Natural Cinnamic Acid Derivatives: A Comprehensive Study on Structural, Anti/Pro-Oxidant, and Environmental Impacts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Spectroscopic Studies
2.3. Quantum Chemical Calculations
2.4. Antioxidant Assays
2.4.1. DPPH● Antiradical Activity Assay
2.4.2. HO● Antiradical Activity Assay
2.4.3. Ferric Reducing Activity Assay (FRAP)
2.4.4. Cupric Reducing Activity Assay (CUPRAC)
2.4.5. Pro-Oxidant Activity Assay
2.4.6. Inhibition of Linoleic Acid Peroxidation Assay
2.4.7. Antioxidant Activity in Saccharomyces Cerevisiae Model
2.4.8. The Environmental Impact Assessment
Technological Studies
Analytical Methodology
3. Results
3.1. Spectroscopic Studies
3.1.1. FT-IR and FT-Raman Spectra
3.1.2. UV Spectra
H and 13C NMR Spectra
3.2. Quantum Chemical Calculations at B3LYP/6-311**(d,p) Level
3.3. Antioxidant Properties
3.3.1. DPPH● and HO● Antiradical Activity Assay
3.3.2. Reducing Activity Assays
3.3.3. Pro-Oxidant Activity Assay
3.3.4. Inhibition of Linoleic Acid Peroxidation Assay
3.3.5. Antioxidant Activity in Saccharomyces Cerevisiae Model
3.4. The Environmental Impact Assessment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Guzman, J.D. Natural cinnamic acids, synthetic derivatives and hybrids with antimicrobial activity. Molecules 2014, 19, 19292–19349. [Google Scholar] [CrossRef] [PubMed]
- Sova, M. Antioxidant and Antimicrobial Activities of Cinnamic Acid Derivatives. Mini-Rev. Med. Chem. 2012, 12, 749–767. [Google Scholar] [CrossRef] [PubMed]
- Lafay, S.; Gil-Izquierdo, A. Bioavailability of phenolic acids. Phytochem. Rev. 2008, 7, 301–311. [Google Scholar] [CrossRef]
- Szwajgier, D.; Pielecki, J.; Targoski, Z. Antioxidant activities of cinnamic and benzoic acid derivatives. ACTA Acta Sci. Pol. Technol. Aliment 2005, 4, 129–142. [Google Scholar]
- Kiokias, S.; Varzakas, T.; Oreopoulou, V. In vitro activity of vitamins, flavonoids, and natural phenolic antioxidants against the oxidative deterioration of oil-based systems. Crit. Rev. Food Sci. Nutr. 2008, 48, 78–93. [Google Scholar] [CrossRef] [PubMed]
- Jitareanu, A.; Tataringa, G. Cinnamic acid Derivatives and 4-Aminoantipyrine Amides—Synthesis and Evaluation of Biological Properties. Res. J. Chem. Sci. Res. J. Chem. Sci 2013, 3, 2231–2606. [Google Scholar]
- Natella, F.; Nardini, M.; Di Felice, M.; Scaccini, C. Benzoic and cinnamic acid derivatives as antioxidants: Structure- activity relation. J. Agric. Food Chem. 1999, 47, 1453–1459. [Google Scholar] [CrossRef]
- Gawlik-Dziki, U. Fenolokwasy jako bioaktywne składniki żywności. ŻYWNOŚĆ Nauk. Technol. Jakość 2004, 4, 29–40. [Google Scholar]
- Un, J.J.; Lee, M.K.; Yong, B.P.; Jeon, S.M.; Choi, M.S. Antihyperglycemic and antioxidant properties of caffeic acid in db/db mice. J. Pharmacol. Exp. Ther. 2006, 318, 476–483. [Google Scholar] [CrossRef] [Green Version]
- Zhao, C.; Zhang, L.; Wang, H. Study on Anti-oxidation Effects of Cinnamic Acid and Its Derivants. Food Sci. 2005, 26, 218–222. [Google Scholar]
- Dawidowicz, A.L.; Wianowska, D.; Olszowy, M. On practical problems in estimation of antioxidant activity of compounds by DPPH method (Problems in estimation of antioxidant activity). Food Chem. 2012, 131, 1037–1043. [Google Scholar] [CrossRef]
- Zeraik, M.L.; Petrônio, M.S.; Coelho, D.; Regasini, L.O.; Silva, D.H.S.; da Fonseca, L.M.; Machado, S.A.S.; Bolzani, V.S.; Ximenes, V.F. Improvement of pro-oxidant capacity of protocatechuic acid by esterification. PLoS ONE 2014, 9, e110277. [Google Scholar] [CrossRef] [Green Version]
- Putchala, M.C.; Ramani, P.; Sherlin, H.J.; Premkumar, P.; Natesan, A. Ascorbic acid and its pro-oxidant activity as a therapy for tumours of oral cavity-A systematic review. Arch. Oral Biol. 2013, 58, 563–574. [Google Scholar] [CrossRef]
- Matejczyk, M.; Świsłocka, R.; Golonko, A.; Lewandowski, W.; Hawrylik, E. Cytotoxic, genotoxic and antimicrobial activity of caffeic and rosmarinic acids and their lithium, sodium and potassium salts as potential anticancer compounds. Adv. Med. Sci. 2018, 63, 14–21. [Google Scholar] [CrossRef]
- Lewandowski, W.; Lewandowska, H.; Golonko, A.; Świderski, G.; Świsłocka, R.; Kalinowska, M. Correlations between molecular structure and biological activity in “logical series” of dietary chromone derivatives. PLoS ONE 2020, 15, e0229477. [Google Scholar] [CrossRef]
- Heimersson, S.; Morgan-Sagastume, F.; Peters, G.M.; Werker, A.; Svanström, M. Methodological issues in life cycle assessment of mixed-culture polyhydroxyalkanoate production utilising waste as feedstock. New Biotechnol. 2014, 31, 383–393. [Google Scholar] [CrossRef]
- Korošec, B.; Sova, M.; Turk, S. Antifungal activity of cinnamic acid derivatives involves inhibition of benzoate 4-hydroxylase (CYP53). J. Appl. Microbiol. 2014, 116, 955–966. [Google Scholar] [CrossRef] [Green Version]
- Pavić, K.; Perković, I.; Gilja, P.; Kozlina, F.; Ester, K.; Kralj, M.; Schols, D.; Hadjipavlou-Litina, D.; Pontiki, E.; Zorc, B. Design, Synthesis and Biological Evaluation of Novel Primaquine-Cinnamic Acid Conjugates of the Amide and Acylsemicarbazide Type. Molecules 2016, 21, 1629. [Google Scholar] [CrossRef]
- Bezerra, D.P.; Militão, G.C.G.; De Castro, F.O.; Pessoa, C.; De Moraes, M.O.; Silveira, E.R.; Lima, M.A.S.; Elmiro, F.J.M.; Costa-Lotufo, L.V. Piplartine induces inhibition of leukemia cell proliferation triggering both apoptosis and necrosis pathways. Toxicol. In Vitro 2007, 21, 1–8. [Google Scholar] [CrossRef]
- Lapeyre, C.; Delomenède, M.; Bedos-Belval, F.; Duran, H.; Nègre-Salvayre, A.; Baltas, M. Design, synthesis, and evaluation of pharmacological properties of cinnamic derivatives as antiatherogenic agents. J. Med. Chem. 2005, 48, 8115–8124. [Google Scholar] [CrossRef]
- Rijckevorsel, K. van Treatment of Lennox-Gastaut syndrome: Overview and recent findings. Neuropsychiatr. Dis. Treat. 2008, 4, 1001. [Google Scholar] [CrossRef] [Green Version]
- Meng, D.; Zhang, P.; Li, S.; Ho, C.T.; Zhao, H. Antioxidant activity evaluation of dietary phytochemicals using Saccharomyces cerevisiae as a model. J. Funct. Foods 2017, 38, 36–44. [Google Scholar] [CrossRef]
- Lingua, M.S.; Fabani, M.P.; Wunderlin, D.A.; Baroni, M.V. In vivo antioxidant activity of grape, pomace and wine from three red varieties grown in Argentina: Its relationship to phenolic profile. J. Funct. Foods 2016, 20, 332–345. [Google Scholar] [CrossRef]
- Kalinowska, M.; Świsłocka, R.; Lewandowski, W. The spectroscopic (FT-IR, FT-Raman and 1H, 13C NMR) and theoretical studies of cinnamic acid and alkali metal cinnamates. J. Mol. Struct. 2007, 834–836, 572–580. [Google Scholar] [CrossRef]
- Świsłocka, R.; Kowczyk-Sadowy, M.; Kalinowska, M.; Lewandowski, W. Spectroscopic (FT-IR, FT-Raman, 1H and 13C NMR) and theoretical studies of p-coumaric acid and alkali metal p-coumarates. Spectroscopy 2012, 27, 35–48. [Google Scholar] [CrossRef]
- Świsłocka, R. Spectroscopic (FT-IR, FT-Raman, UV absorption, 1H and 13C NMR) and theoretical (in B3LYP/6-311++G** level) studies on alkali metal salts of caffeic acid. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2013, 100, 21–30. [Google Scholar] [CrossRef] [PubMed]
- López-Martínez, L.M.; Santacruz-Ortega, H.; Navarro, R.-E.; Sotelo-Mundo, R.R.; González-Aguilar, G.A. A 1H NMR Investigation of the Interaction between Phenolic Acids Found in Mango (Manguifera indica cv Ataulfo) and Papaya (Carica papaya cv Maradol) and 1,1-diphenyl-2-picrylhydrazyl (DPPH) Free Radicals. PLoS ONE 2015, 10, e0140242. [Google Scholar] [CrossRef]
- Frisch, M.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A. Gaussian 09. Revision A. 02; Gaussian, Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Weinhold, F.; Landis, C.R. Natural bond orbitals and extensions of localized bonding concepts. Chem. Educ. Res. Pract. 2001, 2, 91–104. [Google Scholar] [CrossRef]
- Breneman, C.M.; Wiberg, K.B. Determining atom-centered monopoles from molecular electrostatic potentials. The need for high sampling density in formamide conformational analysis. J. Comput. Chem. 1990, 11, 361–373. [Google Scholar] [CrossRef]
- Ditchfield, R. Self-consistent perturbation theory of diamagnetism I. A gauge-invariant LCAO method for N.M.R. Chemical shifts. Mol. Phys. 1974, 27, 789–807. [Google Scholar] [CrossRef]
- Krygowski, T.M. Crystallographic Studies of Inter- and Intramolecular Interactions Reflected in Aromatic Character of π-Electron Systems. J. Chem. Inf. Comput. Sci. 1993, 33, 70–78. [Google Scholar] [CrossRef]
- Bird, C.W. A new aromaticity index and its application to five-membered ring heterocycles. Tetrahedron 1985, 41, 1409–1414. [Google Scholar] [CrossRef]
- Julg, A.; François, P. Recherches sur la géométrie de quelques hydrocarbures non-alternants: Son influence sur les énergies de transition, une nouvelle définition de l’aromaticité. Theor. Chim. Acta 1967, 8, 249–259. [Google Scholar] [CrossRef]
- Krygowski, T.M.; Ciesielski, A.; Bird, C.W.; Kotschy, A. Aromatic Character of the Benzene Ring Present in Various Topological Environments in Benzenoid Hydrocarbons. Nonequivalence of Indices of Aromaticity. J. Chem. Inf. Comput. Sci. 1995, 35, 203–210. [Google Scholar] [CrossRef]
- Schleyer, P.V.R.; Jiao, H. What is aromaticity? Pure Appl. Chem. 1996, 68, 209–218. [Google Scholar] [CrossRef]
- Ozimiński, W.P.; Dobrowolski, J.C. σ- and π-electron contributions to the substituent effect: Natural population analysis. J. Phys. Org. Chem. 2009, 22, 769–778. [Google Scholar] [CrossRef]
- Kedare, S.B.; Singh, R.P. Genesis and development of DPPH method of antioxidant assay. J. Food Sci. Technol. 2011, 48, 412–422. [Google Scholar] [CrossRef] [Green Version]
- Saravanakumar, A.; Ganesh, M.; Mei Peng, M.; Sh Aziz, A.; Tae Jang, H. Comparative antioxidant and antimycobacterial activities of Opuntia ficus-indica fruit extracts from summer and rainy seasons. Front. Life Sci. 2015, 8, 182–191. [Google Scholar] [CrossRef] [Green Version]
- Bisby, R. Techniques in free radical research: (Laboratory techniques in biochemistry and molecular biology, volume 22). FEBS Lett. 1992, 308, 107. [Google Scholar] [CrossRef] [Green Version]
- Özyürek, M.; Güçlü, K.; Apak, R. The main and modified CUPRAC methods of antioxidant measurement. TrAC Trends Anal. Chem. 2011, 30, 652–664. [Google Scholar] [CrossRef]
- Kikuzaki, H.; Nakatani, N. Antioxidant Effects of Some Ginger Constituents. J. Food Sci. 1993, 58, 1407–1410. [Google Scholar] [CrossRef]
- Gao, Y.; Fang, L.; Wang, X.; Lan, R.; Wang, M.; Du, G.; Guan, W.; Liu, J.; Brennan, M.; Guo, H.; et al. Antioxidant Activity Evaluation of Dietary Flavonoid Hyperoside Using Saccharomyces Cerevisiae as a Model. Molecules 2019, 24, 788. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ofman, P.; Struk-Sokołowska, J.; Skoczko, I.; Wiater, J. Alternated biodegradation of naphthalene (NAP), acenaphthylene (ACY) and acenaphthene (ACE) in an aerobic granular sludge reactor (GSBR). J. Hazard. Mater. 2020, 383, 121184. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, R.; Mazumder, D. Comparative study on denitrification kinetics of nitrified effluent with and without organic carbon by activated sludge process. J. Indian Chem. Soc. 2019, 96, 1493–1497. [Google Scholar]
- Chai, H.; Deng, S.; Zhou, X.; Su, C.; Xiang, Y.; Yang, Y.; Shao, Z.; Gu, L.; Xu, X.; Ji, F.; et al. Nitrous oxide emission mitigation during low–carbon source wastewater treatment: Effect of external carbon source supply strategy. Environ. Sci. Pollut. Res. 2019, 26, 23095–23107. [Google Scholar] [CrossRef]
- Benyoucef, N.; Pauss, A.; Abdi, N.; Sarde, C.O.; Grib, H.; Mameri, N. Enhancement of the denitrification performance of an activated sludge using an electromagnetic field in batch mode. Chemosphere 2021, 262, 127698. [Google Scholar] [CrossRef]
- Zappi, D.; Coronado, E.; Soljan, V.; Basile, G.; Varani, G.; Turemis, M.; Giardi, M.T. A microbial sensor platform based on bacterial bioluminescence (luxAB) and green fluorescent protein (gfp) reporters for in situ monitoring of toxicity of wastewater nitrification process dynamics. Talanta 2021, 221, 121438. [Google Scholar] [CrossRef]
- Rice, E.W.; Baird, R.B.; Eaton, A.D.; Clesceri, L.S. Standard Methods for the Examination of Water and Wastewater, 22nd ed.; American Public Health Association (APHA), American Water Works Association (AWWA), Water Environmental Federation (WEF): Washington, DC, USA, 2012. [Google Scholar]
- Matejczyk, M.; Ofman, P.; Dąbrowska, K.; Świsłocka, R.; Lewandowski, W. The study of biological activity of transformation products of diclofenac and its interaction with chlorogenic acid. J. Environ. Sci. China 2020, 91, 128–141. [Google Scholar] [CrossRef]
- Varsanyi, G.; Lang, L.; Kovner, M.A. Assignments for Vibrational Spectra of Seven Hundred Benzene Derivatives; Akademiai Kiado: Budapest, Hungary, 1973. [Google Scholar]
- Fukui, K. Role of frontier orbitals in chemical reactions. Science 1982, 218, 747–754. [Google Scholar] [CrossRef] [Green Version]
- Samsonowicz, M.; Regulska, E.; Kowczyk-Sadowy, M.; Butarewicz, A.; Lewandowski, W. The study on molecular structure and microbiological activity of alkali metal 3-hydroxyphenylycetates. J. Mol. Struct. 2017, 1146, 755–765. [Google Scholar] [CrossRef]
- Mielecki, M.; Lesyng, B. Cinnamic Acid Derivatives as Inhibitors of Oncogenic Protein Kinases--Structure, Mechanisms and Biomedical Effects. Curr. Med. Chem. 2016, 23, 954–982. [Google Scholar] [CrossRef]
- Ruwizhi, N.; Aderibugbe, B.A. Cinnamic Acid Derivatives and Their Biological Efficacy. Int. J. Mol. Sci. 2020, 21, 5712. [Google Scholar] [CrossRef]
- Podobnik, B.; Stojan, J.; Lah, L.; Krasevec, N.; Seliskar, M.; Rizner, T.L.; Rozman, D.; Komel, R. CYP53A15 of Cochliobolus lunatus, a Target for Natural Antifungal Compounds. J. Med. Chem. 2008, 51, 3480–3486. [Google Scholar] [CrossRef]
- Lu, J.; Guo, Z.; Kang, Y.; Fan, J.; Zhang, J. Recent advances in the enhanced nitrogen removal by oxygen-increasing technology in constructed wetlands. Ecotoxicol. Environ. Saf. 2020, 205, 111330. [Google Scholar] [CrossRef]
- Wang, X.; Chen, Z.; Shen, J.; Kang, J.; Zhang, X.; Li, J.; Zhao, X. Effect of carbon source on pollutant removal and microbial community dynamics in treatment of swine wastewater containing antibiotics by aerobic granular sludge. Chemosphere 2020, 260, 127544. [Google Scholar] [CrossRef]
- Wu, C.; Qin, Y.; Yang, L.; Liu, Z.; Chen, B.; Chen, L. Effects of loading rates and N/S ratios in the sulfide-dependent autotrophic denitrification (SDAD) and Anammox coupling system. Bioresour. Technol. 2020, 316. [Google Scholar] [CrossRef]
- Castor, L.R.G.; Locatelli, K.A.; Ximenes, V.F. Pro-oxidant activity of apocynin radical. Free Radic. Biol. Med. 2010, 48, 1636–1643. [Google Scholar] [CrossRef]
CA (Kalinowska et al., 2007) | 4-HCA (Świsłocka et al., 2012) | 3,4-dHCA (Świsłocka, 2013) | 3,4,5-tHCA | ||||||
---|---|---|---|---|---|---|---|---|---|
Assignment | No. [51] | IR | Raman | IR | Raman | IR | Raman | IR | Raman |
ν a(OH)ar | - | - | 3383 s b | - | 3431 s 3231 s | - | 3515 s 3403 vs | - | |
ν(CH) | 20a | 3087 w | - | 3080 w | 3069 w | 2926 w | - | 3071 w | - |
ν(CH) + ν(CH)C=C | 20b | 2992 w | - | 3026 w | 3025 vw | 3026 w | - | - | - |
ν(CH) + ν(CH)C=C | 7b | - | - | 2963 w | - | - | - | 2961 w | - |
ν(C=O) | 1685 vs | - | 1672 vs | - | 1645 vs | 1642 s | 1668 s | 1640 s | |
ν(C=C) | 1629 vs | 1638 vs | 1628 s | 1636 m | 1620 vs | 1615 vs | 1621 vs | 1610 vs | |
ν(CC) | 8a | 1600 sh | 1600 s | 1601 vs | 1606 vs | 1599 s | 1596 m | 1597 vs | - |
ν(CC) | 8b | 1577 m | - | 1591 s | 1593 m | 1530 m | 1533 w | 1547 m | - |
ν(CC) | 19a | 1495 m | 1496 vw | 1512 s | 1519 w | 1525 vw | 1524 m | 1538 m | - |
ν(CC) | 19b | 1449 s | 1444 vw | 1449 vs | 1448 w | 1450 vs | 1453 vw | 1454 m | 1443 m |
ν(CC) + β(OH) | 14 | 1334 m | 1329 vw | 1379 m | - | 1352 m | 1354 w | 1364 w | 1372 w |
β(CH)C=C + β(CH) | 3 | 1389 w | - | 1314 s | 1306 w | - | - | 1318 s | 1309 w |
ν(C-OH) | 1286 s | - | 1283 m | 1282 w | 1279 vs | 1288 sh | 1295 vs | - | |
β(OH) | - | - | 1244 vs | 1260 m | - | 1108 w | 1224 s | 1231 m | |
β(CH) | 13 | 1206 m | - | 1215 vs | 1213 m | - | - | 1191 m | 1190 w |
β(CH) | 9a | 1176 m | 1179 m | 1173 s | 1172 s | - | - | 1161 m | 1157 m |
β(CH) | 18b | 1073 w | - | 1105 m | - | 1121 s | 1125 w | 1005 w | 1007 w |
β(CH) | 18a | 1027 w | 1027 w | 1013 w | - | 1175 m | 1187 m | 1031 s | 1037 w |
α(CCC) | 12 | 999 w | 1002 m | 799 m | 800 w | 799 m | 780 vw | 803 w | 808 w |
γ(CH) | 17a | - | - | 941 m | 952 vw | 935 w | 957 vw | 984 m | 986 w |
γ(CH)C=C + γ(CH) | 17b | - | - | 833 s | 837 w | 974 m | 975 w | - | - |
γ(CH) | 5 | - | - | - | - | 849 m | 853 w | - | - |
γ(CH) | 10a | 875 w | 876 vw | 860 w | 864 w | 800 w | 804 w | 868 w | 870 w |
γ(CH) + γ(HCCO) + γ(OCOC) | 11 | 769 s | 771 vw | - | - | - | - | 831 m | 831 w |
γ(CO) | - | - | 920 m | - | 698 m | - | 732 w | 719 vw | |
φ(CC) | 4 | 711 s | 714 vw | 646 w | 645 vw | 696 w | 688 vw | 673 vw | - |
α(CCC) | 6b | 683 m | 681 vw | - | - | 552 w | 460 w | - | - |
α(CCC) | 6a | - | - | - | - | 602 w | 606 vw | - | 631 w |
φ(CC) | 16a | - | - | 453 w | - | - | - | - | - |
φ(CC) | 16b | 483 m | - | 517 m | 516 vw | 457 w | 447 w | - | - |
β(CH) | 9b | - | - | 430 vw | 421 vw | - | - | - | 443 vw |
Compound | λmax 1 | λmax 2 | λmax 3 |
---|---|---|---|
CA | 215 | 270 | - |
4-HCA | 220 | 290 | 310 |
3,4-dHCA | 215 | 290 | 320 |
3,4,5-tHCA | 225 | - | 315 |
CA | 4-HCA | 3,4-dHCA | 3,4,5-tHCA | |||||
Proton Number | Exp. [24] | Theoret. | Exp. [25] | Theoret. | Exp. [26,27] | Theoret. | Exp. | Theoret. |
1 | 12.35 | 6.05 | 12.13 | 5.90 | 12.12 | 5.90 | 12.13 | 5.95 |
2 | 6.53 | 6.55 | 6.29 | 6.55 | 6.16 | 6.42 | 6.10 | 6.49 |
3 | 7.68 | 8.20 | 7.52 | 8.08 | 7.41 | 8.00 | 7.34 | 7.90 |
4 | 7.56 | 7.73 | 7.49 | 8.12 | 7.02 | 7.43 | 6.57 | 7.27 |
5 | 7.40 | 7.77 | 6.79 | 7.02 | 9.13 | 4.61 | 8.76 | 5.37 |
6 | 7.47 | 7.81 | 9.96 | 5.07 | 9.54 | 4.93 | 9.12 | 5.62 |
7 | 7.40 | 7.74 | 6.79 | 7.17 | 6.75 | 6.91 | 8.76 | 4.66 |
8 | 7.56 | 8.26 | 7.49 | 7.61 | 6.96 | 7.10 | 6.57 | 6.65 |
Carbon Number | ||||||||
1 | 134.24 | 141.44 | 125.36 | 133.73 | 125.71 | 134.45 | 124.60 | 133.17 |
2 | 128.19 | 141.18 | 130.17 | 135.29 | 115.76 | 117.68 | 107.45 | 110.97 |
3 | 128.91 | 136.40 | 115.83 | 121.42 | 114.59 | 153.22 | 145.08 | 153.23 |
4 | 130.21 | 139.82 | 159.67 | 169.03 | 148.14 | 157.05 | 136.09 | 142.65 |
5 | 128.91 | 135.97 | 115.83 | 121.51 | 114.65 | 121.53 | 145.08 | 150.40 |
6 | 128.19 | 132.89 | 130.17 | 143.60 | 121.16 | 134.80 | 115.12 | 117.92 |
7 | 167.58 | 175.12 | 168.06 | 175.75 | 167.91 | 175.64 | 167.85 | 175.59 |
8 | 119.24 | 114.91 | 115.41 | 115.54 | 115.13 | 115.11 | 115.12 | 116.87 |
9 | 143.93 | 158.61 | 144.27 | 158.91 | 145.57 | 159.02 | 146.09 | 158.66 |
Parameter | CA | 4-HCA | 3,4-dHCA | 3,4,5-tHCA |
---|---|---|---|---|
Etotal [Hartree] | −498.371 | −573.620 | −648.862 | −724.117 |
Energy [eV] | −13,561.3 | −15,487.7 | −17,656.4 | −19,704.2 |
Dipole moment [Debye] | 3.350 | 3.723 | 1.977 | 3.477 |
HOMA | 0.968 | 0.962 | 0.949 | 0.967 |
GEO | 0.011 | 0.018 | 0.025 | 0.014 |
EN | 0.020 | 0.020 | 0.026 | 0.018 |
I6 | 94.43 | 93.07 | 91.78 | 93.72 |
Aj | 0.995 | 0.992 | 0.989 | 0.994 |
BAC | 0.916 | 0.886 | 0.850 | 0.898 |
NICS | −7.033 | −8.008 | −9.265 | −10.711 |
sEDA | reference molecule | −0.135 | −0.273 | −0.228 |
pEDA | reference molecule | −0.199 | −0.551 | −0.836 |
HOMO [eV] | −9.796 | −9.189 | −8.848 | −8.680 |
LUMO [eV] | −6.369 | −6.127 | −6.119 | −6.111 |
Energy gap [eV] | 3.427 | 3.063 | 2.729 | 2.569 |
Ionization energy I = −EHOMO [eV] | 9.796 | 9.189 | 8.848 | 8.680 |
Electron Affinity A = −ELUMO [eV] | 6.369 | 6.127 | 6.119 | 6.111 |
Electronegativity [eV] | 8.082 | 7.658 | 7.484 | 7.396 |
Chemical potential [eV] | −8.082 | −7.658 | −7.484 | −7.396 |
Chemical hardness [eV] | 1.714 | 1.531 | 1.365 | 1.285 |
Chemical softness [eV] | 0.292 | 0.327 | 0.366 | 0.389 |
Electrophilicity index [eV] | 19.060 | 19.148 | 20.523 | 21.287 |
Cell Growth [log CFU·mL−1] | |||||||
---|---|---|---|---|---|---|---|
24 h | 48 h | ||||||
CA | 4-HCA | 3,4-dHCA | 3,4,5-tHCA | 4-HCA | 3,4-dHCA | 3,4,5-tHCA | |
15 mM | n.g. | n.g. | 8.0 ± 0.2 b | 8.1 ± 0.1 b | n.g. | 7.6 ± 02 b | 7.7 ± 0.2 b |
7.5 mM | n.g. | 7.4 ± 0.15 a | 7.9 ± 0.2 b | 7.6 ± 0.1 b | 7.4 ± 0.2 a | 7.7 ± 0.2 b | 7.8 ±0.01 b |
3 mM | n.g. | 7.2 ± 0.2 a | 7.7 ± 0.1 b | 7.8 ± 0.2 b | 7.8 ± 0.2 b | 7.7 ± 0.1 b | 8.0 ± 0.1 b |
S. cerevisiae KKP 512 | 7.8 ± 0.05 b | 7.8 ± 0.05 b | |||||
+4 mM H2O2 | |||||||
15 mM | n.g. | n.g. | 4.6 ± 0.3 a | 4.5 ± 0.1 a | n.g. | 7.6 ± 0.03 b | 7.8 ±0.02 b |
7.5 mM | n.g. | 5.4 ± 0.1 b | 5.8 ± 0.3 b | 5.8 ± 0.1 b | 7.3 ± 0.5 a | 7.6 ± 0.1 b | 7.6 ± 0.3 b |
3 mM | n.g. | 4.5 ± 0.3 a | 5.3 ± 0.1 b | 4.6 ± 0.1 a | 7.7 ± 0.1 b | 7.9 ± 0.06 b | 7.8 ± 0.2 b |
S. cerevisiae KKP 512 | 5.3 ± 0.5 b | 7.9 ± 0.06 b | |||||
+2 mM H2O2 | |||||||
15 mM | n.g. | n.g. | 7.6 ± 0.12 b | 7.6 ± 0.1 b | n.g. | 7.7 ± 0.1 b | 7.7 ± 0.1 b |
7.5 mM | n.g. | 7.1 ± 0.3 a | 7.7 ± 0.01 b | 7.6 ± 0.2 b | 7.1 ± 0.1 a | 7.7 ± 0.1 b | 7.8 ± 0.3 b |
3 mM | n.g. | 7.2 ± 0.2 a | 7.0 ± 0.01 a | 7.4 ±0.02 a | 7.6 ± 0.2 b | 7.9 ± 0.2 b | 8.0 ± 0.2 b |
S. cerevisiae KKP 512 | 7.1 ± 0.4 a | 7.9 ± 0.01 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gryko, K.; Kalinowska, M.; Ofman, P.; Choińska, R.; Świderski, G.; Świsłocka, R.; Lewandowski, W. Natural Cinnamic Acid Derivatives: A Comprehensive Study on Structural, Anti/Pro-Oxidant, and Environmental Impacts. Materials 2021, 14, 6098. https://doi.org/10.3390/ma14206098
Gryko K, Kalinowska M, Ofman P, Choińska R, Świderski G, Świsłocka R, Lewandowski W. Natural Cinnamic Acid Derivatives: A Comprehensive Study on Structural, Anti/Pro-Oxidant, and Environmental Impacts. Materials. 2021; 14(20):6098. https://doi.org/10.3390/ma14206098
Chicago/Turabian StyleGryko, Kamila, Monika Kalinowska, Piotr Ofman, Renata Choińska, Grzegorz Świderski, Renata Świsłocka, and Włodzimierz Lewandowski. 2021. "Natural Cinnamic Acid Derivatives: A Comprehensive Study on Structural, Anti/Pro-Oxidant, and Environmental Impacts" Materials 14, no. 20: 6098. https://doi.org/10.3390/ma14206098
APA StyleGryko, K., Kalinowska, M., Ofman, P., Choińska, R., Świderski, G., Świsłocka, R., & Lewandowski, W. (2021). Natural Cinnamic Acid Derivatives: A Comprehensive Study on Structural, Anti/Pro-Oxidant, and Environmental Impacts. Materials, 14(20), 6098. https://doi.org/10.3390/ma14206098