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Abstract: Abrasive filament brushes have been widely used in surface processes for a wide range
of applications, including blending, edge-radiusing, and polishing. However, the associated brush
mechanics of material removal is still not clear. In order to analyze the brush grinding of aluminium
alloy, this paper constructed a kinematic model of a single filament, simulated the scratch process
of a single abrasive grain, and investigated the brush force and material removal based on the
finite element approach. The simulated result shows that the brush grinding can be changed from
elastic–plastic deformation to chip formation when increasing the brush speed to 1000 r/min. The
normal and tangential forces increase linearly and quadratically with the increase in the rotation
speed (500–5000 r/min), respectively, and increase linearly with the increase in the penetration depth
(0.1–1 mm), which is consistent with the experiment results. In addition, the amount of material
removal initially increases with the increase in penetration depth, and then decreases. This paper
provides a new approach to understanding the process of material removal and is helpful for the
selection of reasonable brush parameters in the intelligent grinding control application.

Keywords: abrasive filament brush; brush grinding; material removal; brush force; finite element approach

1. Introduction

Brush grinding is a surface treatment using rotating tools [1,2]. Abrasive filament
brushes are made of abrasive particle-filled polymer, which can grind materials with high
hardness. As shown in Figure 1, the abrasive filament brush can effectively carry out surface
treatment, such as burr removal [3,4], derusting, polishing [5], and edge-radiusing [6].
Currently, the abrasive filament brush is widely used in hand-held grinding machines
without comprehensive control techniques, and the intelligent abrasive robot with brush is
still rare in the market because of the difficulty in controlling the end effector [7]. The use of
a filament brush in the intelligent automation environment requires a clear understanding
of brush performance, such as brush force, the material removal rate, and so on [8].

In order to explore the grinding mechanism of abrasive filament brushes, many
researchers have carried out brush-grinding experiments on different materials. Overholser
et al. examined the surface morphology of a 6061-T6 workpiece after brush grinding and
found that the primary material removal was abrasive cutting and chip formation [9].
Raymond et al. produced a functional surface-of-sliding guideway and found that brush
grinding can reduce both the height and volume of asperities on the milled surface [10,11].
Mathai et al. investigated the brush deburring of Nitinol foil and found that the burr
removal can be divided into two stages: fatigue fracture and crack formation [12,13].
Novotný et al. presented the novel process of frosted glass using an abrasive filament
brush and provided a good quality surface [14]. The above foregoing sources mainly
focused on the surface morphology changes after brush grinding and do not clarify the
influence of the process parameters on the brush force and material removal rate.
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When removing rust with a steel wire brush, our group constructed a brush force
model assuming that the tip of the wire moved along the rigid surface; that is, the ratio of
normal force to the tangential force was constant [15]. However, in the process of brush
grinding, not only elastic–plastic deformation occurs, but chips are also produced. On the
other hand, the machining marks of the aluminium alloy workpiece, resulting from ball-
milling, can be removed by an abrasive filament brush. In order to explore the associated
brush mechanics of material removal, this paper constructed the kinematic model of a
single filament, carried out the brush grinding of aluminium alloy based on the finite
element approach, and analyzed the effect of the process parameters on the brush force
and material removal rate.

2. Analysis of the Impact Phase

As shown in Figure 2a, brush grinding is a type of multipoint cutting, where a large
number of abrasive grains participate in the cutting process at the same time. The filaments
are placed radially from the hub center and are limited to the outside radius of the brush.
Under ideal conditions, there is no interaction between different abrasive filaments during
brush grinding. Without losing the generality, the study of the single filament grinding
process can effectively investigate the complex brush process, so as to reveal the material
removal mechanism. As shown in Figure 2b, the filament was divided into rigid links and
joints, with rotating springs and rotating dampers. Because the contact lengths and times
between the abrasive grains and the workpiece were very short in the impact process, it
was assumed that the elastic coefficient and damping coefficient at the joint were zero.
The detailed collision process at the end of the filament is shown in Figure 2c. The SiC
grain was generally assumed to be a polyhedral model because it was made of crystalline
ceramic with ionic or covalent atomic bonds. On the basis of the above consideration,
this paper hypothesized that the SiC grain in the filament was dodecahedron (Figure 2d),
which consisted of an orthohexagon and eight vertexes. In addition, the SiC grain had the
cone angle, β, and diameter, d. The SiC grains played a key collision role at the moment
of contact, as their hardness was higher than that of the filaments. The kinetic energy
of the SiC grain acted on the local area (impact) of the workpiece surface, resulting in
the generation of the microcrater and chips. As shown in Figure 2b, the impact velocity
and impact energy of the SiC grain at the moment of contact with the workpiece can be
calculated as follows:

V0 = ((R + L) × 2πn/1000 + f )/60 (1)

E = 1/2 m V0
2 = 1/2 m (((R + L) × 2πn/1000 + f )/60)2 (2)

where m is the weight of the SiC grain (kg); R is the hub radius (mm); L is the filament
length (mm); n is the the rotation speed (r/min); and f is the feed rate (m/min). As shown
in Figure 2b, the impact angle, α, of the SiC grain at the moment of contact can be calculated
as follows:

α = acrcsin ((R + L − ∆)/(R + L)) (3)
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where R is the hub radius (mm); L is filament length (mm); and ∆ is the penetration depth
(mm). The normal and tangential components of the impact velocity at the moment of
impact are shown as follows:

VN = V0sinα = (((R + L) × 2πn/1000 + f )/60) × ((R + L − ∆)/(R + L)) (4)

VT = V0cosα = (((R + L) × 2πn/1000 + f )/60) × cos (arcsin ((R + L − ∆)/(R + L))) (5)

where R is the hub radius (mm); L is the filament length (mm); and ∆ is the penetration
depth (mm). During the impact process, the rake angle, γ, of the SiC grain (shown in
Figure 2c) was influenced by the shape of the SiC grain and the cutting direction. During
brush grinding, the brush force of a single grain was also composed of the normal compo-
nent force, FN, and the tangential component force, FT. The normal component force, FN,
and the tangential component force, FT, of a single particle can be calculated as follows:

FN =
n
60

∫ 60
n

0
FN(t)dt (6)

FT =
n
60

∫ 60
n

0
FT(t)dt (7)

where n is the rotation speed of a single grain (r/min); t is the time (s); FN(t) is the normal
component force (N) at the time of t; and FT(t) is the tangential component force (N) at
the time of t. The impact process of the abrasive grain is a fast dynamic process, so it is
difficult to accurately calculate the brush force by analytical methods. In this paper, the
impact process of the abrasive grain was simulated using finite element analysis, and the
values of the instant force, FN(t), and FT(t) at different times can be obtained from the

simulation result of the impact process. The integral values of
∫ 60

n
0 FN(t)dt and

∫ 60
n

0 FT(t)dt
were calculated by the numerical integration method.
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From the above analysis, it can be seen that the velocity of the SiC grain at the
moment of contact was composed of normal and tangential component velocities, which
were mainly influenced by the rotation speed and the penetration depth. During the
impact process, the brush force was also composed of the normal force and the tangential
component force, which were influenced by the particle energy and the impact angle. That
is, the normal force and the tangential component force were mainly influenced by the
rotation speed and the penetration depth. However, the impact of the abrasive grain is a
fast dynamic process, so it is difficult to accurately calculate the brush force and material
removal rate by analytical methods. The finite element simulation can be employed to solve
implicit problems and is widely used in the fields of structural strength, fluid analysis, and
metal cutting. Therefore, this paper applied the Abaqus (a type of finite element analysis
product, [16–18]) to simulate the impact process of the abrasive grain, and to calculate the
brush force and material removal rate.

3. Experimental Setup

The workpiece material was 7075 aluminium alloy, which is widely used in the thin-
walled parts of the aviation industry. Before brush grinding, all specimens were milled with
a ball-end cutter (diameter 20mm). As shown in Figure 3, the brush grinding treatment was
performed with a vertical machine center, an abrasive filament brush and force-measuring
component. The abrasive filament brush has the hub radius, R = 50 mm, the filament
length, L = 50 mm, the filament diameter, d = 0.4 mm, an abrasive grain size of 400 mesh,
a particle diameter, d = 40 µm, and the particle weight, m = 2 × 10−10 kg. As shown in
Figure 3b [19], abrasive grains were randomly distributed within the filament. The force-
measuring component was composed of a load sensor (Figure 3c) and a signal amplifier,
which can read the normal and tangential forces with a measuring accuracy of 0.01 N. The
surface topography was measured by Wyko NT9800 optical profiler (Veeco Instruments
Inc., Oak Ridge, TN, USA).
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The finite element simulation can be employed to solve implicit problems and is
widely applied in the fields of structural strength, fluid analysis, and metal cutting [16,17].
Therefore, this paper applied the Abaqus software (a type of finite element analysis prod-
uct, [18]) to simulate the brush grinding process. The geometrical model of the workpiece
and the abrasive grain are shown in Figure 4. The parameters of the abrasive grain model
were diameter, d = 40 µm; the cone angle, β = 80◦; the rake angle, γ = 50◦; and the grain
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weight, m = 2 × 10−10 kg. The abrasive grain was assumed to be a rigid body owing to its
much higher hardness than that of the aluminium alloy. The workpiece was made of 7075
aluminium alloy, whose density, Poisson’s ratio, and Young’s modulus were 2.8 g/cm3, 0.3,
and 71 GPa, respectively. The Johnson–Cook constitutive equation (detailed parameters:
A = 470 MPa, B = 331 MPa, n = 0.34, C = 0.012, and m = 0.8) was selected as its material
constitutive model. The Johnson–Cook damage equation (detailed parameters: d1 = −0.09,
d2 = 0.25, d3 = −0.5, d4 = 0.014, d5 = 3.87, θmelt = 600 ◦C, and θtransition = 20 ◦C) was
selected as its damage model. In damage evolution, the displacement at failure is 0.08. In
the mesh module, the refined element size of 2 µm was chosen for the contact zone, and an
eight-node hexahedron element was applied to the meshing. In the interaction module, the
surface-to-surface contact was selected as the interaction type, and the penalty function
was chosen to be the interaction property. In the boundary condition, the workpiece was
constrained on the bottom side, and the abrasive grain was constrained at four degrees
of freedom, except at the normal and tangential directions. We examined the impact
performance of the 7075 aluminium alloy, and the brush parameters in the simulation are
given in Table 1. The normal and tangential component velocities at the moment when the
abrasive grain just contacted the workpiece can be calculated by Equations (1)–(5), and
these were inputted into the Abaqus software as the initial state of the abrasive grain for
the simulation of the impact process. The initial positions of the abrasive grain and the
workpiece were invariant under different process parameters.
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Table 1. The process parameters of brush grinding.

No Revolution Speed
(n r/min)

Penetration Depth
(∆ mm)

Feed Rate
(f m/min)

1 500 0.1 3
2 1000 0.1 3
3 2000 0.1 3
4 3000 0.1 3
5 4000 0.1 3
6 5000 0.1 3
7 3000 0.3 3
8 3000 0.5 3
9 3000 0.7 3
10 3000 0.9 3
11 3000 1.1 3
12 3000 1.3 3
13 1000 0.1 1
14 3000 0.1 1
15 3000 0.5 1
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4. Results
4.1. Surface Topography after Brush Grinding Experiment

In order to understand the brush grinding more comprehensively, brush grinding
experiments under different process conditions were carried out. The surface topographies
of the aluminium alloy before and after brush the grinding experiment are shown in
Figures 5 and 6. As shown in Figures 5a and 6a, the surface topography before brush
grinding clearly illustrates that the translation of the workpiece and the rotational motion
of the ball-end cutter caused the peak and valley. As shown in Figure 6b, the surface
roughness after brush grinding changed from Ra = 5.4 µm to Ra = 1.61 µm, and the peak
was reduced because of the impact effect of the abrasive grain. When the brush speed
and penetration depth were further increased, the surface roughness was reduced to
Ra = 0.88 µm and Ra = 0.46 µm, respectively, which is shown in Figure 6c,d. From the
above analysis, it can be seen that the filament brush can effectively remove the majority of
the surface peaks, and the surface was smoother than the milled surface.
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4.2. Aluminium Alloy Removal Mode

The impact process of the abrasive grain is shown in Figure 7. When the simulation
ran to the 20th time step, the aluminum alloy suffered from the impact of the grain,
and the stress in the contact area was higher than that in other areas. Moreover, the
maximum extrusion stress of the aluminum alloy increased sharply to 700 MPa, and plastic
deformation appeared. As the abrasive grain invaded the aluminium alloy, the extrusion
pressure between them also increased continuously. When the simulation ran to the 40th
time step, the scratches and plastic deformation increased, and the chips appeared on the
aluminium alloy. When the simulation ran to the 65th time step, the plastic deformation and
chips were further intensified. The whole impact process was completed at the 105th time
step, when the particle detached from the aluminum alloy. Therefore, the impact process
of the abrasive grain was composed of plastic deformation, scratch, and chip formation.
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Figure 8 shows the change in the behavior of material removal under different process
parameters. As shown in Figure 8a–c, when the brush speed was 500 r/min, the tensile
stress of the aluminium alloy did not reach to the yield stress because of the lower impact
energy of the abrasive grain; thus, there was only elastic–plastic deformation and no obvi-
ous chip generation. When the brush speed increased from 500 r/min to 4000 r/min, the
aluminium alloy surface was torn, and the amount of chips removed from the aluminium
alloy also increased. As shown in Figure 8d–f, when the penetration depth increased
from 0.1 mm to 0.5 mm, the impact length in the aluminium alloy surface increased, and
the amount of materials removed from the aluminium alloy also increased. As shown in
Figure 8g,h, when the number of impacts increased, the amount of material removed from
the aluminium alloy also increased. From the above analysis, it can be seen that the process
parameters can affect the brush force and the amount of material removal.

4.3. Brush Force

In order to establish a mathematical end-effector model that can predict brush force
for intelligent control, an assessment of the influence of the process parameters on brush
force was carried out. For the penetration depth of 0.1 mm, the change of force with time
during the impact process is shown in Figure 9a,b. From Figure 9a, it can be seen that
the instantaneous normal force, FN(t), of a single abrasive grain hardly changed with the
increase in the brush speed, which is because the normal force was mainly influenced by
the penetration depth and the rake angle of the abrasive grain. As shown in Figure 9b,
the instantaneous tangential force, FT(t), of the abrasive grain during the impact process
increased linearly with the increase in brush speed. Figure 10 shows the influence of
the revolution speed on the brush force at a constant penetration depth of 0.1 mm. The
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simulated tangential force and normal force of the abrasive grain can be calculated by
Equations (6) and (7), and the experimental force was tested by the force-measuring
component. It can be seen that the simulated normal force increases significantly with the
increase in the brush speed. In addition, the relationship between the normal force and
the brush speed was linear polynomial function, which is because the influenced factors in
Equation (6) were the brush speed, n, and the integral of FN(t), and the integral of FN(t)
were constant. The relationship between the tangential force and the brush speed was a
quadratic polynomial function, which is because the influenced factors in Equation (7), the
brush speed, n, the integral of FT(t), and the integral of FT(t), were also linearly increased
with the increase in the brush speed. The brush force from the experiment had the same
change trend as that from the simulation, which was similar to that reported in another
article [13]. Moreover, it was about 2 × 104 times larger than the simulated value, which
is because the thousands of abrasive grains bonding to the bundles of the nylon bristles
simultaneously impacted on the workpiece surface. Therefore, the brush forces from
the experiment were directly proportional to those from the simulation. As shown in
Figure 10c, the mass of material removal increased quadratically with the increase in brush
speed. When the brush speed of the abrasive grain reached up to 5000 r/min, the mass
of material removal grew up to the maximum. Therefore, the mass of material removal
increased with the increase in the brush speed of the grain, but could not increase without
limit, because the strength of the filament was certain.
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material removal (c).

Figure 11 shows the influence of the penetration depth on the brush force at a constant
brush speed of 3000 r/min. The simulated tangential force and the normal force of the
abrasive grain can be calculated by Equations (6) and (7), and the experiment force was
tested by the force-measuring component. It can be seen that both the normal and tangential
forces in the simulation increased significantly with the increase in the penetration depth.
Furthermore, both the tangential and normal forces exhibited linear polynomial function
with the penetration depth, mainly due to the increase in the impact angle, α, of the
abrasive grain, which was similar to that reported in another study [19]. Figure 11c shows
the relationship between the penetration depth and the mass of material removal. It can
be seen that the mass of material removal firstly grew up, and then grew down with the
increase in the penetration depth. When the impact angle increased, the abrasive grain
better overcame the vertical component force because of its lower rake angle, resulting
in more chip formation. Nevertheless, when the impact angle was larger than 10◦, the
abrasive grain could better penetrate into the matrix, leading to larger plastic deformation
and less chip formation.
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5. Conclusions

In order to analyze the brush grinding mechanism of material removal, a kinematics
model of a single filament was established and the scratch process of the abrasive grain was
simulated. Moreover, the brush force and material removal under different brush speeds
and penetration depths were studied, based on the finite element method. According to
the experimental and simulation results, we drew the following conclusions related to the
brush behavior:

(1) During the brush grinding of aluminium alloy, only plastic deformation and
scratches could be observed when the brush speed was less than 500 r/min. When the
rotation speed was greater than 1000 r/min, the chip deformation appeared.

(2) The normal and tangential forces increased linearly and quadratically with the
increase in rotation speed, respectively. In addition, the material removal increased quadrat-
ically with the increase in rotation speed.

(3) The tangential force and the normal force increased linearly with the increase in
the penetration depth. In addition, the material removal rate increased with the increase
in the penetration depth, and then decreased. The variation trend of the simulated brush
force agreed well with that of the experiment brush force, which can provide guidance for
brush grinding for intelligent grinding control application.

The purpose of this paper was to develop an intelligent mobile robot system for
brushing and grinding workpieces without manual control. Through the finite element
analysis of the impact process, the laws between the brush force, the material removal rate,
and the process parameters were revealed. However, because of the wear of the filament,
the brush grinding robot is difficult to control. Therefore, the next step is to develop an
intelligent prediction module of the surface quality that comprehensively considers the
process parameters and the brush force using an artificial neural network.
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