
- Parirokh, M.; Torabinejad, M. Mineral trioxide aggregate: A comprehensive literature review-part I: Chemical, physical, and antibacterial properties. J. Endod. 2010, 36, 16–27. [Google Scholar] [CrossRef]
- Angulus Science and Technology. MTA-Fillapex Endodontic Sealer, Scientific Profile. 2011. Available online: http://www.angelusdental.com/img/arquivos/mta_fillapex_technical_profile_download.pdf (accessed on 22 August 2021).
- Johnson, W.T.; Kulild, J.C.; Tay, F. Obturation of the cleaned and shaped root canal system. In Pathways of the Pulp, 11th ed.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 280–322. [Google Scholar]
- Abu Zeid, S.T.H.; Saleh, A.A.Y.M. Solubility, pH Changes and Releasing Elements of Different Bioceramic and Mineral Trioxide Aggregate Root Canal Sealers Comparative Study. Trauma Treat 2015, 4, 1–4. [Google Scholar]
- Urban, K.; Neuhaus, J.; Donnermeyer, D.; Schäfer, E.; Dammaschke, T. Solubility and pH value of 3 different root canal sealers: A long-term investigation. J. Endod. 2018, 44, 1736–1740. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, E.J.N.L.; Accorsi-Mendonça, T.; Pedrosa, A.C.; Granjeiro, J.M.; Zaia, A.A. Long-term cytotoxicity, pH and dissolution rate of AH Plus and MTA Fillapex. Brazil. Dent. J. 2016, 27, 419–423. [Google Scholar] [CrossRef] [Green Version]
- ITENA Clinical Product. MTA-Bioseal, White Paper—Dental Sky. 2018. Available online: WP_MTABIOSEAL.pdf(dentex.ro) (accessed on 20 August 2021).
- American National Standards Institute. American Dental Association Specification no. 57 for endodontic filling materials. J. Am. Dent. Assoc. 2000, 108, 88. [Google Scholar]
- International Standardization Organization. ISO 6876: Dental Root Canal Sealing Materials; International Organization for Standardization: Geneva, Swizerland, 2012. [Google Scholar]
- McMichen, F.; Pearson, G.; Rahbaran, S.; Gulabivala, K. A comparative study of selected physical properties of five root-canal sealers. Int. Endod. J. 2003, 36, 629–635. [Google Scholar] [CrossRef]
- Kim, J.; Vipulanandan, C. Effect of pH, sulfate and sodium on the EDTA titration of calcium. Cem. Concr. Res. 2003, 33, 621–627. [Google Scholar] [CrossRef]
- Mussa, S.B.; Elferjani, H.S.; Haroun, F.A.; Abdelnabi, F.F. Determination of available nitrate, phosphate and sulfate in soil samples. Int. J. PharmTech Res. 2009, 1, 598–604. [Google Scholar]
- Olsen, S.R.; Sommers, L.E. Phosphorus. In Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties, 2nd ed.; American Society of Agronomy: Madison, WI, USA, 1983; pp. 403–430. [Google Scholar]
- de Miranda Candeiro, G.T.; Correia, F.C.; Duarte, M.A.H.; Ribeiro-Siqueira, D.C.; Gavini, G. Evaluation of radiopacity, pH, release of calcium ions, and flow of a bioceramic root canal sealer. J. Endod. 2012, 38, 842–845. [Google Scholar] [CrossRef] [Green Version]
- Ahmadi, S.M.; Behnamghader, A.; Sharifipoor, S.; Farsadzadeh, B. Effect of nano flourhydroxyapatite (nFHA) addition on the acellular bioactivity of MTA cement: An in vitro assessment. In Proceedings of the 4th International Conference on Nanostructures (ICNS4), Kish Island, Iran, 12–14 March 2012; pp. 12–14. [Google Scholar]
- Gandolfi, M.G.; Taddei, P.; Tinti, A.; Prati, C. Apatite-forming ability (bioactivity) of ProRoot MTA. Int. Endod. J. 2010, 43, 917–929. [Google Scholar] [CrossRef]
- Okamura, T.; Chen, L.; Tsumano, N.; Ikeda, C.; Komasa, S.; Tominaga, K.; Hashimoto, Y. Biocompatibility of a High-Plasticity, Calcium Silicate-Based, Ready-to-Use Material. Materials 2020, 13, 4770. [Google Scholar] [CrossRef]
- Ylmén, R.; Jäglid, U.; Steenari, B.-M.; Panas, I. Early hydration and setting of Portland cement monitored by IR, SEM and Vicat techniques. Cem. Concr. Res. 2009, 39, 433–439. [Google Scholar] [CrossRef]
- Boskey, A.; Camacho, N.P. FT-IR imaging of native and tissue-engineered bone and cartilage. Biomaterials 2007, 28, 2465–2478. [Google Scholar] [CrossRef] [Green Version]
- Delgado, A.H.; Young, A.M. Modelling ATR-FTIR Spectra of Dental Bonding Systems to Investigate Composition and Polymerisation Kinetics. Materials 2021, 14, 760. [Google Scholar] [CrossRef]
- Jayasree, R.; Kumar, T.S.; Kavya, K.P.S.; Nankar, P.; Mukesh, D. Self setting bone cement formulations based on egg shell derived tetracalcium phosphate bioceramics. Bioceram. Dev. Appl. 2015, 5, 2. [Google Scholar]
- Radwan, M.; Nagi, S.M.; Abd El-Hamid, H. Physico-mechanical characteristics of tri-calcium silicate pastes as dentin substitute and interface analysis in class II cavities: Effect of CaCl2 and SBF solutions. Heliyon 2019, 5, e01975. [Google Scholar] [CrossRef] [Green Version]
- Trezza, M.A. Hydration study of ordinary portland cement in the presence of zinc ions. Mater. Res. 2007, 10, 331–334. [Google Scholar] [CrossRef]
- Benezra, M.K.; Wismayer, P.S.; Camilleri, J. Influence of environment on testing of hydraulic sealers. Sci. Rep. 2017, 7, 1–11. [Google Scholar]
- Sampaio, F.C.; Alencar, A.H.G.D.; Guedes, O.A.; Veloso, H.H.P.; Santos, T.O.D.; Estrela, C. Chemical elements characterization of root canal sealers using scanning electron microscopy and energy dispersive X-ray analysis. Oral Health Dent. Manag. 2014, 13, 27–34. [Google Scholar] [PubMed]
- Siboni, F.; Taddei, P.; Zamparini, F.; Prati, C.; Gandolfi, M.G. Properties of BioRoot RCS, a tricalcium silicate endodontic sealer modified with povidone and polycarboxylate. Int. Endod. J. 2017, 50, e120–e136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reszka, P.; Nowicka, A.; Lipski, M.; Dura, W.; Droździk, A.; Woźniak, K. A comparative chemical study of calcium silicate-containing and epoxy resin-based root canal sealers. BioMed Res. Int. 2016, 2016, 9808432. [Google Scholar] [CrossRef]
- Lee, J.K.; Kwak, S.W.; Ha, J.-H.; Lee, W.; Kim, H.-C. Physicochemical properties of epoxy resin-based and bioceramic-based root canal sealers. Bioinorg. Chem. Appl. 2017, 2017, 2582849. [Google Scholar] [CrossRef] [Green Version]
- Drukteinis, S.; Camilleri, J. Bioceramic Materials in Clinical Endodontics; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- Antonijević, D.; Despotović, A.; Biočanin, V.; Milošević, M.; Trišić, D.; Lazović, V.; Zogović, N.; Milašin, J.; Ilić, D. Influence of the addition of different radiopacifiers and bioactive nano-hydroxyapatite on physicochemical and biological properties of calcium silicate based endodontic ceramic. Ceram Int. 2021, 47, 28913–28923. [Google Scholar] [CrossRef]
- Raura, N.; Garg, A.; Arora, A.; Roma, M. Nanoparticle technology and its implications in endodontics: A review. Biomater. Res. 2020, 24, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Al-Sanabani, J.S.; Madfa, A.A.; Al-Sanabani, F.A. Application of calcium phosphate materials in dentistry. Int. J. Biomater. 2013, 2013, 876132. [Google Scholar] [CrossRef] [Green Version]
- Poggio, C.; Dagna, A.; Ceci, M.; Meravini, M.-V.; Colombo, M.; Pietrocola, G. Solubility and pH of bioceramic root canal sealers: A comparative study. J. Clin. Exp. Dent. 2017, 9, e1189. [Google Scholar] [CrossRef] [PubMed]
- Borges, Á.H.; Pedro, F.L.; Miranda, C.E.; Semenoff-Segundo, A.; Pécora, J.D.; Cruz Filho, A.M. Comparative study of physico-chemical properties of MTA-based and Portland cements. Acta Odontol. Latinoam. 2010, 23, 175–181. [Google Scholar] [PubMed]
- Viapiana, R.; Flumignan, D.; Guerreiro-Tanomaru, J.; Camilleri, J.; Tanomaru-Filho, M. Physicochemical and mechanical properties of zirconium oxide and niobium oxide modified P ortland cement-based experimental endodontic sealers. Int. Endod. J. 2014, 47, 437–448. [Google Scholar] [CrossRef] [PubMed]
- Amoroso-Silva, P.A.; Guimarães, B.M.; Marciano, M.A.; Duarte, M.A.H.; Cavenago, B.C.; Ordinola-Zapata, R.; De Almeida, M.M.; De Moraes, I.G. Microscopic analysis of the quality of obturation and physical properties of MTA F illapex. Microsc. Res. Tech. 2014, 77, 1031–1036. [Google Scholar] [CrossRef]
- Borges, Á.H.; Dorileo, O.; Gonçales, M.C.; Villa, R.D.; Borba, A.M.; Semenoff, T.A.D.V.; Guedes, O.A.; Estrela, C.R.A.; Bandéca, M.C. Physicochemical properties and surfaces morphologies evaluation of MTA FillApex and AH plus. Sci. World J. 2014, 2014, 589732. [Google Scholar] [CrossRef]
- Faria-Júnior, N.; Tanomaru-Filho, M.; Berbert, F.L.C.V.; Guerreiro-Tanomaru, J. Antibiofilm activity, pH and solubility of endodontic sealers. Int. Endod. J. 2013, 46, 755–762. [Google Scholar] [CrossRef]
- Jafari, F.; Jafari, S. Composition and physicochemical properties of calcium silicate based sealers: A review article. J. Clin. Exp. Dent. 2017, 9, e1249. [Google Scholar] [CrossRef] [PubMed]
- Vitti, R.P.; Prati, C.; Silva, E.J.N.L.; Sinhoreti, M.A.C.; Zanchi, C.H.; Silva, M.G.D.S.E.; Guedes, O.A.; Estrela, C.R.A.; Bandéca, M.C. Physical properties of MTA Fillapex sealer. J. Endod. 2013, 39, 915–918. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.-M.; Shen, Y.; Zheng, W.; Li, L.; Zheng, Y.-F. Haapasalo, M. Physical properties of 5 root canal sealers. J. Endod. 2013, 39, 1281–1286. [Google Scholar] [CrossRef] [PubMed]
- Tagger, M.; Tagger, E.; Kfir, A. Release of calcium and hydroxyl ions from set endodontic sealers containing calcium hydroxide. J. Endod. 1988, 14, 588–591. [Google Scholar] [CrossRef]
- Cardona Hidalgo, J.C.; González Carreño, J.M.; Avendaño Rueda, J.C. Physicochemical properties of two epoxy resin-based sealants: Topseal® and AdSeal™. A comparative study. Rev. Fac. Odontol. Univ. Antioq. 2019, 31, 68–76. [Google Scholar]
- Marciano, M.A.; Guimarães, B.M.; Ordinola-Zapata, R.; Bramante, C.M.; Cavenago, B.C.; Garcia, R.B.; Bernardineli, N.; Andrade, F.; Moraes, I.G.; Duarte, M.A.H. Physical properties and interfacial adaptation of three epoxy resin–based sealers. J. Endod. 2011, 37, 1417–1421. [Google Scholar] [CrossRef]
- Huang, T.-H.; Kao, C.-T. pH measurement of root canal sealers. J. Endod. 1998, 24, 236–238. [Google Scholar] [CrossRef]
- Schäfer, E.; Zandbiglari, T. Solubility of root canal sealers in water and artificial saliva. Int. Endod. J. 2003, 36, 660–669. [Google Scholar] [CrossRef] [PubMed]
- Carvalho-Júnior, J.R.; Guimarães, L.F.L.; Correr-Sobrinho, L.; Pécora, J.D.; Sousa-Neto, M.D. Evaluation of solubility, disintegration, and dimensional alterations of a glass ionomer root canal sealer. Brazil. Dent. J. 2003, 14, 114–118. [Google Scholar] [CrossRef]
- Azadi, N.; Fallahdoost, A.; Mehrvarzfar, P.; Rakhshan, H.; Rakhshan, V. A four-week solubility assessment of AH-26 and four new root canal sealers. Dent. Res. J. 2012, 9, 31. [Google Scholar]
- Kuga, M.C.; Faria, G.; Weckwerth, P.H.; Duarte, M.A.H.; Campos, E.A.D.; Só, M.V.R.; Voila, K.S. Evaluation of the pH, calcium release and antibacterial activity of MTA Fillapex. Rev. Odontol. UNESP 2013, 42, 330–335. [Google Scholar] [CrossRef]
- Desai, S.; Chandler, N. Calcium hydroxide–based root canal sealers: A review. J. Endod. 2009, 35, 475–480. [Google Scholar] [CrossRef]
- McHugh, C.P.; Zhang, P.; Michalek, S.; Eleazer, P.D. pH required to kill Enterococcus faecalis in vitro. J. Endod. 2004, 30, 218–219. [Google Scholar] [CrossRef] [PubMed]
- Edrees, H.Y.; Abu Zeid, S.T.; Atta, H.M.; AlQriqri, M.A. Induction of osteogenic differentiation of mesenchymal stem cells by bioceramic root repair material. Materials 2019, 12, 2311. [Google Scholar] [CrossRef] [Green Version]
- Yoshino, P.; Nishiyama, C.K.; Modena, K.C.D.S.; Santos, C.F.; Sipert, C.R. In vitro cytotoxicity of white MTA, MTA Fillapex® and Portland cement on human periodontal ligament fibroblasts. Brazil. Dent. J. 2013, 24, 111–116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, Y.-S.; Choi, Y.; Lim, M.-J.; Yu, M.-K.; Hong, C.-U.; Lee, K.-W.; Min, K.-S. In vitro evaluation of a newly produced resin-based endodontic sealer. Restor. Dent. Endod. 2016, 41, 189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xuereb, M.; Vella, P.; Damidot, D.; Sammut, C.V.; Camilleri, J. In situ assessment of the setting of tricalcium silicate–based sealers using a dentin pressure model. J. Endod. 2015, 41, 111–124. [Google Scholar] [CrossRef] [PubMed]
- Gandolfi, M.; Siboni, F.; Prati, C. Properties of a novel polysiloxane-guttapercha calcium silicate-bioglass-containing root canal sealer. Dent. Mater. 2016, 32, e113–e126. [Google Scholar] [CrossRef]
- Silva, E.J.; Rosa, T.P.; Herrera, D.R.; Jacinto, R.C.; Gomes, B.P.; Zaia, A.A. Evaluation of cytotoxicity and physicochemical properties of calcium silicate-based endodontic sealer MTA Fillapex. J. Endod. 2013, 39, 274–277. [Google Scholar] [CrossRef] [PubMed]
MTA-Bioseal (cm−1) | MTA-Fillapex (cm−1) | Adseal (cm−1) | Assignment (Vibration Mode) (Reference) |
---|---|---|---|
3642 | 3641 | Ca(OH)2 [16,17,18,19] | |
3292 | 3298 | OH [19] | |
2954, 2923, 2854, 1321, 1315 | 2972, 2935, 2873, 1318 | CH [18] | |
1666 | 1671 | 1631 | C=O of amide I [20] |
1465, 1446 | 1464 | 1458 | CO32− [16,17,19,20] |
1321 | 1320 | 1303 | CO [20,21] |
1215 | 1248, 1215 | 1246 | C–O of aromatic [21] |
1155 | 1157 | 1165 | SO42− [17,19] |
1112 | SiO4 [18] | ||
1086 | 1031 | V3PO [16,20,22] | |
950 | 947 | Si–O of calcium silicate hydrate (CSH) [19] | |
860, 815 | Si–O of lowly polymerized silicate (CxS) [18,23] (445 + 815 + 950 = C–S–H) | ||
795, 75,710 | 760 | 710, 673 | symmetric stretching of v4 SiO4 of CSH [19] |
701 | 701, 690 | CO3 of aragonite [24] | |
618, 568 | v4PO [22] | ||
592 | SiO42− bending of C3S [16,17,18] | ||
465 | 464 | 500 | SiO42− bending of C2S [18] |
440 | 428 | 412 | O–Si–O of CSH [17,18] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abu Zeid, S.; Edrees, H.Y.; Mokeem Saleh, A.A.; Alothmani, O.S. Physicochemical Properties of Two Generations of MTA-Based Root Canal Sealers. Materials 2021, 14, 5911. https://doi.org/10.3390/ma14205911
Abu Zeid S, Edrees HY, Mokeem Saleh AA, Alothmani OS. Physicochemical Properties of Two Generations of MTA-Based Root Canal Sealers. Materials. 2021; 14(20):5911. https://doi.org/10.3390/ma14205911
Chicago/Turabian StyleAbu Zeid, Sawsan, Hadeel Yaseen Edrees, Abeer Abdulaziz Mokeem Saleh, and Osama S. Alothmani. 2021. "Physicochemical Properties of Two Generations of MTA-Based Root Canal Sealers" Materials 14, no. 20: 5911. https://doi.org/10.3390/ma14205911
APA StyleAbu Zeid, S., Edrees, H. Y., Mokeem Saleh, A. A., & Alothmani, O. S. (2021). Physicochemical Properties of Two Generations of MTA-Based Root Canal Sealers. Materials, 14(20), 5911. https://doi.org/10.3390/ma14205911