
materials

Article

Enhancing the Accuracy of Linear Finite Element Models of
Vehicle Structures Considering Spot-Welded Flanges

Luis Martins * , Gregorio Romero and Berta Suarez

����������
�������

Citation: Martins, L.; Romero, G.;

Suarez, B. Enhancing the Accuracy of

Linear Finite Element Models of

Vehicle Structures Considering

Spot-Welded Flanges. Materials 2021,

14, 6075. https://doi.org/10.3390/

ma14206075

Academic Editor: Arkadiusz Żak
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Abstract: Structural engineering simulations have required increasingly complex computational
models to replace physical tests accurately. This work focuses on the numerical analysis of vehicle
body structures, whose size and complexity make the use of very accurate nonlinear models un-
feasible due to the prohibitive computational costs involved. The purpose of this study is to find
a new approach to model spot-welded joints in linear finite element models of thin-wall vehicle
body structures, improving the accuracy of the model without increasing its complexity. Using a
set of simplified nonlinear models, we fitted the stiffness and damping properties of these welded
joints and used those adjusted values into a linear model of the entire vehicle body structure. The
results were compared with experimental tests, showing a clear improvement in the accuracy of
the modal and frequency responses provided by the linear finite element model, but keeping its
initial complexity level. The adjusted model was then used in an optimization analysis to reduce the
structure’s weight, leading to interesting cost savings and important reductions in the use of natural
resources and carbon emissions.

Keywords: finite-element model; frequency response function; vibration testing; vehicle structures;
correlation analyses

1. Introduction

The level of correlation between the behaviour of a physical system and the results
obtained from a finite element (FE) model is essential in many engineering areas. The
accuracy of results from finite element analysis (FEA) increases with the correlation levels,
thus reducing the demand for prototypes and providing high savings in time and resources
for engineering projects. This statement is especially relevant in the automotive indus-
try [1–3], where the use of FE models is necessary and determinant to accelerate product
development cycles and increase the cost and time efficiency of new vehicle projects.

From this perspective, the validation of analytical simulation models became a decisive
factor in developing new products, especially since the use of advanced computational
resources became economically viable. In 1992, Baker [4] compared different methods to
correlate analysis predictions with test data, including modal matrices and comparisons of
frequency response functions. In 1999, Brughmans et al. [5] studied FEA model updating
techniques for correlation improvement in order to support the implementation of a state-
of-the-art NVH CAE design optimization environment. In 2005 Schedlinski et al. [6]
presented an FEA model update technique based on a sheet metal gauge update. They
used the Modal Assurance Criterion (MAC) to compare the modal consistency of the
original and updated models. Splendi et al. [7] presented in 2013 a technique to tune the
behaviour of damping patches in FE models to improve their correlation with experimental
tests. They used the MAC to verify the modal consistency and compared the point mobility
FRF main peak amplitudes between the experimental and numerical results. In 2017,
Rotondella et al. [8] proposed a novel welding representation for metallic joints, using the
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MAC to measure the numerical–experimental correlation and validate the newly proposed
modelling technique.

Despite this continuous improvement of FEA [2,9–12], the accuracy level of linear
models remains limited by the lack of nonlinear phenomena representation, such as friction
and contact reaction forces. In addition, the complexity of nonlinear models needed to
represent those phenomena limits its use to specific boundary conditions. Otherwise,
it would be unfeasible to solve them considering the computational resources currently
available. For this reason, linear models are traditionally mainly used in these situations.

In the case of a vehicle body subjected to a vibrational analysis, the structure is
typically composed of a set of thin-wall stamped steel sheets connected by spot welds at
their edges. As a consequence of these constructive properties, nonlinear contact between
flanges of adjacent sheets will always occur. Considering the high complexity given by the
deep detail level required, we decided to build and analyse the simulation models using
the FE technique, taking advantage of its flexibility in design representation and its ability
to simulate distinct mechanical elements. On the other hand, to perform vibration analyses,
we should analyse these FE models using the eigenvalue approach [13,14] at least up to
100 Hz, to capture the highest energy modes of the structure, leading to an undesirable
combination of a large nonlinear model with a very demanding computational effort.

In this work, we aim to present a new modelling methodology to increase the accuracy
of linear FEA, thus avoiding exceeding the computational resources currently available.
To this end, we compared the correlation levels obtained with both linear and nonlinear
models of the whole vehicle structure.

Taking a vehicle body structure, we performed a set of bench tests to capture its
modal behaviour and its frequency response functions (FRFs). We also built a reference
FE model of the same vehicle body structure to simulate an identical analysis to the field
tests performed on the bench test (Figure 1). We compared the results obtained from the
reference FE model of the body structure with those obtained from the bench tests and
computed the correlation coefficients.
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ously adjusted with the help of the FE test models. We then performed with this adjusted 
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The results of the adjusted FE model of the body structure showed an improvement 
of 10.6% in the correlation coefficient, compared to the results of the initial reference 
model. The modal behaviour coefficients and the visual comparison of the FRF curves also 
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During the state-of-the-art review, we detected a knowledge gap regarding the rep-
resentation of nonlinear contacts in large finite element models subjected to frequency 
domain analysis. To overcome this gap, the objective of this work is to find a new ap-
proach to model spot-welded flanged joints into linear finite element models of thin-wall 
vehicle body structures, using a nonlinear model behaviour as a reference. In this way, we 
could improve the accuracy of the modal and frequency response function results without 
increasing the complexity of the FE model analysis. 
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After that, we built three FE test models to represent a small part of the structure
welded flange. We first built an FE test model using only linear parameters, thus avoiding
nonlinear behaviours in the contact area between the flanges of adjacent panels. We then
built a second nonlinear FE test model using the first model as a base, adding to the first
model the nonlinear contacts of the flanged areas and computed the difference of behaviour
between both models. We also built a third linear FE test model using the first model as a
base but now adding linear spring-damper elements to simulate the nonlinear behaviour
at the contact areas. The elastic constants of these spring-damper elements were adjusted
using the differences found between the responses of the first and second FE models.

We finally built an adjusted FE model of the whole vehicle body structure, adding to
the reference FE model of the body structure the linear spring-damper elements previously
adjusted with the help of the FE test models. We then performed with this adjusted model
the same analyses carried out with the bench test and the reference FE model, comparing
the adjusted model results with the bench test results, and computing the correlation
coefficients.

The results of the adjusted FE model of the body structure showed an improvement
of 10.6% in the correlation coefficient, compared to the results of the initial reference model.
The modal behaviour coefficients and the visual comparison of the FRF curves also show a
higher correlation given by the adjusted model, confirming the validation of the adjustment
methodology proposed here.

During the state-of-the-art review, we detected a knowledge gap regarding the rep-
resentation of nonlinear contacts in large finite element models subjected to frequency
domain analysis. To overcome this gap, the objective of this work is to find a new approach
to model spot-welded flanged joints into linear finite element models of thin-wall vehi-
cle body structures, using a nonlinear model behaviour as a reference. In this way, we
could improve the accuracy of the modal and frequency response function results without
increasing the complexity of the FE model analysis.

2. Materials and Methods
2.1. Tests Performed on the Bench Test. Reference Data
2.1.1. Test Definition

Based on the vehicle manufacturer’s experience, we performed an experimental modal
analysis of the physical structure of the vehicle body on a bench test (Figure 2, left), as
explained in the following paragraphs. From this test, we generated a reference set of
results to support the correlation analysis of the FE models.
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We isolated the vehicle structure from the other parts of the vehicle and supported
it on a set of four air springs. Then, we distributed 152 triaxial accelerometers on the
structural members and large panels, forming a mesh.

We used two electrodynamic shakers (Tira GmbH, Schalkau, Germany) to excite the
body structure with a time-domain burst random noise. We also configured the shape of
the power spectral density (PSD) of the input signal to concentrate the higher amount of
energy within the frequency range from 10 to 60 Hz, where we can usually find the main
eigenmodes.

We acquired the response of the vehicle body structure through a mesh of accelerom-
eters (PCB Piezotronics, Depew, NY, USA). We identified the main body structure eigen-
modes and gathered their eigenfrequencies and damping ratios. We performed three
sequential runs with fifty sample records per run to cover all excitation and response points.
In this way, the data analyses were more accurate and faster. We then processed these data
to compute the eigenfrequencies and eigenmodes of the vehicle body structure.

We also used an impact hammer (PCB Piezotronics, Depew, NY, USA) to perform an
impact test by exciting, one at a time, the four shock tower attachment points of the vehicle
body structure. We applied a 1.0 N pulse at each point on the x, y, and z directions (dir)
separately. We measured the magnitude and phase of the accelerations at the driver seat
attachment point (Figure 2, right) in the x, y and z-dir.

We performed an average of 10 impacts per direction to smooth the transfer functions
and improve data accuracy even more. We computed the fast Fourier transform (FFT) to
convert the acquired data from the time to frequency domains. In this way, we obtained
the frequency response function (FRF) for each point and direction.

In total, we acquired 72 FRF data sets (4 excitation points × 3 excitation directions × 3
response point directions × 2 complex roots—magnitude and phase). Although we used
the entire data set for the calculations, we just plotted the amplitude of the root mean
square (RMS) of the four excitation points to reduce the number of graphics shown.

2.1.2. Eigenfrequencies

Table 1 gathers the eigenfrequencies and damping ratios of the main eigenmodes of
the body structure found in the bench test, from 10 to 60 Hz.
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Table 1. Eigenfrequencies and damping ratios of the vehicle body structure from the bench test.

Mode Frequency
[Hz] Damping c/co [ ] Mode Shape Mode Picture

1 33.38 0.00513 Windshield
Torsion
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Figure 3. Reference FE model of the vehicle body structure (left) and body structure excitation points (right). 

The FE model was meshed based on the vehicle manufacturer’s experience, as sum-
marized below. We used a 5 mm meshing size with a minimum size of 2 mm for refine-
ment at complex design regions like the edges, flanges, beads, and attachment points. We 
used TRIA3 and QUAD4 2D shell elements to mesh stamped parts such as panels and 
structural beams; HEXA8 3D + RBE3 1D elements to represent spot welds and adhesive 
connections; RBE2 1D elements to represent bolts and nuts, and CBUSH 1D spring-
damper elements for the adjusted model tuning. We used linear material properties to 
represent the stamped parts and the welds, made of steel (Young’s modulus = 210.0 GPa, 
Poisson’s ratio = 0.30 and density = 7900 Kg/m3), as well as the polymeric adhesive mate-
rial (Young’s modulus = 1.9 GPa, Poisson’s ratio = 0.42 and density = 1190 Kg/m3). 
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Table 1. Cont.

Mode Frequency
[Hz] Damping c/co [ ] Mode Shape Mode Picture

7 53.73 0.00453 Global Vertical
Bending
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2.2. Reference FE Model of the Vehicle Body Structure
2.2.1. Model Definition

We built a reference FE model of the vehicle body structure (Figure 3, left). We used the
Hyperworks software pack to support the FE model building (Hypermesh), the FE analysis
solving (Optistruct), the post-processing FRF graphics (Hypergraphics), visualization
(Hyperview), MAC (Hyperview NVH module) and FRAC (Compose) calculations. We
also used MS Excel to plot additional graphics other than FRFs.
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Figure 3. Reference FE model of the vehicle body structure (left) and body structure excitation points (right).

The FE model was meshed based on the vehicle manufacturer’s experience, as sum-
marized below. We used a 5 mm meshing size with a minimum size of 2 mm for refinement
at complex design regions like the edges, flanges, beads, and attachment points. We
used TRIA3 and QUAD4 2D shell elements to mesh stamped parts such as panels and
structural beams; HEXA8 3D + RBE3 1D elements to represent spot welds and adhesive
connections; RBE2 1D elements to represent bolts and nuts, and CBUSH 1D spring-damper
elements for the adjusted model tuning. We used linear material properties to represent
the stamped parts and the welds, made of steel (Young’s modulus = 210.0 GPa, Poisson’s
ratio = 0.30 and density = 7900 Kg/m3), as well as the polymeric adhesive material (Young’s
modulus = 1.9 GPa, Poisson’s ratio = 0.42 and density = 1190 Kg/m3).

We performed a free-free modal analysis (Normal Modes solver solution) with the
reference FE model to get the same mode shapes [15] as those obtained in the bench test.
We also simulated the hammer impact test (Frequency Response Modal solver solution)
using a frequency response analysis to find the FRFs from the four shock tower attachments
and considering the six degrees of freedom [16] (Figure 3, right), like in the bench test.
We extracted the eigenvalues using the Lanczos’ method, considering a structural critical
damping ratio of 0.008 [17,18] from 0 to 100 Hz.
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We used the Modal Assurance Criterion (MAC) and the Frequency Response Assur-
ance Criterion (FRAC) metrics to measure the differences between the results obtained
with the bench test and the reference FE model.

The MAC [19–21] is a normalized single-value metric that estimates the consistency
between eigenvectors from different sources. We computed it to assess the accuracy of the
modal behaviour of the reference FE model. We contrasted the eigenvectors found from
the reference FE model with those found in the bench test, focusing on the frequency range
of concern, from 10 to 60 Hz. We computed the MAC as follows [21]:

MAC(a,x) =

∣∣∣∑N f
j=1{ϕa}j{ϕx}j

∣∣∣(
∑

N f
j=1{ϕa}2

j

)(
∑

N f
j=1{ϕx}2

j

) (1)

where the eigenvectors {ϕa}, extracted from the reference FE model, were compared with
the reference eigenvectors {ϕx}, extracted from the bench test data. N f refers to the mode
number, in ascending order.

The FRAC [20–23] is a frequency-dependent normalized single-value metric that
estimates the correlation between two FRFs with the same excitation and response points.
We computed it to assess the accuracy of the transfer functions found with the reference FE
model. We contrasted the FRFs found from the reference FE model with those found in the
bench test, restricting to the frequency range of concern, from 25 to 60 Hz, where the FRF
peaks are most representative. We computed the FRAC as follows [20]:

FRAC(a,x) =

∣∣∣∑N f
j=1

(
Ha
(
ωj
)H .Hx

(
ωj
))∣∣∣2[

∑
N f
j=1

(
Ha
(
ωj
)H .Ha

(
ωj
))] [

∑
N f
j=1

(
Hx
(
ωj
)H .Hx

(
ωj
))] (2)

where the FRFs Ha, extracted from the reference FE model, were compared with the refer-
ence FRFs Hx, extracted from the bench test data. Both Ha and Hx are complex functions.
The superscript H refers to the Hermitian, which is the transpose of the complex conjugate.
N f and ω refer to the mode number and to the frequency value in ascending order.

2.2.2. MAC Matrices

Table 2 gathers the MAC between the reference FE model of the vehicle body structure
and the experimental test modes, the first obtained from the modal analysis simulation of
the reference FE model and the second from the hammer impact bench test. From these
results, we found that the main diagonal terms of the MAC matrix are higher than 0.9, which
means that the modal results of the FEA are consistent with the experimental results [21].

Table 2. MAC results for the reference FE vehicle body structure model.

- - BENCH TEST EIGENFREQUENCIES [Hz]

- - 33.4 33.4 39.2 44.7 46.3 49.3 53.7

R
EF

ER
EN

C
E

FE
M

O
D

EL
EI

G
EN

FR
EQ

U
EN

C
IE

S
[H

z] 31.3 0.97 0 0 0 0 0 0

36.2 0.02 0.98 0 0 0.07 0 0

37.5 0 0.01 0.98 0 0 0 0

43.2 0 0 0.01 0.96 0 0.01 0

47.3 0.01 0 0 0.04 0.01 0.91 0

50.2 0 0.09 0 0 0.95 0.02 0

53.0 0 0 0 0 0.06 0 0.93

We also noticed that the fifth and sixth modes are switched. We considered this switch
to be an undesirable effect of the small number of accelerometers used in the bench test to
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acquire the local modes in the moonroof opening region. Even so, the main diagonal terms
of the MAC matrix have high coefficients (>0.9) for all global modes. In any case, the effect
of these switched modes affects only the moonroof area. Thus, we concluded that, despite
this permutation of modes, the results are still consistent.

2.2.3. FRAC Results

Table 3 shows the results of the FRAC analysis between the reference FE model and
the experimental test of the vehicle body structure.

Table 3. FRAC results for the reference FE model of the vehicle body structure.

Impact Point/Dir FRAC Impact Point/Dir FRAC Impact Point/Dir FRAC
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EF
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EN
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FE
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SE

PO
IN

T:
X
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IR

front left/x 0.9560

R
EF

ER
EN
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E

FE
M
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D

EL
R
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N
SE
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Y-

D
IR

front left/x 0.2315

R
EF

ER
EN

C
E

FE
M

O
D

EL
R

ES
PO

N
SE

PO
IN

T:
Z

-D
IR

front left/x 0.8497

front left/y 0.2270 front left/y 0.1654 front left/y 0.1428

front left/z 0.4164 front left/z 0.2343 front left/z 0.6700

front right/x 0.9320 front right/x 0.1547 front right/x 0.5928

front right/y 0.1732 front right/y 0.1720 front right/y 0.1246

front right/z 0.3994 front right/z 0.2403 front right/z 0.4808

rear left/x 0.9647 rear left/x 0.2690 rear left/x 0.2206

rear left/y 0.8365 rear left/y 0.2645 rear left/y 0.4020

rear left/z 0.7581 rear left/z 0.1026 rear left/z 0.4220

rear right/x 0.9682 rear right/x 0.2488 rear right/x 0.3059

rear right/y 0.8887 rear right/y 0.2379 rear right/y 0.3238

rear right/z 0.6374 rear right/z 0.1110 rear right/z 0.5542

Average x-dir 0.6798 Average y-dir 0.2027 Average z-dir 0.4241

- - - - - - Overall average 0.4355

2.3. FE Test Models
2.3.1. Model Definition

From the MAC and FRAC results, we detected a gap between the results obtained
with the bench test and the reference FE model of the vehicle body structure. Since the
reference FE model already includes all linear structural components and connections,
we could not increase its accuracy just by considering the linear boundary conditions.
Therefore, the FE model should also include other nonlinear elements. Since the contacts
between the welded flanges of the vehicle body parts were present in the whole structure,
we would also include them in the FE model of the body structure.

However, the change from linear to nonlinear boundary conditions, given by the
addition of nonlinear contact elements on the whole structure, will exponentially increase
the required calculation efforts. Therefore, it would be unfeasible to analyse this nonlinear
FE model using the current computational resources available.

Taking into account this limitation, we built a linear FE test model (Figure 4, left),
replicating at a small scale the design of the flanges of the vehicle body structure, according
to the following parameters:

• Plate size [mm]: 250 × 50 × 1.0;
• Gap between upper and lower plates: 1.0 mm;
• Spot welds: 5 spots located every 50.0 mm; and
• System support condition: simply supported.
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contact elements (right).

We also built a nonlinear FE test model (Figure 4, centre) by adding nonlinear contact
elements to the linear FE test model in the surroundings of each spot weld. We used
a contact static friction coefficient {ϕS} = 0.25 [24–26]. We also built a third FE test
model with linear contact elements (Figure 4, right), adjusting their stiffness and damping
coefficients by comparing the results of the other two FE test models.

2.3.2. Comparison of the First Eigenfrequencies

We performed a first set of analyses to assess the differences in the first eigenfrequency
between the linear and nonlinear FE test models. To do this, we applied a load of 0.01 N to
all nodes of the upper plate, exciting the system with a time-dependent sinusoidal enforced
motion during 1 s, with a frequency ranging from 10 to 60 Hz, with a 1 Hz step.

Since the plate deflection shows a bending shape, we plotted the FFT of the deflec-
tion of the central node of the upper plate. From the FFT curves, we identified the first
eigenfrequency of each model.

For the FE test model with only linear boundary conditions (Transient Direct solver
solution), without contact representation, we found the first eigenfrequency at 66.4 Hz,
with no variation of the results (<0.001 Hz) over the excitation frequency range (Figure 5).
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From the FE test model with nonlinear boundary conditions (Transient Non-Linear
solver solution) and including nonlinear contacts, we found the first eigenfrequency at
70.3 Hz, with no other relevant results variation (<0.001 Hz) over the excitation frequency
range (Figure 6). We used the difference between the first results of the two first FE test
models (3.9 Hz) to adjust the stiffness of the spring-damper contact elements included in
the third linear FE test model.
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curves for both the linear and nonlinear FE test models. 

Figure 6. Nonlinear FE model time response (left) and time-to-frequency domain conversion of FFT response (right), at
25 Hz.

Since the results for the first eigenfrequency remain constant over the frequency range
of interest (from 10 to 60 Hz), we used a linear interpolation approach. We took the first
eigenfrequency of the linear FE reduced model, Fa = 66.4 Hz as a starting point. Since
we did not include spring-damper elements in this model, we assumed its stiffness as
Ka = 0.0 N/mm. Next, we added spring-damper elements to the linear FE test model
using an arbitrary stiffness value of Kb = 1000 N/mm. We performed the same transient
direct analyses as before and found the first eigenfrequency, Fb, at 71.3 Hz, with no results
variation over the excitation frequency range. We then interpolated the first eigenfrequency
of the nonlinear FE test model (70.3 Hz) between points a and b (Figure 7) and found the
corresponding adjusted stiffness Kadj = 801.0 N/mm.
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We also validated the adjusted linear spring-damper elements (Kadj = 801.0 N/mm)
by adding them to the linear FE test model. In this way, we found the first eigenfrequency
at 71.3 Hz, the same value found with the nonlinear FE test model.

2.3.3. Comparison of the Damping Decay Curves

We performed a second set of analyses to assess the differences in the damping decay
curves between the linear and nonlinear FE test models. To do this, we applied a pulse
of 1 N on the central node of the upper plate for 0.01 s (Transient Modal solver solution).
We took the time response of the node displacement over a 1 s span (Figure 8, left) and
represented its envelope (Figure 8, right). In this way, we found the exponential damping
decay curves for both the linear and nonlinear FE test models.
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The exponents of the equations of these curves are their decaying rates, σ. We can also
use this variable to calculate the damping ratio, ζ, of an undamped system [27], given by:

ζ =
1√

1 +
( 2π

σ

)2
(3)

being σ , ln y1
y2

where y1 and y2 are the respective vibration amplitudes at two suc-
cessive peaks of a decaying vibration, from which the decay rates σlin = −3.233 and
σnon−lin = −3.590 were calculated. It is also known that:

σ =
B

2m
(4)

From Equation (4), assuming that both linear and nonlinear systems have the same
mass, we found that Bnon−linear = 1.1104·Blinear. We then used this relationship to ad-
just the damping of the linear FE spring-damper elements, to simulate the effect of the
nonlinear contacts.

We also validated the adjusted linear spring-damper elements by adding them to the
linear FE test model. Figure 9 shows the decay curves and equations found for the adjusted
linear FE test model and the nonlinear FE test model.
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Figure 9. Nonlinear and linear adjusted z-dir displacement (left) and decaying rate (right) curves.

Comparing the decay rate of the non-adjusted (σlin = −3.233) and adjusted (σadj = −3.715)
linear FE test models with the decay rate of the nonlinear FE test model (σnon−lin = −3.590),
we found that the difference between the decay rates of the linear and nonlinear models
decreased from 11.04% to 3.34% when using adjustment. This comparison can also be
visually confirmed by comparing the curves and decay rates shown in Figures 8 and 9.
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3. Results
3.1. Adjusted FE Model of the Vehicle Body Structure
3.1.1. Model Definition

We then built an adjusted linear FE model of the vehicle body structure (Figure 10).
To this end, we added to the reference FE model of the vehicle body structure a set of
adjusted spring-damper elements along all the welded flanges of the vehicle structure. For
this purpose, we used the adjusted stiffness and damping values, Kadj = 801.0 N/mm and
Badj = 1.1104 N.s/mm, previously calculated from the FE test models. From this adjusted
FE model of the vehicle body structure, we obtained the same mode shapes and FRFs [15]
as for the bench test and the reference FE model of the vehicle body structure.
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Figure 10. Adjusted linear FE model showing the added spring-damper elements.

Like for the bench test and the reference FE model of the vehicle body structure,
we also simulated the impact hammer test from 0 to 100 Hz. To do so, we performed
a frequency response analysis to capture the FRFs. We extracted the real part of the
eigenvalues using the Lanczos’ method, considering the average structural damping ratio
of 0.0044815, as found during the bench test.

Table 4 and Figure 11 show the eigenfrequencies and FRFs of the adjusted FE model
of the vehicle body structure. They also gather those found from the bench test and the
reference FE model of the vehicle body structure.

Table 4. Eigenfrequencies of the bench test and the reference and adjusted FE models of the vehicle
body structure.

Mode Modal Shape Bench Test [Hz] Reference FE
Model [Hz]

Adjusted FE
Model [Hz]

1 Windshield Torsion 33.38 31.33 33.40

2 1st Moonroof Bending 33.38 36.22 37.10

3 Global Torsion 39.23 37.52 40.01

4 Global Lateral Bending 44.71 43.19 44.87

5 2nd Moonroof Bending 46.34 47.32 49.65

6 Moonroof Torsion 49.34 50.17 52.43

7 Global Vertical Bending 53.73 53.02 55.89
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We assessed the accuracy of the new adjusted model using the MAC and FRAC metrics
to compare the modal behaviour and the FRFs obtained with this model in comparison
with the bench test.

Tables 5 and 6 show the MAC and FRAC metrics of the adjusted FE model of the
vehicle body structure, together with those of the reference FE model of the vehicle body
structure. We calculated them by contrasting the results of the reference and adjusted FE
models of the vehicle body structure with the bench test results.

Table 5. MAC results of the adjusted FE model of the vehicle body structure.

- - BENCH TEST EIGENFREQUENCIES [Hz]

- - 33.4 33.4 39.2 44.7 46.3 49.3 53.7

R
EF

ER
EN
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E

FE
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D

EL
EI

G
EN

FR
EQ

U
EN
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S
[H

z] 33.4 0.97 0 0 0 0 0 0

37.1 0.02 0.99 0 0 0.10 0 0

40.0 0 0 0.99 0 0 0 0

44.9 0 0 0 0.98 0 0 0

49.7 0.01 0 0 0.03 0.01 0.93 0

52.4 0 0.07 0 0 0.97 0.02 0

55.9 0 0 0 0 0.02 0 0.96
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Table 6. FRAC results for the adjusted FE model of the vehicle body structure.

Impact Point/Dir FRAC Impact Point/Dir FRAC Impact Point/Dir FRAC
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front left/x 0.9560
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EF
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front left/x 0.2315

R
EF

ER
EN

C
E

FE
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D

EL
R

ES
PO

N
SE

PO
IN

T:
Z

-D
IR

front left/x 0.8323

front left/y 0.1859 front left/y 0.1795 front left/y 0.1909

front left/z 0.4848 front left/z 0.3990 front left/z 0.7250

front right/x 0.9846 front right/x 0.1181 front right/x 0.5154

front right/y 0.1774 front right/y 0.1946 front right/y 0.2316

front right/z 0.4986 front right/z 0.3854 front right/z 0.4522

rear left/x 0.9647 rear left/x 0.3333 rear left/x 0.2151

rear left/y 0.8627 rear left/y 0.3187 rear left/y 0.3266

rear left/z 0.8263 rear left/z 0.3838 rear left/z 0.3873

rear right/x 0.9657 rear right/x 0.2916 rear right/x 0.3961

rear right/y 0.9432 rear right/y 0.3388 rear right/y 0.2362

rear right/z 0.6384 rear right/z 0.3813 rear right/z 0.5864

Average x-dir 0.7082 Average y-dir 0.2923 Average z-dir 0.4246

- - - - - - Overall average 0.4751

3.1.2. Eigenfrequencies

Table 4 shows the eigenfrequencies of these same mode shapes in both the reference
and adjusted FE models of the vehicle body structure, together with those of the bench test.

3.1.3. MAC Matrices

Table 5 gathers the MAC of the adjusted FE model of the vehicle body structure
contrasted with the bench test. Despite the switch mentioned above between the fifth and
sixth eigenmodes, the MAC coefficients are still higher than 0.9. Thus, the modal results
also have consistent correspondence with the bench test data. The main diagonal terms
on the MAC matrix of the adjusted FE model of the vehicle body structure are generally
better (higher) than for the reference FE model, thus indicating an improved accuracy for
the adjusted model.

3.1.4. FRAC Coefficients

From the FRAC coefficients shown in Table 6, we computed the overall average
FRAC for the adjusted FE model of the vehicle body structure, FRACadj= 0.4751. It is
9.1% higher than the overall average FRAC for the reference FE model of the vehicle body
structure, FRACref= 0.4355 (Table 3). This confirms the correlation improvement given by
the proposed adjustment, also noticed by comparison of the MAC and the FRF plots.

3.1.5. Frequency Response Functions (FRFs)

Figure 11 shows the root mean square (RMS) of the FRFs of the four excitation points
for the bench test, the reference FE model of the vehicle body structure and the adjusted FE
model of the vehicle body structure.

From these results, and based on the visual analysis of the plots, we found that the
curves for the adjusted FE model generally fit better with the curves for the bench test than
those for the reference FE model.

3.2. Optimization Analysis

We performed a weight optimization analysis of the vehicle body structure to evaluate
the isolated effect of the proposed methodology. In this way, we could quantify the
enhancement provided in terms of weight and cost savings. We considered the following
restrictions to perform the optimization analysis:
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• Disregard panels, since they were already set to the minimum gauge allowed;
• Disregard component brackets, since their main function is related to component tests;
• Avoid gauge changes smaller than 0.1 mm due to manufacturing restrictions;
• Avoid gauge changes higher than 15% of the initial gauge (if t < 1.0 mm) due to

manufacturing restrictions for new tooling;
• Avoid gauge changes higher than 10% of the initial gauge (if t ≥ 1.0 mm) due to

manufacturing restrictions for new tooling;
• Disregard critical parts related to frontal and lateral impact tests, since their main

function is related to crash analysis; and
• Disregard critical parts related to chassis and powertrain attachments, since their main

function is related to fatigue durability analysis.

The optimization analysis provided a gauge reduction in four parts of the vehicle
body structure (Figure 12), resulting in a weight saving of 0.566 Kg. As expected, the FRF
peaks of the optimized model moved in the direction of the bench test curves (Figure 13)
but without exceeding their peaks.

Materials 2021, 14, x FOR PEER REVIEW 15 of 20 
 

 

• Disregard panels, since they were already set to the minimum gauge allowed; 
• Disregard component brackets, since their main function is related to component 

tests; 
• Avoid gauge changes smaller than 0.1 mm due to manufacturing restrictions; 
• Avoid gauge changes higher than 15% of the initial gauge (if t < 1.0 mm) due to man-

ufacturing restrictions for new tooling; 
• Avoid gauge changes higher than 10% of the initial gauge (if t ≥ 1.0 mm) due to man-

ufacturing restrictions for new tooling; 
• Disregard critical parts related to frontal and lateral impact tests, since their main 

function is related to crash analysis; and 
• Disregard critical parts related to chassis and powertrain attachments, since their 

main function is related to fatigue durability analysis. 
The optimization analysis provided a gauge reduction in four parts of the vehicle 

body structure (Figure 12), resulting in a weight saving of 0.566 Kg. As expected, the FRF 
peaks of the optimized model moved in the direction of the bench test curves (Figure 13) 
but without exceeding their peaks. 

 
Figure 12. Optimized adjusted FE model of the vehicle body structure highlighting the parts with gauge reduction. Figure 12. Optimized adjusted FE model of the vehicle body structure highlighting the parts with gauge reduction.

In addition to this, we also analysed the stresses on the down-gauged components
(0.7 mm thickness on the optimized adjusted FE model). We compared them with the
stresses on the same components with the original gauge (0.8 mm thickness on the adjusted
FE model). To this end, we performed a linear static calculation using an input torque of
3000 N.m applied in the front shock towers by opposite vertical loads. Based on the vehicle
manufacturer’s experience in durability simulation test analysis, we partially constrained
the rear shock towers to simulate a critical road test condition. We measured the maximum
stress in the components considering the original and down-gauged conditions (Figure 14).
Then we calculated the predicted lifetime [28] for each condition using the Neuber plasticity
correction and the Smith–Topper–Watson mean stress correction, considering the properties
of the SAE-1020 material. As a result, the original lifetime decreased from 5.681·106 to
4.120·106 cycles, but still complies with the material endurance limit [29].
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The optimization analysis confirmed the improvement of the MAC and FRAC coeffi-
cients given by the adjusted model, thus corroborating the significant improvement of the
correlation level provided by the proposed adjustment methodology.
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To better illustrate the impact of the modelling approach proposed here, we also
performed a weight-saving estimate as a result of this action, based on the following pa-
rameters:

• Sales in 2019 of the tested vehicle [30–32]: 282,371 units; and
•Weight savings per vehicle: 0.566 kg

As a result, we estimated material savings of 160 tons of steel per year for this vehicle
model only. Considering that the life cycle of a vehicle can extend for approximately ten
years [3] and the great diversity of vehicle models on the market, the total savings can
reach very impactful numbers not only in economic terms, but also in environmental and
social issues.

In this case, the reduction in the use of steel, which brings about important cost savings,
also helps preserve natural resources. In addition, the weight reduction provided by this
optimization improves the vehicle’s fuel economy performance, bringing another positive
impact on the preservation of natural resources and the reduction of carbon emissions.

4. Discussion

Improving the correlation level between FE simulations and field tests is a key factor in
improving the time- and cost-efficiency of many engineering projects. In particular, it is es-
sential in the automotive industry. A possible solution to achieve this goal would be to add
nonlinear elements and boundary conditions to traditional linear FE simulation models.

However, this change from linear to nonlinear conditions would substantially increase
the computational time and resources required to perform an analysis. Therefore, when
large structures are involved, such as in the case of vibration analysis of the vehicle body
structure, the use of nonlinear models becomes an unfeasible alternative.

In this work, we propose a new methodology to increase the accuracy of linear models
without compromising their complexity and feasibility. For this, we compared the MAC
coefficients, the FRF curves and the FRAC coefficients obtained for both the reference and
the adjusted FE models of the vehicle body structure, getting the following findings:

• Both the reference and the adjusted models have a consistent correspondence with
respect to the bench test data (MAC > 0.9). The adjusted model shows slightly better
MAC correspondence than the reference model;

• The FRF curve of the adjusted model fits better with the bench test results than the
FRF curve of the reference model, especially around the 33 and 39 Hz peaks; and

• The overall average FRAC coefficient of the adjusted model (FRACadj= 0.4751) showed
an improvement of 9.1% compared to the overall average FRAC coefficient of the
reference model (FRACref= 0.4355).

In addition, the optimization performed based on the results of the adjusted FE model
generated a significant improvement in the weight of the vehicle body structure weight.

The analysis of these results confirmed the effectiveness of the proposed methodology.
It fills the knowledge gap, initially identified, through a novel process for adjusting the
stiffness and damping of spot-welded joints on thin-wall structures using small FE test
models and including them into linear FE models of the entire vehicle body structure.

However, considering the results obtained, the following research opportunities to
expand the correlation improvements achieved here can be further exploited:

• Improve the accuracy of the mesh representation of welding spots by proposing new
element formulations;

• Improve the accuracy of the mesh representation of bolted connections by proposing
new element formulations;

• Improve the accuracy of the mesh representation of adhesive connection joints by
proposing new element formulations;

• Refine the representation of the FE model by incorporating variations in sheet metal
thickness from stamping manufacturing processes;



Materials 2021, 14, 6075 18 of 19

• Improve the accuracy of experimental bench test results by proposing new acquisition
strategies for raw data measurements; and

• Improve the accuracy of experimental bench test results by proposing new data
processing methods for both vibration and damping evaluation.

These considerations, among others, will be introduced in future research models
applied to vehicle structures for their refinement, either for vibration and noise analysis or
even for durability and fatigue studies, aiming to increase the accuracy of their simulations
and consequently improve the correlation level between the analytical and test results.
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