Construction of BiOCl/Clinoptilolite Composite Photocatalyst for Boosting Formaldehyde Removal
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Composites Preparation
2.3. Characterizations
2.4. Evaluation of Photocatalytic Activity
3. Results and Discussion
3.1. Cation Exchange Effect of Catalyst
3.2. Phase Structure of Catalysts
3.3. Pore Structure and Specific Surface Area of Catalysts
3.4. Morphology and Structure of Catalysts
3.5. Optical Properties and Photoelectrochemical Performance of Catalysts
3.6. Photocatalytic Activity and Stability of Photocatalysts
3.7. Reaction Mechanism
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baures, E.; Blanchard, O.; Mercier, F.; Surget, E.; le Cann, P.; Rivier, A.; Gangneux, J.P.; Florentin, A. Indoor air quality in two French hospitals: Measurement of chemical and microbiological contaminants. Sci. Total Environ. 2018, 642, 168–179. [Google Scholar] [CrossRef]
- Bian, Y.; Wang, R.; Wang, S.; Yao, C.; Ren, W.; Chen, C.; Zhang, L. Metal–organic framework-based nanofiber filters for effective indoor air quality control. J. Mater. Chem. A 2018, 6, 15807–15814. [Google Scholar] [CrossRef]
- Cheek, E.; Guercio, V.; Shrubsole, C.; Dimitroulopoulou, S. Portable air purification: Review of impacts on indoor air quality and health. Sci. Total Environ. 2021, 766, 142585. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Cui, W.; Chen, P.; Dong, X.A.; Chu, Y.; Sheng, J.; Zhang, Y.; Wang, Z.; Dong, F. Unraveling the mechanism of binary channel reactions in photocatalytic formaldehyde decomposition for promoted mineralization. Appl. Catal. B Environ. 2020, 260, 118130. [Google Scholar] [CrossRef]
- Na, C.J.; Yoo, M.J.; Tsang, D.C.W.; Kim, H.W.; Kim, K.H. High-performance materials for effective sorptive removal of formaldehyde in air. J. Hazard Mater. 2019, 366, 452–465. [Google Scholar] [CrossRef]
- Suresh, S.; Bandosz, T.J. Removal of formaldehyde on carbon-based materials: A review of the recent approaches and findings. Carbon 2018, 137, 207–221. [Google Scholar] [CrossRef]
- Liu, L.; Liu, J.; Zeng, Y.; Tan, S.J.; Do, D.D.; Nicholson, D. Formaldehyde adsorption in carbon nanopores—New insights from molecular simulation. Chem. Eng. J. 2019, 370, 866–874. [Google Scholar] [CrossRef]
- Zvulunov, Y.; Ben-Barak-Zelas, Z.; Fishman, A.; Radian, A. A self-regenerating clay-polymer-bacteria composite for formaldehyde removal from water. Chem. Eng. J. 2019, 374, 1275–1285. [Google Scholar] [CrossRef]
- Wang, Z.; Xiong, F.; Zhang, Z.; Sun, G.; Xu, H.; Chai, P.; Huang, W. Surface Chemistry of Formaldehyde on Rutile TiO2 (011)-(2 × 1) Surface: Photocatalysis Versus Thermal-Catalysis. J. Phys. Chem. C 2017, 121, 25921–25929. [Google Scholar] [CrossRef]
- Feng, Y.; Ling, L.; Nie, J.; Han, K.; Chen, X.; Bian, Z.; Li, H.; Wang, Z.L. Self-Powered Electrostatic Filter with Enhanced Photocatalytic Degradation of Formaldehyde Based on Built-in Triboelectric Nanogenerators. ACS Nano 2017, 11, 12411–12418. [Google Scholar] [CrossRef] [PubMed]
- Rashidi, R.; Yousefinejad, S.; Mokarami, H. Catalytic ozonation process using CuO/clinoptilolite zeolite for the removal of formaldehyde from the air stream. Int. J. Environ. Sci. Technol. 2018, 16, 6629–6636. [Google Scholar] [CrossRef]
- Rahimi, E.; Nazari, F.; Javadi, T.; Samadi, S.; da Silva, J.A.T. Potassium-enriched clinoptilolite zeolite mitigates the adverse impacts of salinity stress in perennial ryegrass (Lolium perenne L.) by increasing silicon absorption and improving the K/Na ratio. J. Environ. Manag. 2021, 285, 112142. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Li, C.; Sun, Z.; Song, J.; Zheng, S. Enhanced photocatalytic removal of indoor formaldehyde by ternary heterogeneous BiOCl/TiO2/sepiolite composite under solar and visible light. Build. Environ. 2020, 168, 106481. [Google Scholar] [CrossRef]
- Liu, M.Y.; Lin, G.L.; Liu, Y.M.; Lin, X.Y.; Wang, L.J.; Xu, Y.F.; Song, X.C. Ternary heterojunction Ag/AgIO3/ BiOCl(CMC) by a biomass template for photodegradation of tetracycline hydrochloride and gaseous formaldehyde. Solid State Sci. 2021, 112, 106517. [Google Scholar] [CrossRef]
- Cui, D.; Wang, L.; Xu, K.; Ren, L.; Wang, L.; Yu, Y.; Du, Y.; Hao, W. Band-gap engineering of BiOCl with oxygen vacancies for efficient photooxidation properties under visible-light irradiation. J. Mater. Chem. A 2018, 6, 2193–2199. [Google Scholar] [CrossRef]
- Jia, Z.; Li, T.; Zheng, Z.; Zhang, J.; Liu, J.; Li, R.; Wang, Y.; Zhang, X.; Wang, Y.; Fan, C. The BiOCl/diatomite composites for rapid photocatalytic degradation of ciprofloxacin: Efficiency, toxicity evaluation, mechanisms and pathways. Chem. Eng. J. 2020, 380, 122422. [Google Scholar] [CrossRef]
- Hou, W.; Xu, H.; Cai, Y.; Zou, Z.; Li, D.; Xia, D. Precisely control interface OVs concentration for enhance 0D/2D Bi2O2CO3/BiOCl photocatalytic performance. Appl. Surf. Sci. 2020, 530, 147218. [Google Scholar] [CrossRef]
- Joorasty, M.; Hemmati, A.; Rahbar-Kelishami, A. NaOH/clinoptilolite-Fe3O4 as a novel magnetic catalyst for producing biodiesel from Amygdalus scoparia oil: Optimization and kinetic study. Fuel 2021, 303, 121305. [Google Scholar] [CrossRef]
- de Souza, V.; Villarroel-Rocha, J.; de Araújo, M.; Sapag, K.; Pergher, S. Basic Treatment in Natural Clinoptilolite for Improvement of Physicochemical Properties. Minerals 2018, 8, 595. [Google Scholar] [CrossRef] [Green Version]
- Cao, J.; Li, J.; Chu, W.; Cen, W. Facile synthesis of Mn-doped BiOCl for metronidazole photodegradation: Optimization, degradation pathway, and mechanism. Chem. Eng. J. 2020, 400, 125813. [Google Scholar] [CrossRef]
- Mao, C.; Cheng, H.; Tian, H.; Li, H.; Xiao, W.-J.; Xu, H.; Zhao, J.; Zhang, L. Visible light driven selective oxidation of amines to imines with BiOCl: Does oxygen vacancy concentration matter? Appl. Catal. B Environ. 2018, 228, 87–96. [Google Scholar] [CrossRef]
- Boukhatem, H.; Khalaf, H.; Djouadi, L.; Gonzalez, F.V.; Navarro, R.M.; Santaballa, J.A.; Canle, M. Photocatalytic activity of mont-La (6%)-Cu0.6Cd0.4S catalyst for phenol degradation under near UV visible light irradiation. Appl. Catal. B Environ. 2017, 211, 114–125. [Google Scholar] [CrossRef]
- Liu, M.; Zheng, L.; Lin, G.; Ni, L.; Song, X. Synthesis and photocatalytic activity of BiOCl/diatomite composite photocatalysts: Natural porous diatomite as photocatalyst support and dominant facets regulator. Adv. Powder Technol. 2020, 31, 339–350. [Google Scholar] [CrossRef]
- Hu, X.; Li, C.; Song, J.; Zheng, S.; Sun, Z. Multidimensional assembly of oxygen vacancy-rich amorphous TiO2-BiOBr-sepiolite composite for rapid elimination of formaldehyde and oxytetracycline under visible light. J. Colloid Interface Sci. 2020, 574, 61–73. [Google Scholar] [CrossRef] [PubMed]
- Hao, L.; Huang, H.; Guo, Y.; Zhang, Y. Multifunctional Bi2O2(OH)(NO3) Nanosheets with {001} Active Exposing Facets: Efficient Photocatalysis, Dye-Sensitization, and Piezoelectric-Catalysis. ACS Sustain. Chem. Eng. 2018, 6, 1848–1862. [Google Scholar] [CrossRef]
- Abd-Elnaiem, A.; Abdel-Rahim, M.; Abdel-Latief, A.; Mohamed, A.; Mojsilovic, K.; Stepniowski, W. Fabrication, Characterization and Photocatalytic Activity of Copper Oxide Nanowires Formed by Anodization of Copper Foams. Materials 2021, 14, 5030. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Li, P.; Ye, L.; Zhou, Y.; Su, F.; Ding, C.; Xie, H.; Bai, Y.; Wong, P.K. Oxygen vacancies induced exciton dissociation of flexible BiOCl nanosheets for effective photocatalytic CO2 conversion. J. Mater. Chem. A 2017, 5, 24995–25004. [Google Scholar] [CrossRef]
Sample | SiO2 | Al2O3 | CaO | MgO | K2O | Na2O | Fe2O3 | Bi2O3 |
---|---|---|---|---|---|---|---|---|
NC-Na-3.0 | 61.39 | 21.46 | 5.35 ± 0.11 | 2.23 | 2.38 | 6.32 ± 0.13 | 0.83 | 0.01 ± 0.00 |
CN-0 | 64.31 | 22.37 | 3.39 ± 0.08 | 2.28 | 2.13 | 1.58 ± 0.06 | 0.63 | 2.86 ± 0.06 |
CN-90 | 64.25 | 21.92 | 3.23 ± 0.08 | 2.21 | 2.26 | 1.54 ± 0.06 | 0.85 | 2.76 ± 0.07 |
Sample | Crystallite Size of BiOCl (nm) | SBET (m2/g) | Total Pore Volume (cm3/g) | Average Pore Diameter (nm) |
---|---|---|---|---|
NC-Na-3.0 | —— | 61.43 | 0.310 | 16.67 |
B25 | 19.5 | 29.29 | 0.160 | 15.63 |
10B25/CN | 19.9 | 56.63 | 0.283 | 15.43 |
20B25/CN | 12.5 | 45.29 | 0.181 | 13.61 |
30B25/CN | 12.3 | 43.68 | 0.176 | 12.97 |
40B25/CN | 12.2 | 42.55 | 0.162 | 12.38 |
50B25/CN | 12.9 | 36.75 | 0.158 | 11.57 |
B0 | 18.6 | 23.89 | 0.148 | 15.84 |
40B0/CN | 11.3 | 65.54 | 0.254 | 12.2 |
40B25/CN | 12.2 | 42.55 | 0.162 | 12.38 |
40B50/CN | 18.1 | 45.78 | 0.206 | 12.72 |
40B75/CN | 23.3 | 50.82 | 0.209 | 13.52 |
40B90/CN | 26.8 | 55.47 | 0.254 | 15.76 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di, Y.; Zhang, X.; Wang, X.; Zheng, S. Construction of BiOCl/Clinoptilolite Composite Photocatalyst for Boosting Formaldehyde Removal. Materials 2021, 14, 6469. https://doi.org/10.3390/ma14216469
Di Y, Zhang X, Wang X, Zheng S. Construction of BiOCl/Clinoptilolite Composite Photocatalyst for Boosting Formaldehyde Removal. Materials. 2021; 14(21):6469. https://doi.org/10.3390/ma14216469
Chicago/Turabian StyleDi, Yonghao, Xiangwei Zhang, Xinlin Wang, and Shuilin Zheng. 2021. "Construction of BiOCl/Clinoptilolite Composite Photocatalyst for Boosting Formaldehyde Removal" Materials 14, no. 21: 6469. https://doi.org/10.3390/ma14216469
APA StyleDi, Y., Zhang, X., Wang, X., & Zheng, S. (2021). Construction of BiOCl/Clinoptilolite Composite Photocatalyst for Boosting Formaldehyde Removal. Materials, 14(21), 6469. https://doi.org/10.3390/ma14216469