Study of the Three-Component Reactions of 2-Alkynylbenzaldehydes, Aniline, and Dialkyl Phosphites—The Significance of the Catalyst System
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Information
2.2. General Procedure for the Synthesis of α-Amino (2-Alkynylphenyl)-Methylphosphonates (3 and 5–10)
2.3. General Procedure for the Synthesis of 1,2-Dihydroisoquinolin-1-Ylphosphonates (4 and 11–18)
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Allen, D.W.; Loakes, D.; Tebby, J.C. Phosphines and related C-D bonded compounds. In Organophosphorus Chemistry; Royal Society of Chemistry: Cambridge, UK, 2016; Volume 45, pp. 1–50. [Google Scholar]
- Lucio, G.C. Organophosphorus compounds at 80: Some old and new issues. Toxicol. Sci. 2018, 162, 24–35. [Google Scholar]
- Tajti, Á.; Keglevich, G. The importance of organophosphorus compounds as biologically active agents. In Organophosphorus Chemistry; Keglevich, G., Ed.; Walter de Gruyter: Berlin, Germany, 2018; pp. 53–65. [Google Scholar]
- Allen, M.C.; Fuhrer, W.; Tuck, B.; Wade, R. Renin inhibitors. Synthesis of transition-state analog inhibitors containing phosphorus acid derivatives at the scissile bond. J. Med. Chem. 1989, 32, 1652–1661. [Google Scholar]
- Kafarski, P.; Lejczak, B. Aminophosphonic acids of potential medical importance. Curr. Med. Chem. Anticancer. Agents 2001, 1, 301–312. [Google Scholar] [CrossRef] [PubMed]
- Mucha, A.; Kafarski, P.; Berlicki, L. Remarkable potential of the α-aminophosphonate/phosphinate structural motif in medicinal chemistry. J. Med. Chem. 2011, 54, 5955–5980. [Google Scholar] [CrossRef]
- Atherton, F.R.; Hassal, C.H.; Lambert, R.W. Synthesis and structure-activity relationships of antibacterial phosphonopeptides incorporating (1-aminoethyl)phosphonic acid and (aminomethyl)phosphonic acid. J. Med. Chem. 1986, 29, 29–40. [Google Scholar] [CrossRef]
- Fields, S.C. Synthesis of natural products containing a C-P bond. Tetrahedron 1999, 55, 12237–12272. [Google Scholar] [CrossRef]
- Stanfield, M.K.; Carrascal, J.; Henderson, L.C.; Eyckens, D.J. α-Aminophosphonate derivatives for enhanced flame retardant properties in epoxy resin. Materials 2021, 14, 3230. [Google Scholar] [CrossRef]
- Jiang, S.; Yu, B.; Zhou, K.; Yang, H.; Shi, Y.; Lo, S.; Hu, Y.; Gui, Z. Sol–gel synthesis and enhanced properties of a novel transparent PMMA based organic–inorganic hybrid containing phosphorus, nitrogen and silicon. J. Sol-Gel Sci. Technol. 2014, 69, 418–428. [Google Scholar] [CrossRef]
- Li, X.; Zhang, D.; Pang, H.; Shen, F.; Fu, H.; Jiang, Y.; Zhao, Y. Synthesis of a diverse series of phosphacoumains with biological activity. Org. Lett. 2005, 7, 4919–4922. [Google Scholar] [CrossRef]
- Moonen, K.; Laureyn, I.; Stevens, C.V. Synthetic methods for azaheterocyclic phosphonates and their biological activity. Chem. Rev. 2004, 104, 6177–6215. [Google Scholar] [CrossRef]
- Tappe, F.M.J.; Trepohl, V.T.; Oestreich, M. Transition-metal-catalyzed C-P cross-coupling reactions. Synthesis 2010, 18, 3037–3062. [Google Scholar]
- Orru, R.V.A.; Rujiter, E. Phosphorus Heterocycles II. In Topics in Heterocyclic Chemistry; Bansal, R.K., Ed.; Springer: Berlin, Germany, 2010; pp. 23–62. [Google Scholar]
- Bentley, K.W. The Isoquinoline Alkaloids; Harwood Academic Publishers: Amsterdam, The Netherlands, 1998; Volume 1. [Google Scholar]
- Trotter, B.W.; Nanda, K.K.; Kett, N.R.; Regan, C.P.; Lynch, J.J.; Stump, G.L.; Kiss, L.; Wang, J.; Spencer, R.H.; Kane, S.A.; et al. Design and synthesis of novel isoquinoline-3-nitriles as orally bioavailable Kv1.5 antagonists for the treatment of atrial fibrillation. Med. Chem. 2006, 49, 6954–6957. [Google Scholar] [CrossRef] [PubMed]
- Marchand, C.; Antony, S.; Kohn, K.W.; Cushman, M.; Ioanoviciu, A.; Staker, B.L.; Burgin, A.B.; Stewart, L.; Pommier, Y. A novel norindenoisoquinoline structure reveals a common interfacial inhibitor paradigm for ternary trapping of the topoisomerase I-DNA covalent complex. Mol. Cancer Ther. 2006, 5, 287–295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kabachnik, M.I.; Medved, T.Y. New synthesis of aminophosphonic acids. Dokl. Akad. Nauk SSSR 1952, 83, 689–692. [Google Scholar]
- Fields, E.K. The synthesis of esters of substituted amino phosphonic acids. J. Am. Chem. Soc. 1952, 74, 1528–1531. [Google Scholar] [CrossRef]
- Keglevich, G.; Bálint, E. The Kabachnik-Fields reaction: Mechanism and synthetic use. Molecules 2012, 17, 12821–12835. [Google Scholar] [CrossRef] [Green Version]
- Müller, T.J.J. (Ed.) Multicomponent Reactions 1. In Science of Synthesis; Thieme: Stuttgart, Germany, 2014. [Google Scholar]
- Baral, E.R.; Sharma, K.; Akhtar, M.S.; Lee, Y.R. A catalyst- and solvent-free thermal multicomponent approach for the construction of diverse and polysubstituted 2-aminopyridines and their antibacterial activity. Org. Biomol. Chem. 2016, 14, 10285–10297. [Google Scholar] [CrossRef]
- Sun, W.; Ding, Q.; Sun, X.; Fan, R.; Wu, J. AgOTf-Catalyzed three-component reactions of 2-alkynylbenzaldehydes, amines, and diethylphosphite. An efficient route to 2,3-disubstituted-1,2-dihydroisoquinolin-1-ylphosphonates. J. Comb. Chem. 2007, 9, 690–694. [Google Scholar] [CrossRef]
- Ding, Q.; Wang, B.; Wu, J. Dihydroisoquinolin-1-ylphosphonates via a copper-catalyzed three-component reaction. Tetrahedron 2007, 63, 12166–12171. [Google Scholar] [CrossRef]
- Ye, Y.; Ding, Q.; Wu, J. Three-component reaction of 2-alkynylbenzaldehyde, amine, and nucleophile using lewis acid-surfactant combined catalyst in Water. Tetrahedron 2008, 64, 1378–1382. [Google Scholar] [CrossRef]
- Zou, L.; Huang, J.; Liao, N.; Liu, Y.; Guo, Q.; Peng, Y. Catalytic asymmetric three-component reaction of 2-alkynylbenzaldehydes, amines, and dimethylphosphonate. Org. Lett. 2020, 22, 6932–6937. [Google Scholar] [CrossRef]
- Ding, Q.; Ye, Y.; Fan, R.; Wu, J. Selective synthesis of 2,3-disubstituted-2H-isoindol-1-ylphosphonate and 2,3-disubstituted-1,2-dihydroisoquinolin-1-ylphosphonate via metal-tuned reaction of 𝛼-amino (2-alkynylphenyl)methylphosphonate. J. Org. Chem. 2007, 72, 5439–5442. [Google Scholar] [CrossRef] [PubMed]
- Ye, S.; Zhou, H.; Wu, J. Synthesis of 1,2-dihydroisoquinolin-1-ylphosphonates via three-component reactions of 2-(2-formylphenyl)ethanone, amine, and diethyl phosphite. Tetrahedron 2009, 65, 1294–1299. [Google Scholar] [CrossRef]
- Zhou, H.; Jin, H.; Ye, S.; He, X.; Wu, J. Multicatalytic synthesis of 1,2-dihydroisoquinolin-1-ylphosphonates via a tandem four-component reaction. Tetrahedron Lett. 2009, 50, 4616–4618. [Google Scholar] [CrossRef]
- Pizova, H.; Boba, P. An optimized and scalable synthesis of propylphosphonic anhydride for general use. Tetrahedron Lett. 2015, 56, 2014–2017. [Google Scholar] [CrossRef]
- Waghmare, A.A.; Hindupur, R.M.; Pati, H.N. Propylphosphonic anhydride (T3P®): An expedient reagent for organic synthesis. Rev. J. Chem. 2014, 4, 53–131. [Google Scholar] [CrossRef]
Entry | A:B:C (Equiv) | Catalyst | Solvent | T (°C) | T (h) | Composition a (%) | ||
---|---|---|---|---|---|---|---|---|
C | 3 | 4 | ||||||
1 | 1:1:1 | – | MeCN | 60 | 4 | 48 | 50 | 2 |
2 | 1:1:1 | 0.5 equiv T3P® | – | 25 | 1 | 30 | 70 | 0 |
3 | 1:1:1 | 1 equiv T3P® | – | 25 | 0.5 | 29 | 71 | 0 |
4 | 1:1:1 | 1 equiv T3P® | – | 25 | 1 | 0 | 100 | 0 |
5 | 1:1:1 | 5 mol% CuSO4·5H2O | – | 60 | 1 | 27 | 5 | 68 |
6 | 1:1:1 | 5 mol% CuSO4·5H2O | MeCN | 60 | 1 | 14 | 0 | 86 |
7 | 1:1:1 | 5 mol% CuI | MeCN | 60 | 1 | 12 | 0 | 88 |
8 | 1:1:1 | 5 mol% CuBr | MeCN | 60 | 1 | 13 | 0 | 87 |
9 | 1:1:1 | 5 mol% CuCl | MeCN | 60 | 1 | 9 | 0 | 91 |
10 | 1:1:1 | 10 mol% CuCl | MeCN | 60 | 1 | 9 | 0 | 91 |
11 | 1:1:1 | 5 mol% CuCl | MeCN | 80 | 1 | 8 | 0 | 92 |
12 | 1:1:1 | 5 mol% CuCl | MeCN | 60 | 1.5 | 8 | 0 | 92 |
13 | 1:1.2:1 | 5 mol% CuCl | MeCN | 60 | 1 | 5 | 0 | 95 |
13 | 1.2:1.2:1 | 5 mol% CuCl | MeCN | 60 | 1 | 0 | 0 | 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Popovics-Tóth, N.; Szabó, K.E.; Bálint, E. Study of the Three-Component Reactions of 2-Alkynylbenzaldehydes, Aniline, and Dialkyl Phosphites—The Significance of the Catalyst System. Materials 2021, 14, 6015. https://doi.org/10.3390/ma14206015
Popovics-Tóth N, Szabó KE, Bálint E. Study of the Three-Component Reactions of 2-Alkynylbenzaldehydes, Aniline, and Dialkyl Phosphites—The Significance of the Catalyst System. Materials. 2021; 14(20):6015. https://doi.org/10.3390/ma14206015
Chicago/Turabian StylePopovics-Tóth, Nóra, Kármen Emőke Szabó, and Erika Bálint. 2021. "Study of the Three-Component Reactions of 2-Alkynylbenzaldehydes, Aniline, and Dialkyl Phosphites—The Significance of the Catalyst System" Materials 14, no. 20: 6015. https://doi.org/10.3390/ma14206015
APA StylePopovics-Tóth, N., Szabó, K. E., & Bálint, E. (2021). Study of the Three-Component Reactions of 2-Alkynylbenzaldehydes, Aniline, and Dialkyl Phosphites—The Significance of the Catalyst System. Materials, 14(20), 6015. https://doi.org/10.3390/ma14206015