Overcoming Asymmetric Contact Resistances in Al-Contacted Mg2(Si,Sn) Thermoelectric Legs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental
2.2. Computational Method
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Karellas, S.; Leontaritis, A.-D.; Panousis, G.; Bellos, E.; Kakaras, E. Energetic and exergetic analysis of waste heat recovery systems in the cement industry. Energy 2013, 58, 147–156. [Google Scholar] [CrossRef]
- Yang, J.; Stabler, F.R. Automotive Applications of Thermoelectric Materials. J. Electron. Mater. 2009, 38, 1245–1251. [Google Scholar] [CrossRef]
- Jaziri, N.; Boughamoura, A.; Müller, J.; Mezghani, B.; Tounsi, F.; Ismail, M. A comprehensive review of Thermoelectric Generators: Technologies and common applications. Energy Rep. 2020, 6, 264–287. [Google Scholar] [CrossRef]
- Snyder, G.J.; Toberer, E.S. Complex thermoelectric materials. In Materials for Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group; World Scientific: Singapore, 2011; pp. 101–110. [Google Scholar]
- He, R.; Schierning, G.; Nielsch, K. Thermoelectric Devices: A Review of Devices, Architectures, and Contact Optimization. Adv. Mater. Technol. 2018, 3, 1700256. [Google Scholar] [CrossRef] [Green Version]
- Rowe, D.; Min, G. Design theory of thermoelectric modules for electrical power generation. IEE Proc. Sci. Meas. Technol. 1996, 143, 351–356. [Google Scholar] [CrossRef]
- Rowe, D. Conversion efficiency and figure-of-merit. In CRC Handbook of Thermoelectrics; CRC Press: Boca Raton, FL, USA, 1995; pp. 31–37. [Google Scholar]
- de Boor, J.; Dasgupta, T.; Saparamadu, U.; Müller, E.; Ren, Z. Recent progress in p-type thermoelectric magnesium silicide based solid solutions. Mater. Today Energy 2017, 4, 105–121. [Google Scholar] [CrossRef]
- Bashir, M.B.A.; Said, S.M.; Sabri, M.F.M.; Shnawah, D.A.; Elsheikh, M.H. Recent advances on Mg2Si1−xSnx materials for thermoelectric generation. Renew. Sustain. Energy Rev. 2014, 37, 569–584. [Google Scholar] [CrossRef]
- de Boor, J.; Saparamadu, U.; Mao, J.; Dahal, K.; Müller, E.; Ren, Z. Thermoelectric performance of Li doped, p-type Mg2 (Ge,Sn) and comparison with Mg2 (Si,Sn). Acta Mater. 2016, 120, 273–280. [Google Scholar] [CrossRef] [Green Version]
- Zaitsev, V.K.; Fedorov, M.I.; Gurieva, E.A.; Eremin, I.S.; Konstantinov, P.P.; Samunin, A.Y.; Vedernikov, M.V. Highly effective Mg2Si1−xSnx thermoelectrics. Phys. Rev. B 2006, 74, 045207. [Google Scholar] [CrossRef]
- Fedorov, M.I.; Zaitsev, V.K.; Isachenko, G.N. High effective thermoelectrics based on the Mg2Si-Mg2Sn solid solution. In Solid State Phenomena; Trans Tech Publications Ltd.: Stafa-Zurich, Switzerland, 2011. [Google Scholar]
- Liu, W.; Tan, X.; Yin, K.; Liu, H.; Tang, X.; Shi, J.; Zhang, Q.; Uher, C. Convergence of conduction bands as a means of enhancing thermoelectric performance of n-type Mg2Si1−xSnx solid solutions. Phys. Rev. Lett. 2012, 108, 166601. [Google Scholar] [CrossRef] [Green Version]
- Kamila, H.; Sankhla, A.; Yasseri, M.; Hoang, N.; Farahi, N.; Mueller, E.; de Boor, J. Synthesis of p-type Mg2Si1−xSnx with x = 0–1 and optimization of the synthesis parameters. Mater. Today Proc. 2019, 8, 546–555. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Xi, L.; Qiu, W.; Yang, J.; Zhu, T.; Zhao, X.; Zhang, W. Significant Roles of Intrinsic Point Defects in Mg2X(X= Si, Ge, Sn) Thermoelectric Materials. Adv. Electron. Mater. 2016, 2, 1500284. [Google Scholar] [CrossRef]
- Sankhla, A.; Patil, A.; Kamila, H.; Yasseri, M.; Farahi, N.; Mueller, E.; De Boor, J. Mechanical Alloying of Optimized Mg2(Si,Sn) Solid Solutions: Understanding Phase Evolution and Tuning Synthesis Parameters for Thermoelectric Applications. ACS Appl. Energy Mater. 2018, 1, 531–542. [Google Scholar] [CrossRef] [Green Version]
- Skomedal, G.; Holmgren, L.; Middleton, H.; Eremin, I.; Isachenko, G.; Jaegle, M.; Tarantik, K.; Vlachos, N.; Manoli, M.; Kyratsi, T.; et al. Design, assembly and characterization of silicide-based thermoelectric modules. Energy Convers. Manag. 2016, 110, 13–21. [Google Scholar] [CrossRef]
- Shyikira, A.D.P.; Skomedal, G.; Middleton, P.H. Performance Evaluation and Stability of Silicide-Based Thermoelectric Modules; Elsevier: Amsterdam, The Netherlands, 2021; Volume 44, pp. 3467–3474. [Google Scholar]
- Kaibe, H.; Aoyama, I.; Mukoujima, M.; Kanda, T.; Fujimoto, S.; Kurosawa, T.; Ishimabushi, H.; Ishida, K.; Rauscher, L.; Hata, Y.; et al. Development of thermoelectric generating stacked modules aiming for 15% of conversion efficiency. In Proceedings of the ICT 2005 24th International Conference on Thermoelectrics, Clemson, SC, USA, 19–23 June 2005; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2005; pp. 242–247. [Google Scholar]
- Tarantik, K.R.; König, J.D.; Jägle, M.; Heuer, J.; Horzella, J.; Mahlke, A.; Vergez, M.; Bartholomé, K. Thermoelectric Modules Based on Silicides-Development and Characterization. Mater. Today Proc. 2015, 2, 588–595. [Google Scholar] [CrossRef]
- Nakamura, T.; Hatakeyama, K.; Minowa, M.; Mito, Y.; Arai, K.; Iida, T.; Nishio, K. Power-Generation Performance of a π-Structured Thermoelectric Module Containing Mg2Si and MnSi1.73. J. Electron. Mater. 2015, 44, 3592–3597. [Google Scholar] [CrossRef]
- Kim, H.S.; Kikuchi, K.; Itoh, T.; Iida, T.; Taya, M. Design of segmented thermoelectric generator based on cost-effective and light-weight thermoelectric alloys. Mater. Sci. Eng. B 2014, 185, 45–52. [Google Scholar] [CrossRef]
- Tohei, T.; Fujiwara, S.; Jinushi, T.; Ishijima, Z. Bondability of Mg2Si element to Ni electrode using Al for thermoelectric modules. In Proceedings of the International Symposium on Interfacial Joining and Surface Technology (IJST2013), Osaka, Japan, 27–29 November 2013; IOP Publishing: Bristol, UK, 2014; Volume 61. [Google Scholar]
- Graff, J.S.; Schuler, R.; Song, X.; Castillo-Hernandez, G.; Skomedal, G.; Enebakk, E.; Wright, D.N.; Stange, M.; de Boor, J.; Løvvik, O.M.; et al. Fabrication of a Silicide Thermoelectric Module Employing Fractional Factorial Design Principles. J. Electron. Mater. 2021, 50, 4041–4049. [Google Scholar] [CrossRef]
- Gao, P. Mg2 (Si,Sn)-Based Thermoelectric Materials and Devices; Michigan State University: East Lansing, MI, USA, 2016; p. 128. [Google Scholar]
- Goyal, G.K.; Dasgupta, T. Fabrication and testing of Mg2Si1−xSnx based thermoelectric generator module. Mater. Sci. Eng. B 2021, 272, 115338. [Google Scholar] [CrossRef]
- Ayachi, S.; Castillo Hernandez, G.; Pham, N.H.; Farahi, N.; Müller, E.; de Boor, J. Developing Contacting Solutions for Mg2Si1−xSnx-Based Thermoelectric Generators: Cu and Ni45Cu55 as Potential Contacting Electrodes. ACS Appl. Mater. Interfaces 2019, 11, 40769–40780. [Google Scholar] [CrossRef] [PubMed]
- de Boor, J.; Gloanec, C.; Kolb, H.; Sottong, R.; Ziolkowski, P.; Müller, E. Fabrication and characterization of nickel contacts for magnesium silicide based thermoelectric generators. J. Alloys Compd. 2015, 632, 348–353. [Google Scholar] [CrossRef] [Green Version]
- Pham, N.H.; Farahi, N.; Kamila, H.; Sankhla, A.; Ayachi, S.; Müller, E.; de Boor, J. Ni and Ag electrodes for magnesium silicide based thermoelectric generators. Mater. Today Energy 2019, 11, 97–105. [Google Scholar] [CrossRef]
- Camut, J.; Pham, N.; Truong, D.N.; Castillo-Hernandez, G.; Farahi, N.; Yasseri, M.; Mueller, E.; de Boor, J. Aluminum as promising electrode for Mg2(Si,Sn)-based thermoelectric devices. Mater. Today Energy 2021, 21, 100718. [Google Scholar] [CrossRef]
- Farahi, N.; Stiewe, C.; Truong, D.Y.N.; de Boor, J.; Müller, E. High efficiency Mg2(Si,Sn)-based thermoelectric materials: Scale-up synthesis, functional homogeneity, and thermal stability. RSC Adv. 2019, 9, 23021–23028. [Google Scholar] [CrossRef] [Green Version]
- Ayachi, S.; Hernandez, G.C.; Müller, E.; de Boor, J. Contacting Cu Electrodes to Mg2Si0.3Sn0.7: Direct vs. Indirect Resistive Heating. Semiconductors 2019, 53, 1825–1830. [Google Scholar] [CrossRef]
- Platzek, D.; Karpinski, G.; Stiewe, C.; Ziolkowski, P.; Drasar, C.; Muller, E. Potential-Seebeck-microprobe (PSM): Measuring the spatial resolution of the Seebeck coefficient and the electric potential. In Proceedings of the ICT 2005 24th International Conference on Thermoelectrics, Clemson, SC, USA, 19–23 June 2005; IEEE: Piscataway, NJ, USA, 2005; pp. 13–16. [Google Scholar]
- Krukau, A.V.; Vydrov, O.A.; Izmaylov, A.F.; Scuseria, G.E. Influence of the exchange screening parameter on the performance of screened hybrid functionals. J. Chem. Phys. 2006, 125, 224106. [Google Scholar] [CrossRef] [PubMed]
- Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.B.; Northrup, J.E. Chemical potential dependence of defect formation energies in GaAs: Application to Ga self-diffusion. Phys. Rev. Lett. 1991, 67, 2339–2342. [Google Scholar] [CrossRef]
- Ayachi, S.; Deshpande, R.; Ponnusamy, P.; Park, S.; Chung, J.; Park, S.; Ryu, B.; Müller, E.; de Boor, J. On the relevance of point defects for the selection of contacting electrodes: Ag as an example for Mg2(Si,Sn)-based thermoelectric generators. Mater. Today 2021, 16, 100309. [Google Scholar] [CrossRef]
- Ryu, B.; Choi, E.-A.; Park, S.; Chung, J.; de Boor, J.; Ziolkowski, P.; Müller, E.; Park, S. Native point defects and low p-doping efficiency in Mg2(Si,Sn) solid solutions: A hybrid-density functional study. J. Alloys Compd. 2021, 853, 157145. [Google Scholar] [CrossRef]
- Ryu, B.; Park, S.; Choi, E.-A.; De Boor, J.; Ziolkowski, P.; Chung, J.; Park, S.D. Hybrid-Functional and Quasi-Particle Calculations of Band Structures of Mg2Si, Mg2Ge, and Mg2Sn. J. Korean Phys. Soc. 2019, 75, 144–152. [Google Scholar] [CrossRef] [Green Version]
- Murray, J.L.; McAlister, A.J. The Al-Si (Aluminum-Silicon) system. Bull. Alloy. Phase Diagr. 1984, 5, 74–84. [Google Scholar] [CrossRef]
- Salinas, D.R.; García, S.G.; Bessone, J.B. Influence of alloying elements and microstructure on aluminium sacrificial anode performance: Case of Al–Zn. J. Appl. Electrochem. 1999, 29, 1063–1071. [Google Scholar] [CrossRef]
- Han, W.H.; Chang, K.J. Subgap States near the Conduction-Band Edge Due to Undercoordinated Cations in Amorphous In-Ga-Zn-O and Zn-Sn-O Semiconductors. Phys. Rev. Appl. 2016, 6, 044011. [Google Scholar] [CrossRef]
- Shan, W.; Yu, K.M.; Walukiewicz, W.; Wu, J.; Ager, J.; Haller, E.E. Band anticrossing in dilute nitrides. J. Phys. Condens. Matter 2004, 16, S3355–S3372. [Google Scholar] [CrossRef] [Green Version]
- Shirzadi, A.A.; Assadi, H.; Wallach, E.R. Interface evolution and bond strength when diffusion bonding materials with stable oxide films. Surf. Interface Anal. 2001, 31, 609–618. [Google Scholar] [CrossRef]
- Gross, D.; Seelig, T. Fracture Mechanics: With an Introduction to Micromechanics; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Ponnusamy, P.; Kamila, H.; Müller, E.; de Boor, J. Efficiency as a performance metric for material optimization in thermoelectric generators. J. Phys. Energy 2021, 3, 044006. [Google Scholar] [CrossRef]
- Vivekanandhan, P.; Murugasami, R.; Kumar, S.A.; Kumaran, S. Structural features and thermoelectric properties of spark plasma assisted combustion synthesised Magnesium silicide doped with Aluminium. Mater. Chem. Phys. 2020, 241, 122407. [Google Scholar] [CrossRef]
- Tani, J.I.; Kido, H. Thermoelectric properties of Al-doped Mg2Si1−xSnx (x ≦ 0.1). J. Alloys Compd. 2008, 466, 335–340. [Google Scholar] [CrossRef]
- Hu, X.; Barnett, M.R.; Yamamoto, A. Synthesis of Al-doped Mg2Si1−xSnx compound using magnesium alloy for thermoelectric application. J. Alloys Compd. 2015, 649, 1060–1065. [Google Scholar] [CrossRef]
- Kim, G.; Kim, J.; Lee, H.; Cho, S.; Lyo, I.; Noh, S.; Kim, B.-W.; Kim, S.W.; Lee, K.H.; Lee, W. Co-doping of Al and Bi to control the transport properties for improving thermoelectric performance of Mg2Si. Scr. Mater. 2016, 116, 11–15. [Google Scholar] [CrossRef]
- Kato, A.; Yagi, T.; Fukusako, N. First-principles studies of intrinsic point defects in magnesium silicide. J. Phys. Condens. Matter 2009, 21, 205801. [Google Scholar] [CrossRef] [PubMed]
- Andersen, H.L.; Zhang, J.; Yin, H.; Iversen, B.B. Structural stability and thermoelectric properties of cation- and anion-doped Mg2Si0.4Sn0.6. Inorg. Chem. Front. 2017, 4, 456–467. [Google Scholar] [CrossRef]
- Kato, D.; Iwasaki, K.; Yoshino, M.; Yamada, T.; Nagasaki, T. Control of Mg content and carrier concentration via post annealing under different Mg partial pressures for Sb-doped Mg2Si thermoelectric material. J. Solid State Chem. 2018, 258, 93–98. [Google Scholar] [CrossRef]
- Sankhla, A.; Kamila, H.; Kelm, K.; Mueller, E.; de Boor, J. Analyzing thermoelectric transport in n-type Mg2Si0.4Sn0.6 and correlation with microstructural effects: An insight on the role of Mg. Acta Mater. 2020, 199, 85–95. [Google Scholar] [CrossRef]
- Sankhla, A.; Kamila, H.; Naithani, H.; Mueller, E.; de Boor, J. On the role of Mg content in Mg2(Si,Sn): Assessing its impact on electronic transport and estimating the phase width by in situ characterization and modelling. Mater. Today Phys. 2021, 21, 100471. [Google Scholar] [CrossRef]
- Battiston, S.; Boldrini, S.; Fiameni, S.; Famengo, A.; Fabrizio, M.; Barison, S. Multilayered thin films for oxidation protection of Mg2Si thermoelectric material at middle–high temperatures. Thin Solid Films 2012, 526, 150–154. [Google Scholar] [CrossRef]
- D’Isanto, F.; Smeacetto, F.; Reece, M.J.; Chen, K.; Salvo, M. Oxidation protective glass coating for magnesium silicide based thermoelectrics. Ceram. Int. 2020, 46, 24312–24317. [Google Scholar] [CrossRef]
- Gucci, F.; D’Isanto, F.; Zhang, R.; Reece, M.J.; Smeacetto, F.; Salvo, M. Oxidation Protective Hybrid Coating for Thermoelectric Materials. Materials 2019, 12, 573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nieroda, P.; Mars, K.; Nieroda, J.; Leszczyński, J.; Król, M.; Drożdż, E.; Jeleń, P.; Sitarz, M.; Kolezynski, A. New high temperature amorphous protective coatings for Mg2Si thermoelectric material. Ceram. Int. 2019, 45, 10230–10235. [Google Scholar] [CrossRef]
- Sadia, Y.; Ben-Ayoun, D.; Gelbstein, Y. PbO–SiO2-based glass doped with B2O3 and Na2O for coating of thermoelectric materials. J. Mater. Res. 2019, 34, 3563–3572. [Google Scholar] [CrossRef]
- Tani, J.I.; Takahashi, M.; Kido, H. Fabrication of oxidation-resistant β-FeSi2 film on Mg2Si by RF magnetron-sputtering deposition. J. Alloys Compd. 2009, 488, 346–349. [Google Scholar] [CrossRef]
Top/Top | Leg 2 | Leg 3 | Leg 4 | Leg 5 | Leg 7 | Leg 8 | Leg 9 | Average | |
---|---|---|---|---|---|---|---|---|---|
Side on top during dicing | (µΩ·cm2) | 12 ± 8 | 8 ± 5 | 5 ± 2 | 9 ± 5 | 25 ± 13 | 7 ± 4 | 9 ± 4 | 10.7 |
(µΩ·cm2) | 14 ± 9 | 7 ± 4 | 9 ± 5 | 11 ± 6 | 18 ± 9 | 5 ± 3 | 10 ± 4 | 10.6 | |
Side on bottom during dicing (µΩ·cm2) | (µΩ·cm2) | 368 ± 246 | 380 ± 57 | 702 ± 90 | 256 ± 100 | 305 ± 19 | 396 ± 80 | 298 ± 50 | 386.4 |
(µΩ·cm2) | 417 ± 278 | 301 ± 45 | 1435 ± 184 | 306 ± 120 | 218 ± 13 | 313 ± 64 | 350 ± 59 | 477.1 |
Top/Bottom | Leg 5 | Leg 7 | Leg 8 | Leg 9 | Average | |
---|---|---|---|---|---|---|
Side on top during dicing | (µΩ·cm2) | 7 ± 5 | 15 ± 7 | 6 ± 2 | 7 ± 5 | 7.5 |
(µΩ·cm2) | 8 ± 6 | 12 ± 5 | 7 ± 3 | 9 ± 6 | 8.8 | |
Side on bottom during dicing (µΩ·cm2) | (µΩ·cm2) | 581 ± 101 | 199 ± 22 | 100 ± 46 | 107 ± 25 | 258.2 |
(µΩ·cm2) | 699 ± 122 | 156 ± 17 | 115 ± 53 | 144 ± 34 | 317.7 |
Zn-Sputtering | Leg 1 | Leg 2 | Leg 3 | Leg 4 | Leg 5 | Leg 6 | Leg 7 | Leg 8 | Leg 9 | Average | |
---|---|---|---|---|---|---|---|---|---|---|---|
Side on top during dicing | (µΩ·cm2) | 3 ± 1 | 5 ± 4 | 3 ± 1 | 3 ± 1 | 7 ± 7 | 3 ± 1 | 2 ± 1 | 3 ± 1 | 4 ± 2 | 3.7 |
(µΩ·cm2) | 3 ± 1 | 7 ± 6 | 3 ± 2 | 5 ± 1 | 15 ± 14 | 4 ± 1 | 2 ± 1 | 4 ± 1 | 7 ± 5 | 5.6 | |
Side on bottom during dicing (µΩ·cm2) | (µΩ·cm2) | 10 ± 7 | 12 ± 4 | 3 ± 1 | 3 ± 1 | 9 ± 5 | 3 ± 1 | 4 ± 1 | 46 ± 8 | 3 ± 2 | 10.3 |
(µΩ·cm2) | 20 ± 12 | 18 ± 7 | 4 ± 2 | 5 ± 2 | 19 ± 9 | 4 ± 1 | 5 ± 1 | 59 ± 10 | 6 ± 3 | 15.6 |
Point | %Mg | %Si | %Sn | %Bi | %Zn | %Al |
---|---|---|---|---|---|---|
1 | 64.4 | 8.8 | 25.6 | 1.2 | - | - |
2 | 63.6 | 9.0 | 21.7 | 5.7 | - | - |
3 | 33.2 | - | - | - | 41.9 | 24.9 |
4 | 2.3 | - | - | - | 3.4 | 94.2 |
5 | 1.5 | - | - | - | 3.6 | 94.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Camut, J.; Ayachi, S.; Castillo-Hernández, G.; Park, S.; Ryu, B.; Park, S.; Frank, A.; Stiewe, C.; Müller, E.; de Boor, J. Overcoming Asymmetric Contact Resistances in Al-Contacted Mg2(Si,Sn) Thermoelectric Legs. Materials 2021, 14, 6774. https://doi.org/10.3390/ma14226774
Camut J, Ayachi S, Castillo-Hernández G, Park S, Ryu B, Park S, Frank A, Stiewe C, Müller E, de Boor J. Overcoming Asymmetric Contact Resistances in Al-Contacted Mg2(Si,Sn) Thermoelectric Legs. Materials. 2021; 14(22):6774. https://doi.org/10.3390/ma14226774
Chicago/Turabian StyleCamut, Julia, Sahar Ayachi, Gustavo Castillo-Hernández, Sungjin Park, Byungki Ryu, Sudong Park, Adina Frank, Christian Stiewe, Eckhard Müller, and Johannes de Boor. 2021. "Overcoming Asymmetric Contact Resistances in Al-Contacted Mg2(Si,Sn) Thermoelectric Legs" Materials 14, no. 22: 6774. https://doi.org/10.3390/ma14226774
APA StyleCamut, J., Ayachi, S., Castillo-Hernández, G., Park, S., Ryu, B., Park, S., Frank, A., Stiewe, C., Müller, E., & de Boor, J. (2021). Overcoming Asymmetric Contact Resistances in Al-Contacted Mg2(Si,Sn) Thermoelectric Legs. Materials, 14(22), 6774. https://doi.org/10.3390/ma14226774