Experimental Research of Ratio between Residual and Elastic Strains εres/εE in High-Strength Concrete Beams Subjected to Bending
Abstract
:1. Introduction
2. Numerical Quasi-Linear Models of the Concrete
2.1. Example Models of the Concrete in the Literature
2.2. Linear Elastic–Plastic Borcz Model
- The static problem is reduced to a one-dimensional issue.
- If a beam has a constant second area moment, then a reference line covers the line of gravity at the center of the beam cross-section.
- If a beam has a variable stiffness, then the line of gravity at the center of the beam cross-section is not straight. In such a case, it is assumed that the longitudinal coordinates for the whole beam are measured on the one, straight reference line.
- A beam with a variable second-area moment is replaced by a beam with a piecewise constant second-area moment. The beam is divided into sections, of which each has a constant equivalent stiffness.
- It is assumed in this model that the directions of principal stresses during loading are constant.
- For repeatable loads, the model assumes the total reversibility of the elastic part of the strain after unloading a construction.
- The total strain tensor εij in this model is described by a relation:
3. Investigations
4. Results of Investigations
5. Discussion of Results
6. Conclusions
- The development of computational methods based on linear elastic models is justified by the speed and ease of calculations.
- The approximate results of the experimental investigations from the linear elastic models have an accuracy of up to 5% which is sufficient for the design of most engineering constructions.
- These models allow the prediction of a strain state in pre-critical states, including accidental loads (earthquake, hurricanes).
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sinha, B.P.; Gerstle, K.H.; Tulin, L.G. Stress–strain relations for concrete under cyclic loading. ACI Struct. J. 1964, 61, 195–211. [Google Scholar]
- Bahn, B.Y.; Hsu, T.T.C. Stress–strain behavior of concrete under cyclic loading. ACI Mater. J. 1998, 95, 178–193. [Google Scholar]
- Karsan, I.D.; Jirsa, J.O. Behavior of concrete under compressive loadings. ASCE J. Struct. Eng. 1969, 95, 2543–2563. [Google Scholar]
- Desayi, P.; Iyengar, K.T.S.R.; Reddy, T.S. Stress–strain characteristics of concrete confined in steel spirals under repeated loading. Mater. Struct. 1979, 12, 375–383. [Google Scholar] [CrossRef]
- Okamura, H.; Maekawa, K. Nonlinear Analysis and Constitutive Models of Reinforced Concrete; Giho-do Press: Tokyo, Japan, 1991. [Google Scholar]
- Palermo, D.; Vecchio, F.J. Compression field modeling of reinforced concrete subjected to reversed loading: Formulation. ACI Struct. J. 2003, 100, 616–625. [Google Scholar]
- Sittipunt, C.; Wood, S.L. Influence of Web Reinforcement on the Cyclic Response of Structural Walls. ACI Struct. J. 1995, 92, 745–756. [Google Scholar]
- Dudziak, S. Numerically Efficient Three-Dimensional Model for Non-Linear Finite Element Analysis of Reinforced Concrete Structures. Materials 2021, 14, 1578. [Google Scholar] [CrossRef]
- Mourlas, C.; Papadrakakis, M.; Markou, G. A computationally efficient model for the cyclic behavior of reinforced concrete structural members. Eng. Struct. 2017, 141, 97–125. [Google Scholar] [CrossRef]
- Mirzabozorg, H.; Ghaemian, M. Non-linear behavior of mass concrete in three-dimensional problems using a smeared crack approach. Earthq. Eng. Struct. Dyn. 2005, 34, 247–269. [Google Scholar] [CrossRef]
- Sima, J.F.; Roca, P.; Molins, C. Cyclic constitutive model for concrete. Eng. Struct. 2008, 30, 695–706. [Google Scholar] [CrossRef] [Green Version]
- Aslani, F.; Jowkarmeimandi, R. Stress–strain model for concrete under cyclic loading. Mag. Concr. Res. 2012, 64, 673–685. [Google Scholar] [CrossRef] [Green Version]
- Aslani, F.; Nejadi, S. Cyclic constitutive model for high-strength concrete confined by ultra-high-strength and normal-strength transverse reinforcements. Aust. J. Struct. Eng. 2011, 12, 159–172. [Google Scholar] [CrossRef]
- Rashid, M.A.; Mansur, M.A.; Paramasivam, P. Correlations between Mechanical Properties of High-Strength Concrete. J. Mater. Civ. Eng. 2002, 14, 230–238. [Google Scholar] [CrossRef]
- Castaldo, P.; Gino, D.; Bertagnoli, G.; Mancini, G. Partial safety factor for resistance model uncertainties in 2D non-linear finite element analysis of reinforced concrete structures. Eng. Struct. 2018, 176, 746–762. [Google Scholar] [CrossRef]
- Castaldo, P.; Gino, D.; Bertagnoli, G.; Mancini, G. Resistance model uncertainty in non-linear finite element analyses of cyclically loaded reinforced concrete systems. Eng. Struct. 2020, 211, 110496. [Google Scholar] [CrossRef]
- Kazemi, M.; Li, J.; Harehdasht, S.L.; Yousefieh, N.; Jahandari, S.; Saberian, M. Non-linear behaviour of concrete beams reinforced with GFRP and CFRP bars grouted in sleeves. Structures 2020, 23, 87–102. [Google Scholar] [CrossRef]
- Engen, M.; Hendriks, M.A.N.; Köhler, J.; Øverli, J.A.; Åldstedt, E. A quantification of the modelling uncertainty of non-linear finite element analyses of large concrete structures. Struct. Saf. 2017, 64, 1–8. [Google Scholar] [CrossRef]
- Malm, R. Predicting Shear Type Crack Initiation and Growth in Concrete with Non-Linear Finite Element Method. Ph.D. Thesis, Royal Institute of Technology, Stockholm, Sweden, 2009. [Google Scholar]
- Bayat, H.; Rogoża, A.; Ubysz, A. Doświadczalne wyznaczanie trwałych i sprężystych deformacji w zginanych belkach z betonów wysokiej wytrzymałości (Experimental studies on residual and elastic deformations in high strength concrete beams subjected to bending). Mater. Bud. 2014, 11, 43–44. (In Polish) [Google Scholar]
- Borcz, A. Teoria Konstrukcji Żelbetowych (Theory of Ferroconcrete Constructions); Oficyna Wydawnicza Politechniki Wrocławskiej: Wrocław, Poland, 1986; Volume 2. (In Polish) [Google Scholar]
- Ubysz, A. Constitutive equation of elastic model of concrete. In Concrete Constructions. Theory and Experimental Studies; Gronostajski, J., Kamiński, M., Eds.; Oficyna Wydawnicza Politechniki Wrocławskiej: Wrocław, Poland, 1999; pp. 289–298. [Google Scholar]
- Teng, T.L.; Chu, Y.A.; Chang, F.A.; Shen, B.C.; Cheng, D.S. Development and validation of numerical model of steel fiber reinforced concrete for high-velocity impact. Comput. Mater. Sci. 2008, 42, 90–99. [Google Scholar] [CrossRef]
- Cervenka, V. Reliability-based non-linear analysis according to fib Model Code 2010. Struct. Concr. 2012, 14, 19–28. [Google Scholar] [CrossRef]
- Konstantinidis, D.; Kappos, A.; Izzuddin, B.A. Analytical Stress–Strain Model for High-Strength Concrete Members under cyclic loading. ASCE J. Struct. Eng. 2007, 133, 484–494. [Google Scholar] [CrossRef]
- Banjara, N.K.; Ramanjaneyulu, K. Effect of Deficiencies on Fatigue Life of Reinforced Concrete Beams. ACI Struct. J. 2020, 117, 31–44. [Google Scholar] [CrossRef]
- Wang, H.; He, S.; Yin, X.; Cao, Z. Experimental Study on Fatigue Performance of Reinforced Concrete Beams in Corrosive Environment with Cyclic Loads. Struct. Durab. Health Monit. 2020, 14, 95–108. [Google Scholar] [CrossRef]
- Ayub, T.; Shafiq, N. Stress-Strain Response of High Strength Concrete and Application of the Existing Models. Res. J. Appl. Sci. Eng. Technol. 2014, 8, 1174–1190. [Google Scholar] [CrossRef]
- Blakeley, R.W.G.; Park, R. Prestressed concrete sections with cyclic flexure. ASCE J. Struct. Div. 1973, 99, 1717–1742. [Google Scholar] [CrossRef]
- Yankelevsky, D.Z.; Reinhardt, H.W. Model for cyclic compressive behavior of concrete. ASCE J. Struct. Eng. 1987, 113, 228–240. [Google Scholar] [CrossRef]
- Mander, J.B.; Priestley, M.J.N.; Park, R. Theoretical stress-strain model for confined concrete. ASCE J. Struct. Eng. 1988, 114, 1804–1826. [Google Scholar] [CrossRef] [Green Version]
- Martinez-Rueda, J.E. Energy Dissipation Devices for Seismic Upgrading of RC Structures. Ph.D. Thesis, Imperial College, London, UK, 1997. [Google Scholar]
- Lam, L.; Teng, J.G.; Cheung, C.H.; Xiao, Y. FRP-confined concrete under axial cyclic compression. Cem. Concr. Compos. 2006, 28, 949–958. [Google Scholar] [CrossRef]
- Sadeghi, K.; Abdi, S. Constitutive laws for confined concrete subjected to cyclic loading: State-of -the -art. Acad. Res. Int. 2019, 10, 1–14. [Google Scholar]
- Breccolotti, M.; Bonfigli, M.F.; D’Alessandro, A.; Materazzi, A.L. Constitutive modeling of plain concrete subjected to cyclic uniaxial compressive loading. Constr. Build. Mater. 2015, 94, 172–180. [Google Scholar] [CrossRef]
- Carreira, D.J.; Chu, K.H. Stress–strain relationship for plain concrete in compression. ACI J. 1985, 82, 797–804. [Google Scholar]
- von der Haar, C.; Marx, S. Ein additives Dehnungsmodell für ermüdungsbeanspruchten Beton (Additive model of fatigue-loaded concrete). Beton Stahlbetonbau 2017, 112, 31–40. [Google Scholar] [CrossRef]
- Kappos, A.J.; Konstantinidis, D. Statistical analysis of confined High Strength Concrete. Mater. Struct. 1999, 32, 734–748. [Google Scholar] [CrossRef]
- Kopanitsa, D.G.; Tamrazyan, A.G.; Useinov, E.S.; Rybak, J. Experimental studies of reinforced concrete structures joints on suspension couplings by non-destructive methods of control. Izv. Vyss. Uchebnykh Zaved. Seriya Teknol. Tekst. Promyshlennosti 2017, 370, 332–337. [Google Scholar]
- Maj, M.; Ubysz, A.; Hammadeh, H.; Askifi, F. Non-destructive testing of technical conditions of RC industrial tall chimneys subjected to high temperature. Materials 2019, 12, 2027. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- PN-EN 12390-3:2011. Testing of Hardened Concrete. Part 3: Compressive Strength of Test Specimens; Polski Komitet Normalizacyjny: Warsaw, Poland, 2011. [Google Scholar]
- Łuszczyk, K.; Rogoża, A.P.; Stachoń, T.; Wojtowicz, A.; Ubysz, A. Discrete model of cracks in the reinforced concrete bending beams. In Stroitel’stvo—Formirovanie Sredy Žiznedeâtel’nosti (Building Construction-Shaping of the Environment of Life Activity): Sbornik Trudov XX Meždunarodnoj Mežvuzovskoj Naučno-Praktičeskoj Konferencii Studentov, Magistrov, Aspirantov i Molodyh Učenyh (Proceedings of the 20th International Interuniversity Scientific and Practical Conference of Students, MSc.’s, PhD.’s and Young Scientists—Digital Proceedings), Moscow, Russia, 26–28 April 2017; Moskovskij Gosudarstvennyj Stroitel’nyj Universitet: Moscow, Russia, 2017; pp. 325–327. ISBN 978-5-7264-1660-1. Available online: https://mgsu.ru/resources/izdatelskaya-deyatelnost/izdaniya/izdaniya-otkr-dostupa/2017/StFJD2017.pdf (accessed on 5 January 2021).
- Kowalik, T.; Logon, D.; Maj, M.; Rybak, J.; Ubysz, A.; Wojtowicz, A. Chemical hazards in construction industry. E3S Web Conf. 2019, 97, 03032. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bayat, H.; Ubysz, A.; Maj, M.; Chalecki, M.; Wójt, J.; Tamrazyan, A. Experimental Research of Ratio between Residual and Elastic Strains εres/εE in High-Strength Concrete Beams Subjected to Bending. Materials 2021, 14, 6007. https://doi.org/10.3390/ma14206007
Bayat H, Ubysz A, Maj M, Chalecki M, Wójt J, Tamrazyan A. Experimental Research of Ratio between Residual and Elastic Strains εres/εE in High-Strength Concrete Beams Subjected to Bending. Materials. 2021; 14(20):6007. https://doi.org/10.3390/ma14206007
Chicago/Turabian StyleBayat, Hydayatullah, Andrzej Ubysz, Marek Maj, Marek Chalecki, Jarosław Wójt, and Ashot Tamrazyan. 2021. "Experimental Research of Ratio between Residual and Elastic Strains εres/εE in High-Strength Concrete Beams Subjected to Bending" Materials 14, no. 20: 6007. https://doi.org/10.3390/ma14206007
APA StyleBayat, H., Ubysz, A., Maj, M., Chalecki, M., Wójt, J., & Tamrazyan, A. (2021). Experimental Research of Ratio between Residual and Elastic Strains εres/εE in High-Strength Concrete Beams Subjected to Bending. Materials, 14(20), 6007. https://doi.org/10.3390/ma14206007